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C-INFINITY INTERFACES OF SOLUTIONS FOR

ONE-DIMENSIONAL PARABOLIC p-LAPLACIAN EQUATIONS

YOONMI HAM & YOUNGSANG KO

Abstract. We study the regularity of a moving interface x = ζ(t) of the
solutions for the initial value problem

ut =
(
|ux|

p−2ux
)
x

u(x, 0) = u0(x) ,

where u0 ∈ L1(R) and p > 2. We prove that each side of the moving interface
is C∞.

1. Introduction

We consider the Cauchy problem of the form

ut =
(
|ux|

p−2ux
)
x
in S := R× (0,∞)

u(x, 0) = u0(x)
(1.1)

where p > 2. This equation has application to many physical situations, and has
been studied by many authors; see for example [2] and references therein. In the
study of this equation, the velocity of propagation, V (x, t), is very important, and
can be obtained in terms of u by writing (1.1) as the conservation law

ut + (uV )x = 0 .

In this way we obtain V = −vx|vx|p−2, where the nonlinear potential v(x, t) is

v =
p− 1

p− 2
u(p−2)/(p−1).(1.2)

By a direct computation, we realize that

vt = (p− 2)v|vx|
p−2vxx + |vx|

p.(1.3)

In [2], it is shown that V satisfies Vx ≤
1

2(p−1)t which can also be written as

(vx|vx|
p−2)x ≥ −

1

2(p− 1)t
.(1.4)
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Without loss of generality, we assume that u0 vanishes on R
− and that u0 is a

continuous positive function on an interval (0, a) with a > 0. Let

P [u] = {(x, t) ∈ S : u(x, t) > 0}

be the positivity set of a solution u. Then P [u] is bounded from the left in the
(x, t)-plane by the left interface curve x = ζ(t), where

ζ(t) = inf{x ∈ R : u(x, t) > 0} .

Moreover, there is a time t∗ ∈ [0,∞), called the waiting time, such that ζ(t) = 0
for 0 ≤ t ≤ t∗ and ζ(t) < 0 for t > t∗. It is shown in [2] that t∗ is finite (possibly
zero) and ζ(t) is a non-increasing C1 function on (t∗,∞). Actually it is shown that
ζ′(t) < 0 for every t > t∗, i.e., a moving interface never stops.
On the other hand, D. G. Aronson and J. L. Vazquez [1] established Theorem 1.1

below.
Let D = {(x, t) : t > t∗, ζ(t) ≤ x ≤ 0}, and let v be the pressure for the solution

of the porous medium equation

ut = (u
m)xx in QT = R× (0, T ).(1.5)

Theorem 1.1. v is a C∞ function on D, and ζ(t) is a C∞ function on (t∗,∞).

This theorem is proven by finding bounds for v(k) with k ≥ 2.

The purpose of this paper is to discuss the C∞ regularity of the moving part of
the interface of the solution to (1.1). To accomplish this end, we use some ideas
from [1].

2. Upper and Lower Bounds for vxx

Let q = (x0, t0) be a point on the left interface, so that x0 = ζ(t0), v(x, t0) = 0
for all x ≤ ζ(t0), and v(x, t0) > 0 for all sufficiently small x > ζ(t0). We assume
the left interface is moving at q. Thus t0 > t

∗. We shall use the notation

Rδ,η = Rδ,η(t0) = {(x, t) ∈ R
2 : ζ(t) < x ≤ ζ(t) + δ, t0 − η ≤ t ≤ t0 + η}.

Proposition 2.1. Let q be the point as above. Then there exist positive constants
C, δ, and η depending only on p, q, and u such that

vxx ≥ C in Rδ,η/2.

Proof. From (1.4) we have, vxx ≥ −
1

2(p− 1)2|vx|p−2t
. However, from Lemma 4.4

in [2], vx is bounded away and above from zero near q, where u(x, t) > 0. �

Proposition 2.2. Let q = (x0, t0) be as above. Then there exist positive constants
C2, δ, and η depending only on p, q, and u such that

vxx ≤ C2 in Rδ,η/2 .

Proof. From Theorem 2 and Lemma 4.4 in [2] we have

ζ ′(t0) = −vx|vx|
p−2 = −vp−1x = −a(2.1)

and

vt = |vx|
p(2.2)
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on the moving part of the interface {x = ζ(t), t > t∗}. Choose ε > 0 such that

(p− 1)a− 5pε ≥ 4[(p− 2)2 + (p− 1)2](a+ ε)ε.(2.3)

Then by Theorem 2 in [2], there exists a δ = δ(ε) > 0 and η = η(ε) ∈ (0, t0 − t∗)
such that Rδ,η ⊂ P [u],

(a− ε)
1
p−1 < vx < (a+ ε)

1
p−1(2.4)

and

vvxx ≤ (a− ε)
2
p−1 ε(2.5)

in Rδ,η. Then from (2.4) we have

(a− ε)
1
p−1 (x− ζ) < v(x, t) < (a+ ε)

1
p−1 (x − ζ)(2.6)

in Rδ,η and

−(a+ ε) < ζ′(t) < −(a− ε) in [t1, t2](2.7)

where t1 = t0 − η and t2 = t0 + η. We set

ζ∗(t) = ζ(t1)− b(t− t1)(2.8)

where b = a+ 2ε. Then clearly ζ(t) > ζ∗(t) in (t1, t2]. On P [u], w ≡ vxx satisfies

L(w) = wt − (p− 2)v|vx|
p−2wxx − (3p− 4)|vx|

p−2vxwx

−[(p− 2)2 + 2(p− 1)2]|vx|
p−2w2

−3(p− 2)2v|vx|
p−4vxwwx − (p− 2)

2(p− 3)v|vx|
p−4w3

= 0 .

We shall construct a barrier for w in Rδ,η of the form

φ(x, t) ≡
α

x− ζ(t)
+

β

x− ζ∗(t)
,

where α and β will be decided later.
By a direct computation we have

L(φ) =
α

(x− ζ)2
{ζ′ − (p− 2)v|vx|

p−2 2

x− ζ
+ (3p− 4)|vx|

p−2vx}

+
β

(x− ζ∗)2
{ζ∗

′

− (p− 2)v|vx|
p−2 2

x− ζ∗
+ (3p− 4)|vx|

p−2vx}

−[(p− 2)2 + 2(p− 1)2]|vx|
p−2φ2 + Ḡ

where

Ḡ

= −3(p− 2)2vvx|vx|
p−4φφx − (p− 2)

2(p− 3)v|vx|
p−4φ3

= (p− 2)2v|vx|
p−4φ

(
3vx[

α

(x− ζ)2
+

β

(x− ζ∗)2
]− (p− 3)[

α

x− ζ
+

β

x− ζ∗
]2
)
.

If we choose α and β satisfying

vx ≥ |p− 3|max(α, β),
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then Ḡ ≥ 0 in Rδ,η. Now set Ā =
α

(x−ζ)2 and B̄ =
β

(x−ζ∗)2 . Then we have

L(φ)

≥ Ā

{
ζ′ + |vx|

p−2{−(p− 2)v
2

x− ζ
+ (3p− 4)vx − 2[(p− 2)

2 + 2(p− 1)2]α}

}

+B̄

{
ζ∗
′

+ |vx|
p−2{−(p− 2)v

2

x− ζ∗
+ (3p− 4)vx − 2[(p− 2)

2 + 2(p− 1)2]β}

}

≥ Ā
{
(p− 1)a− (5p− 7)ε− 2[(p− 2)2 + 2(p− 1)2](a+ ε)

p−2
p−1α

}

+B̄
{
(p− 1)a− (5p− 6)ε− 2[(p− 2)2 + 2(p− 1)2](a+ ε)

p−2
p−1β

}
.

Set

0 < α ≤
(p− 1)a− (5p− 7)ε

2[(p− 2)2 + 2(p− 1)2](a+ ε)
p−2
p−1

= α0

and

β =
(p− 1)a− (5p− 6ε)

2[(p− 2)2 + 2(p− 1)2](a+ ε)
p−2
p−1

.(2.9)

Then from (2.3), β > 0 and L(φ) ≥ 0 in Rδ,η for all α ∈ (0, α0] and β.
Let us now compare w and φ on the parabolic boundary of Rδ,η. In view of (2.5)

and (2.6) we have

vxx ≤
ε(a− ε)

1
p−1

x− ζ
in Rδ,η

and in particular

vxx(ζ(t) + δ, t) ≤
ε(a− ε)

1
p−1

δ
in [t1, t2] .

By the Mean Value Theorem and (2.7), we have that for some τ ∈ (t1, t2)

ζ(t) + δ − ζ∗(t) = δ + (a+ 2ε)(t− t1) + ζ
′(τ)(t − t1)

≤ δ + 3ε(t− t1) ≤ δ + 6εη.

Now set

η = min{η(ε), δ(ε)/6ε}.

Since ε satisfies (2.3) and β is given by (2.9) it follows that

φ(ζ + δ, t) ≥
β

2δ
≥

(p− 1)a− (5p− 6ε)

4[(p− 2)2 + 2(p− 1)2](a+ ε)
p−2
p−1 δ

≥
(a+ ε)

1
p−1

δ
ε ≥ vxx ,

on [t1, t2]. Moreover from (3.5) and (2.9)

φ(x, t1) ≥
β

x− ζ(t1)
>
ε(a− ε)

1
p−1

x− ζ(t1)
> vxx(x, t1) on (ζ(t1), ζ(t1) + δ] .

Let Γ = {(x, t) ∈ R2 : x = ζ(t), t1 ≤ t ≤ t2}. Clearly Γ is a compact subset of R2.
Fix α ∈ (0, α0). For each point s ∈ Γ there is an open ball Bs centered at s such
that

(vvxx)(x, t) ≤ α(a− ε)
1
p−1 in Bs ∩ P [u] .

In view of (2.6) we have

φ(x, t) ≥
α

x− ζ
≥ vxx(x, t) in Bs ∩ P [u] .
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Since Γ can be covered by a finite number of these balls it follows that there is a
γ = γ(α) ∈ (0, δ) such that

φ(x, t) ≥ w(x, t) in Rδ,η.

Thus for every α ∈ (0, α0), φ is a barrier for w in Rδ,η. By the comparison principle
for parabolic equations [4] we conclude that

vxx(x, t) ≤
α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η ,

where β is given by (2.9) and α ∈ (0, α0) is arbitrary. Now as α approaches zero,
we obtain

vxx(x, t) ≤
β

x− ζ∗
≤
2β

εη
in R.

3. Bounds for
(
∂
∂x

)3
v

In this section we find the estimates of the derivatives of the form

v(3) ≡

(
∂

∂x

)3
v.

By a direct computation we have,

L3(v
(3)) = v

(3)
t − (p− 2)vv

p−2
x v(3)xx − (A+B)v

(3)
x − Cv

(3) −D(v(3))2(3.1)

−Evp−3x v3xx − (p− 2)
2(p− 3)(p− 4)vvp−5x v4xx = 0 ,

where

A = (p− 2)vp−1x + (p− 2)2vvp−3x vxx ,

B = (3p− 4)vp−1x + 3(p− 2)2vvp−3x vxx ,

C = vxxv
p−2
x {(3p− 4)(p− 1) + 2[(p− 2)2

+2(p− 1)2] + 6(p− 2)2(p− 3)vv−2x vxx + 3(p− 2)
2} ,

D = 3(p− 2)2vvp−3x ,

E = [(p− 2)2 + 2(p− 1)2](p− 2) + (p− 2)2(p− 3) .

Suppose that q = (x0, t0) is a point on the left interface for which (2.1) holds.
Fix ε ∈ (0, a) and take δ0 = δ0(ε) > 0 and η0 = η(ε) ∈ (0, t0 − t∗) such that
R0 ≡ Rδ0,η0(t0) ⊂ P [u] and (2.5) holds. Thus we also have (2.6) and (2.7) in R0.
Then by rescaling and interior estimate we have

Proposition 3.1. There are constants K ∈ R+, δ ∈ (0, δ0), and η ∈ (0, η0) de-
pending only on p, q, and C2 such that

|v(3)(x, t)| ≤
K

x− ζ(t)
in Rδ,η .

Proof. Set

δ = min{
2δ0
3
, 2sη0}, η = η0 −

δ

4s
,

and define

R(x, t) ≡

{
(x, t) ∈ R2 : |x− x| <

λ

2
, t−

λ

4s
< t ≤ t

}
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for (x, t) ∈ Rδ,η, where s = a+ ε and λ = x− ζ(t). Then (x, t) ∈ Rδ,η implies that
R(x, t) ⊂ R0. Since δ0 ≥

3δ
2 , λ < δ and ζ is non-increasing, we have

t0 − η0 = t0 − η −
λ
4s < t < t0 + η < t0 + η0 ,

x− λ2 = x−
x+ζ(t)
2 = x+ζ(t)

2 > ζ(t0 + η0) ,

ζ(t0 − η) + δ +
λ
2 < ζ(t0 − η0) .

Also observe that for each (x, t) ∈ Rδ,η, R(x, t) lies to the right of the line x =
ζ(t) + s(t− t). Next set x = λξ + x and t = λτ + t. The function

W (ξ, τ) ≡ vxx(λξ + x, λτ + t) = vxx(x, t)

satisfies the equation

Wτ =
{
(p− 2)

v

λ
vp−2x Wξ + (3p− 4)v

p−1
x W

}
ξ

+[2(p− 2)2vvp−3x vxx − (p− 2)v
p−1
x ]Wξ(3.2)

+λ[(p− 2)2(p− 3)vvp−4x (vxx)
3 − (p− 2)vp−2x (vxx)

2]

in the region

B ≡

{
(ξ, τ) ∈ R2 : |ξ| ≤

1

2
,−
1

4s
< τ ≤ 0

}
,

and |W | ≤ C2 in B. In view of (2.6) and (2.7)

(a− ε)
1
p−1
x− ζ(t)

λ
≤
v(x, t)

λ
≤ (a+ ε)

1
p−1
x− ζ(t)

λ

and

ζ(t) ≤ ζ(t) ≤ ζ(t) + s(t− t) ≤ ζ(t) +
λ

4
.

Therefore,

λ

4
= x−

λ

2
− ζ(t)−

λ

4
≤ x− ζ(t) ≤ x+

λ

2
− ζ(t) =

3λ

2

which implies

(a− ε)
1
p−1

4
≤
v

λ
≤
3(a+ ε)

1
p−1

2
.

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from
Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [4]. Thus
we conclude that there exists a constant K = K(a, p, C2) > 0 such that∣∣∣∣ ∂∂ξW (0, 0)

∣∣∣∣ ≤ K;
that is,

|v(3)(x, t)| ≤
K

λ
.

Since (x, t) ∈ Rδ,η is arbitrary, this proves the proposition. �

We now turn to the barrier construction. If γ ∈ (0, δ) we will use the notation

Rγδ,η = R
γ
δ,η(t0) ≡ {(x, t) ∈ R

2 : ζ(t) + γ ≤ x ≤ ζ(t) + δ, t0 − η ≤ t ≤ t0 + η}.
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Proposition 3.2. Let Rδ1,η1 be the region constructed in the proof of Proposition
2.2 with

0 < δ1 <
(p− 1)a

1
p−1

12(p− 2)2K
.(3.3)

For (x, t) ∈ Rγδ1,η1 , let

φγ(x, t) ≡
α

x− ζ(t)− γ/3
+

β

x− ζ∗(t)
,(3.4)

where ζ∗ is given by (2.8), and α and β are positive constant less than K/2. Then
there exist δ ∈ (0, δ1) and η ∈ (0, η1) depending only on a, p and C2 such that

L3(φγ) ≥ 0 in Rγδ,η

for all γ ∈ (0, δ).

Proof. Choose ε such that

0 < ε <
(p− 1)a

13p− 23
.(3.5)

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (2.4), (2.6) and (2.7) hold in Rδ2,η.
Fix γ ∈ (0, δ2). For (x, t) ∈ R

γ
δ2,η
, we have

L3(φ3) =
α

(x− ζ − γ/3)2

{
ζ
′

−
2(p− 2)vvp−2x

x− ζ − γ/3
+A+B

}

+
α

(x− ζ∗)2

{
ζ∗
′

−
2(p− 2)vvp−2x

x− ζ∗
+A+B

}

−Cφ3 −D(φ3)
2 − Evp−3x v3xx − (p− 2)

2(p− 3)(p− 4)vvp−5x v4xx

where A, B, C, D, and E are as above.
¿From (2.6), together with the fact that x− ζ∗ ≥ x− ζ − γ/3 we have

v

x− ζ∗
≤

v

x− ζ − γ/3
≤ (a+ε)

1
p−1

x− ζ

x− ζ − γ/3
≤ (a+ε)

1
p−1

γ

γ − γ/3
=
3

2
(a+ε)

1
p−1 .

¿From (3.3), we have

Dα,Dβ < 1/2DK < DK ≤
(p− 1)a

4
+
(p− 1)ε

4
.(3.6)

Then since |C| is bounded and from (2.4) and (2.6), we have

L3(φ3)

≥
α

Y 2

{
(p− 1)a− (7p− 11)ε− |C|Y − 2Dα−E

Y 2

α

}

+
β

(x− ζ∗)2

{
(p− 1)a− (7p− 10)ε− |C|(x − ζ∗)− 2Dβ − E

(x− ζ∗)2

β

}

≥
α

Y 2

{
(p− 1)a

2
−
13p− 23

2
ε− δ2(|C| − E

Y

α
)

}

+
β

(x− ζ∗)2

{
(p− 1)a

2
−
13p− 21

2
ε− δ2(|C| − E

x− ζ∗

β
)

}

where Y = x − ζ − γ/3 and E = |E|vp−3x v3xx. Since ε satisfies (3.5) we can choose
δ = δ2(ε, p, a, C2) > 0 so small that L3(φ3) ≥ 0 in R

γ
δ,η. �



8 YOONMI HAM & YOUNGSANG KO EJDE–1999/01

Remark 3.1. ¿From (3.6) the Proposition 3.2 will be true for any α, β ∈ (0,K).

Proposition 3.3. (Barrier Transformation). Let δ and η be as in Proposition 3.2
with the additional restriction that

η <
δ

6ε
,(3.7)

where ε is as in Proposition 3.2. Suppose that for some nonnegative constant β

v(3)(x, t) ≤
α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η.(3.8)

Then v(3) also satisfies

v(3)(x, t) ≤
2α/3

x− ζ(t)
+
β + 2α/3

x − ζ∗(t)
in Rδ,η.(3.9)

Proof. By Remark 3.1, for any γ ∈ (0, δ) since β + 2α/3 ≤ K the function

φ3(x, t) =
2α/3

x− ζ − γ/3
+
β + 2α/3

x− ζ∗

satisfies L3(φ3) ≥ 0 in R
γ
δ,η. On the other hand, on the parabolic boundary of R

γ
δ,η

we have φ3 ≥ v(3). In fact, for t = t1 and ζ1 + γ ≤ x ≤ ζ1 + δ, with ζ1 = ζ(t1), we
have

φ3(x, t1) =
2α

x− ζ1 − γ/3
+
β + 2α/3

x− ζ1
>
4α/3

x− ζ1
+

β

x− ζ1
> v(3)(x, t1)

while for x = ζ + δ and t1 ≤ t ≤ t2 we get, in view of (3.7),

φ3(ζ + δ, t) ≥
2α/3

δ − γ/3
+

β

ζ + δ − ζ∗
+
2α/3

δ + 6εη

≥
2α/3

δ
+

δ

ζ + δ − ζ∗
+
α/3

δ
≥ v(3)(ζ + δ, t).

Finally, for x = ζ + γ, t1 ≤ t ≤ t2 we have

φ3(ζ + δ, t) =
2α/3

γ − γ/3
+
β + 2α/3

ζ + γ − ζ∗
≥
α

γ
+

β

ζ + γ − ζ∗
≥ v(3)(ζ + γ, t).

By the comparison principle we get

φ3 ≥ v
(3) in Rγδ.η

for any γ ∈ (0, δ), and (3.9) follows by letting γ ↓ 0. �

Proposition 3.4. Let q = (x0, t0) be a point on the interface for which (2.1) holds.
Then there exist constants C3, δ and η depending only on p, q and u such that∣∣∣∣∣

(
∂

∂x

)3
v

∣∣∣∣∣ ≤ C3 in Rδ,η/2.

Proof. By Proposition 3.1 we have, by letting α = 0,

v(3)(x, t) ≤
β

x− ζ∗
≤
2β

εη
in Rδ,η/2.

Even though the equation (3.1) is not linear for v(3), a lower bound can be obtained
in a similar way. �
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4. Main Result

In this section we prove the interface is a C∞ function in (t∗,∞). We follow the
methods in [1]. First we find the estimates of the derivatives of the form

v(j) ≡

(
∂

∂x

)j
v

for j ≥ 4. For the porous medium equation, we have [1] the following equation:

Ljv
(j) ≡ v

(j)
t − (m− 1)vv

(j)
xx − (2 + j(m− 1))vxv

(j)
x − cmjvxxv

(j)

−
j∗∑
l=3

dlmjv
(l)v(j+2−l) = 0

for j ≥ 3 in P [u], where j∗ = [j/2] + 1, and the cmj and dlmj are constants which
depend only on their indices, but whose precise values are irrelevant. Note that
Lj is linear in v

(j). On the other hand for the p-Laplacian equation by a direct
computation we have the following equation for j ≥ 4,

Ljv
(j) = v

(j)
t − (p− 2)vv

p−2
x v(j)xx − ((j − 2)A+B)v

(j)
x − Cpjv

(j)(4.1)

−F (v, vx, . . . , v
(j−1)) = 0

where A and B are as before, and Cpj involves only v and derivatives of order < j.

Note that equation (4.1) is linear in v(j). We also follow the method in [1]. Hence
our result is

Proposition 4.1. Let q = (x0, t0) be a point on the interface for which (2.1) holds.
For each integer j ≥ 2 there exist constants Cj , δ and η depending only on p, j, q
and u such that ∣∣∣∣∣

(
∂

∂x

)j
v

∣∣∣∣∣ ≤ Cj in Rδ,η/2.

The proof is done by induction on j. Suppose that q = (x0, t0) is a point on
the left interface for which (2.1) holds. Fix ε ∈ (0, a) and take δ0 = δ0(ε) > 0 and
η0 = η(ε) ∈ (0, t0 − t∗) such that R0 ≡ Rδ0,η0(t0) ⊂ P [u] and (2.5) holds. Thus
we also have (2.6) and (2.7) in R0. Assume that there are constants Ck ∈ R+ for
k = 3, . . . , j − 1 such that

|v(k)| ≤ Ck onR0 for k = 3, . . . , j − 1.(4.2)

Observe that (4.2) hold for k = 3 by Proposition 3.4.
By rescaling and interior estimates, we have

Proposition 4.2. There are constants K ∈ R+, δ ∈ (0, δ0), and η ∈ (0, η0) de-
pending only on p,q and Ck for k ∈ [2, j − 1] with j ≥ 4 such that

|v(j)(x, t)| ≤
K

x− ζ(t)
in Rδ,η.

Proof. Set

δ = min{
2δ0
3
, 2sη0} , η = η0 −

δ

4s
,

and define

R(x, t) ≡

{
(x, t) ∈ R2 : |x− x| <

λ

2
, t−

λ

4s
< t ≤ t

}
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for (x, t) ∈ Rδ,η, where s = a+ ε and λ = x− ζ(t). Then (x, t) ∈ Rδ,η implies that
R(x, t) ⊂ R0. Since δ0 ≥

3δ
2 , λ < δ and ζ is non-increasing, we have

t0 − η0 = t0 − η −
λ
4s < t < t0 + η < t0 + η0 ,

x− λ2 = x−
x+ζ(t)
2 = x+ζ(t)

2 > ζ(t0 + η0) ,

ζ(t0 − η) + δ +
λ
2 < ζ(t0 − η0) .

Also observe that for each (x, t) ∈ Rδ,η, R(x, t) lies to the right of the line x =
ζ(t) + s(t− t). Next set x = λξ + x and t = λτ + t. The function

V (j−1)(ξ, τ) ≡ v(j−1)(λξ + x, λτ + t) = v(j−1)(x, t)

satisfies the equation

V (j−1)τ =
{
(p− 2)

v

λ
vp−2x V

(j−1)
ξ + [(j − 2)A+B]vp−1x V (j−1)

}
ξ

−[(p− 2)vp−1x + (p− 2)2vvp−3x vxx + (j − 2)A+B]V
(j−1)
ξ(4.3)

+λ[Cpj − ((j − 2)Ax +Bx)]V
(j−1) + λF (v, . . . , v(j−2)

in the region

B ≡

{
(ξ, τ) ∈ R2 : |ξ| ≤

1

2
,−
1

4s
< τ ≤ 0

}
,

and |W | ≤ C2 in B. In view of (2.6) and (2.7)

(a− ε)
1
p−1
x− ζ(t)

λ
≤
v(x, t)

λ
≤ (a+ ε)

1
p−1
x− ζ(t)

λ

and

ζ(t) ≤ ζ(t) ≤ ζ(t) + s(t− t) ≤ ζ(t) +
λ

4
.

Therefore

λ

4
= x−

λ

2
− ζ(t)−

λ

4
≤ x− ζ(t) ≤ x+

λ

2
− ζ(t) =

3λ

2

which implies

(a− ε)
1
p−1

4
≤
v

λ
≤
3(a+ ε)

1
p−1

2
.

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from
Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [4]. Thus
we conclude that there exists a constant K = K(a, p, C1, . . . , Cj−1) > 0 such that∣∣∣∣ ∂∂ξ V (j−1)(0, 0)

∣∣∣∣ ≤ K;
that is,

|v(j)(x, t)| ≤
K

λ
.

Since (x, t) ∈ Rδ,η is arbitrary, this proves the proposition. �

We now turn to the barrier construction. If γ ∈ (0, δ) we will use the notation

Rγδ,η = R
γ
δ,η(t0) ≡ {(x, t) ∈ R

2 : ζ(t) + γ ≤ x ≤ ζ(t) + δ, t0 − η ≤ t ≤ t0 + η} .



EJDE–1999/01 C-INFINITY INTERFACES OF SOLUTIONS 11

Proposition 4.3. Let Rδ1,η1 be the region constructed in the proof of Proposition
2.2 with For j ≥ 4 and (x, t) ∈ Rγδ1,η1 , let

φj(x, t) ≡
α

x− ζ(t) − γ/3
+

β

x− ζ∗(t)
(4.4)

where ζ∗ is given by (2.8), and α and β are positive constant. Then there exist
δ ∈ (0, δ1) and η ∈ (0, η1) depending only on a, p, C1, . . . , Cj−1 such that

Lj(φj) ≥ 0 in Rγδ,η

for all γ ∈ (0, δ).

Proof. Choose ε such that

0 < ε <
a

(j − 2)(p− 2) + 6p− 8
.(4.5)

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (2.4), (2.6) and (2.7) hold in Rδ2,η.
Fix γ ∈ (0, δ2). For (x, t) ∈ R

γ
δ2,η
, we have

Lj(φj) =
α

(x − ζ − γ/3)2

{
ζ
′

−
2(p− 2)vvp−2x

x− ζ − γ/3
+ (j − 2)A+ B

}

−
α

(x− ζ − γ/3)2

{
Cpj(x− ζ − γ/3)−

(x− ζ − γ/3)2

α
F

}

+
β

(x− ζ∗)2

{
ζ∗
′

−
2(p− 2)vvp−2x

x− ζ∗
+ (j − 2)A+B − Cpj(x − ζ

∗)

}

where A, B, Cpj and F are as before. ¿From (2.6), together with the fact that
x− ζ∗ ≥ x− ζ − γ/3 we have

v

x− ζ∗
≤

v

x− ζ − γ/3
≤ (a+ε)

1
p−1

x− ζ

x− ζ − γ/3
≤ (a+ε)

1
p−1

γ

γ − γ/3
=
3

2
(a+ε)

1
p−1 .

Then from (2.4), (2.6) and (4.2), we have

Lj(φj) ≥
α

(x− ζ − γ/3)2

{
a− ((j − 2)(p− 2) + 6p− 9)ε− δ2(|Cpj |+

δ

α
|F |

}

+
β

(x− ζ∗)2
{a− ((j − 2)(p− 2) + 6p− 8)− δ2(|Cpj |}

Since ε satisfies (4.5) we can choose δ = δ2(ε, p, a, C2) > 0 so small that L3(φ3) ≥ 0
in Rγδ,η. �
Hence as in we have the following proposition whose proof can be found in [1].

Proposition 4.4. (Barrier Transformation). Let δ and η be as in Proposition 4.3
with the additional restriction that

η <
δ

6ε
,(4.6)

where ε is as in Proposition 4.3. Suppose that for some nonnegative constant β

v(j)(x, t) ≤
α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η .(4.7)

Then v(j) also satisfies

v(j)(x, t) ≤
2α/3

x− ζ(t)
+
β + 2α/3

x − ζ∗(t)
in Rδ,η .(4.8)
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Then as in [1], we can prove the C∞ regularity of the interface.
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