Electronic Journal of Differential Equations, Vol. 1999(1999), No. 01, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ejde.math.unt.edu (login: ftp)

C-INFINITY INTERFACES OF SOLUTIONS FOR ONE-DIMENSIONAL PARABOLIC p-LAPLACIAN EQUATIONS

YOONMI HAM \& YOUNGSANG KO

$$
\begin{aligned}
& \text { Abstract. We study the regularity of a moving interface } x=\zeta(t) \text { of the } \\
& \text { solutions for the initial value problem } \\
& \qquad u_{t}=\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x} \\
& \qquad u(x, 0)=u_{0}(x), \\
& \text { where } u_{0} \in L^{1}(\mathbb{R}) \text { and } p>2 \text {. We prove that each side of the moving interface } \\
& \text { is } C^{\infty} .
\end{aligned}
$$

1. Introduction

We consider the Cauchy problem of the form

$$
\begin{gather*}
u_{t}=\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x} \text { in } S:=\mathbb{R} \times(0, \infty) \\
u(x, 0)=u_{0}(x) \tag{1.1}
\end{gather*}
$$

where $p>2$. This equation has application to many physical situations, and has been studied by many authors; see for example [2] and references therein. In the study of this equation, the velocity of propagation, $V(x, t)$, is very important, and can be obtained in terms of u by writing (1.1) as the conservation law

$$
u_{t}+(u V)_{x}=0
$$

In this way we obtain $V=-v_{x}\left|v_{x}\right|^{p-2}$, where the nonlinear potential $v(x, t)$ is

$$
\begin{equation*}
v=\frac{p-1}{p-2} u^{(p-2) /(p-1)} \tag{1.2}
\end{equation*}
$$

By a direct computation, we realize that

$$
\begin{equation*}
v_{t}=(p-2) v\left|v_{x}\right|^{p-2} v_{x x}+\left|v_{x}\right|^{p} \tag{1.3}
\end{equation*}
$$

In [2], it is shown that V satisfies $V_{x} \leq \frac{1}{2(p-1) t}$ which can also be written as

$$
\begin{equation*}
\left(v_{x}\left|v_{x}\right|^{p-2}\right)_{x} \geq-\frac{1}{2(p-1) t} \tag{1.4}
\end{equation*}
$$

[^0]Without loss of generality, we assume that u_{0} vanishes on \mathbb{R}^{-}and that u_{0} is a continuous positive function on an interval $(0, a)$ with $a>0$. Let

$$
P[u]=\{(x, t) \in S: u(x, t)>0\}
$$

be the positivity set of a solution u. Then $P[u]$ is bounded from the left in the (x, t)-plane by the left interface curve $x=\zeta(t)$, where

$$
\zeta(t)=\inf \{x \in \mathbb{R}: u(x, t)>0\} .
$$

Moreover, there is a time $t^{*} \in[0, \infty)$, called the waiting time, such that $\zeta(t)=0$ for $0 \leq t \leq t^{*}$ and $\zeta(t)<0$ for $t>t^{*}$. It is shown in [2] that t^{*} is finite (possibly zero) and $\zeta(t)$ is a non-increasing C^{1} function on $\left(t^{*}, \infty\right)$. Actually it is shown that $\zeta^{\prime}(t)<0$ for every $t>t^{*}$, i.e., a moving interface never stops.

On the other hand, D. G. Aronson and J. L. Vazquez [1] established Theorem 1.1 below.

Let $D=\left\{(x, t): t>t^{*}, \zeta(t) \leq x \leq 0\right\}$, and let v be the pressure for the solution of the porous medium equation

$$
\begin{equation*}
u_{t}=\left(u^{m}\right)_{x x} \quad \text { in } \quad Q_{T}=\mathbb{R} \times(0, T) \tag{1.5}
\end{equation*}
$$

Theorem 1.1. v is a C^{∞} function on D, and $\zeta(t)$ is a C^{∞} function on $\left(t^{*}, \infty\right)$.
This theorem is proven by finding bounds for $v^{(k)}$ with $k \geq 2$.
The purpose of this paper is to discuss the C^{∞} regularity of the moving part of the interface of the solution to (1.1). To accomplish this end, we use some ideas from [1].

2. Upper and Lower Bounds for $v_{x x}$

Let $q=\left(x_{0}, t_{0}\right)$ be a point on the left interface, so that $x_{0}=\zeta\left(t_{0}\right), v\left(x, t_{0}\right)=0$ for all $x \leq \zeta\left(t_{0}\right)$, and $v\left(x, t_{0}\right)>0$ for all sufficiently small $x>\zeta\left(t_{0}\right)$. We assume the left interface is moving at q. Thus $t_{0}>t^{*}$. We shall use the notation

$$
R_{\delta, \eta}=R_{\delta, \eta}\left(t_{0}\right)=\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)<x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}
$$

Proposition 2.1. Let q be the point as above. Then there exist positive constants C, δ, and η depending only on p, q, and u such that

$$
v_{x x} \geq C \quad \text { in } R_{\delta, \eta / 2}
$$

Proof. From (1.4) we have, $v_{x x} \geq-\frac{1}{2(p-1)^{2}\left|v_{x}\right|^{p-2} t}$. However, from Lemma 4.4 in [2], v_{x} is bounded away and above from zero near q, where $u(x, t)>0$.
Proposition 2.2. Let $q=\left(x_{0}, t_{0}\right)$ be as above. Then there exist positive constants C_{2}, δ, and η depending only on p, q, and u such that

$$
v_{x x} \leq C_{2} \quad \text { in } R_{\delta, \eta / 2}
$$

Proof. From Theorem 2 and Lemma 4.4 in [2] we have

$$
\begin{equation*}
\zeta^{\prime}\left(t_{0}\right)=-v_{x}\left|v_{x}\right|^{p-2}=-v_{x}^{p-1}=-a \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{t}=\left|v_{x}\right|^{p} \tag{2.2}
\end{equation*}
$$

on the moving part of the interface $\left\{x=\zeta(t), t>t^{*}\right\}$. Choose $\epsilon>0$ such that

$$
\begin{equation*}
(p-1) a-5 p \epsilon \geq 4\left[(p-2)^{2}+(p-1)^{2}\right](a+\epsilon) \epsilon \tag{2.3}
\end{equation*}
$$

Then by Theorem 2 in [2], there exists a $\delta=\delta(\epsilon)>0$ and $\eta=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{\delta, \eta} \subset P[u]$,

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}<v_{x}<(a+\epsilon)^{\frac{1}{p-1}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
v v_{x x} \leq(a-\epsilon)^{\frac{2}{p-1}} \epsilon \tag{2.5}
\end{equation*}
$$

in $R_{\delta, \eta}$. Then from (2.4) we have

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}(x-\zeta)<v(x, t)<(a+\epsilon)^{\frac{1}{p-1}}(x-\zeta) \tag{2.6}
\end{equation*}
$$

in $R_{\delta, \eta}$ and

$$
\begin{equation*}
-(a+\epsilon)<\zeta^{\prime}(t)<-(a-\epsilon) \quad \text { in }\left[t_{1}, t_{2}\right] \tag{2.7}
\end{equation*}
$$

where $t_{1}=t_{0}-\eta$ and $t_{2}=t_{0}+\eta$. We set

$$
\begin{equation*}
\zeta^{*}(t)=\zeta\left(t_{1}\right)-b\left(t-t_{1}\right) \tag{2.8}
\end{equation*}
$$

where $b=a+2 \epsilon$. Then clearly $\zeta(t)>\zeta^{*}(t)$ in $\left(t_{1}, t_{2}\right]$. On $P[u], w \equiv v_{x x}$ satisfies

$$
\begin{aligned}
L(w)= & w_{t}-(p-2) v\left|v_{x}\right|^{p-2} w_{x x}-(3 p-4)\left|v_{x}\right|^{p-2} v_{x} w_{x} \\
& -\left[(p-2)^{2}+2(p-1)^{2}\right]\left|v_{x}\right|^{p-2} w^{2} \\
& -3(p-2)^{2} v\left|v_{x}\right|^{p-4} v_{x} w w_{x}-(p-2)^{2}(p-3) v\left|v_{x}\right|^{p-4} w^{3} \\
= & 0
\end{aligned}
$$

We shall construct a barrier for w in $R_{\delta, \eta}$ of the form

$$
\phi(x, t) \equiv \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)}
$$

where α and β will be decided later.
By a direct computation we have

$$
\begin{aligned}
L(\phi)= & \frac{\alpha}{(x-\zeta)^{2}}\left\{\zeta^{\prime}-(p-2) v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta}+(3 p-4)\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-(p-2) v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta^{*}}+(3 p-4)\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& -\left[(p-2)^{2}+2(p-1)^{2}\right]\left|v_{x}\right|^{p-2} \phi^{2}+\bar{G}
\end{aligned}
$$

where
\bar{G}

$$
\begin{aligned}
& =-3(p-2)^{2} v v_{x}\left|v_{x}\right|^{p-4} \phi \phi_{x}-(p-2)^{2}(p-3) v\left|v_{x}\right|^{p-4} \phi^{3} \\
& =(p-2)^{2} v\left|v_{x}\right|^{p-4} \phi\left(3 v_{x}\left[\frac{\alpha}{(x-\zeta)^{2}}+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\right]-(p-3)\left[\frac{\alpha}{x-\zeta}+\frac{\beta}{x-\zeta^{*}}\right]^{2}\right) .
\end{aligned}
$$

If we choose α and β satisfying

$$
v_{x} \geq|p-3| \max (\alpha, \beta)
$$

then $\bar{G} \geq 0$ in $R_{\delta, \eta}$. Now set $\bar{A}=\frac{\alpha}{(x-\zeta)^{2}}$ and $\bar{B}=\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}$. Then we have
$L(\phi)$

$$
\begin{aligned}
\geq & \bar{A}\left\{\zeta^{\prime}+\left|v_{x}\right|^{p-2}\left\{-(p-2) v \frac{2}{x-\zeta}+(3 p-4) v_{x}-2\left[(p-2)^{2}+2(p-1)^{2}\right] \alpha\right\}\right\} \\
& +\bar{B}\left\{\zeta^{*^{\prime}}+\left|v_{x}\right|^{p-2}\left\{-(p-2) v \frac{2}{x-\zeta^{*}}+(3 p-4) v_{x}-2\left[(p-2)^{2}+2(p-1)^{2}\right] \beta\right\}\right\} \\
\geq & \bar{A}\left\{(p-1) a-(5 p-7) \epsilon-2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \alpha\right\} \\
& +\bar{B}\left\{(p-1) a-(5 p-6) \epsilon-2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \beta\right\}
\end{aligned}
$$

Set

$$
0<\alpha \leq \frac{(p-1) a-(5 p-7) \epsilon}{2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}}}=\alpha_{0}
$$

and

$$
\begin{equation*}
\beta=\frac{(p-1) a-(5 p-6 \epsilon)}{2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}}} . \tag{2.9}
\end{equation*}
$$

Then from (2.3), $\beta>0$ and $L(\phi) \geq 0$ in $R_{\delta, \eta}$ for all $\alpha \in\left(0, \alpha_{0}\right]$ and β.
Let us now compare w and ϕ on the parabolic boundary of $R_{\delta, \eta}$. In view of (2.5) and (2.6) we have

$$
v_{x x} \leq \frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta} \quad \text { in } R_{\delta, \eta}
$$

and in particular

$$
v_{x x}(\zeta(t)+\delta, t) \leq \frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{\delta} \text { in }\left[t_{1}, t_{2}\right]
$$

By the Mean Value Theorem and (2.7), we have that for some $\tau \in\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
\zeta(t)+\delta-\zeta^{*}(t) & =\delta+(a+2 \epsilon)\left(t-t_{1}\right)+\zeta^{\prime}(\tau)\left(t-t_{1}\right) \\
& \leq \delta+3 \epsilon\left(t-t_{1}\right) \leq \delta+6 \epsilon \eta
\end{aligned}
$$

Now set

$$
\eta=\min \{\eta(\epsilon), \delta(\epsilon) / 6 \epsilon\}
$$

Since ϵ satisfies (2.3) and β is given by (2.9) it follows that

$$
\phi(\zeta+\delta, t) \geq \frac{\beta}{2 \delta} \geq \frac{(p-1) a-(5 p-6 \epsilon)}{4\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \delta} \geq \frac{(a+\epsilon)^{\frac{1}{p-1}}}{\delta} \epsilon \geq v_{x x}
$$

on $\left[t_{1}, t_{2}\right]$. Moreover from (3.5) and (2.9)

$$
\phi\left(x, t_{1}\right) \geq \frac{\beta}{x-\zeta\left(t_{1}\right)}>\frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta\left(t_{1}\right)}>v_{x x}\left(x, t_{1}\right) \text { on }\left(\zeta\left(t_{1}\right), \zeta\left(t_{1}\right)+\delta\right] .
$$

Let $\Gamma=\left\{(x, t) \in \mathbb{R}^{2}: x=\zeta(t), t_{1} \leq t \leq t_{2}\right\}$. Clearly Γ is a compact subset of \mathbb{R}^{2}. Fix $\alpha \in\left(0, \alpha_{0}\right)$. For each point $s \in \Gamma$ there is an open ball B_{s} centered at s such that

$$
\left(v v_{x x}\right)(x, t) \leq \alpha(a-\epsilon)^{\frac{1}{p-1}} \quad \text { in } B_{s} \cap P[u]
$$

In view of (2.6) we have

$$
\phi(x, t) \geq \frac{\alpha}{x-\zeta} \geq v_{x x}(x, t) \quad \text { in } B_{s} \cap P[u]
$$

Since Γ can be covered by a finite number of these balls it follows that there is a $\gamma=\gamma(\alpha) \in(0, \delta)$ such that

$$
\phi(x, t) \geq w(x, t) \quad \text { in } R_{\delta, \eta} .
$$

Thus for every $\alpha \in\left(0, \alpha_{0}\right), \phi$ is a barrier for w in $R_{\delta, \eta}$. By the comparison principle for parabolic equations [4] we conclude that

$$
v_{x x}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } R_{\delta, \eta}
$$

where β is given by (2.9) and $\alpha \in\left(0, \alpha_{0}\right)$ is arbitrary. Now as α approaches zero, we obtain

$$
v_{x x}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } \mathbb{R}
$$

3. Bounds for $\left(\frac{\partial}{\partial x}\right)^{3} v$

In this section we find the estimates of the derivatives of the form

$$
v^{(3)} \equiv\left(\frac{\partial}{\partial x}\right)^{3} v
$$

By a direct computation we have,

$$
\begin{align*}
L_{3}\left(v^{(3)}\right)= & v_{t}^{(3)}-(p-2) v v_{x}^{p-2} v_{x x}^{(3)}-(A+B) v_{x}^{(3)}-C v^{(3)}-D\left(v^{(3)}\right)^{2} \tag{3.1}\\
& -E v_{x}^{p-3} v_{x x}^{3}-(p-2)^{2}(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}=0
\end{align*}
$$

where

$$
\begin{aligned}
A= & (p-2) v_{x}^{p-1}+(p-2)^{2} v v_{x}^{p-3} v_{x x} \\
B= & (3 p-4) v_{x}^{p-1}+3(p-2)^{2} v v_{x}^{p-3} v_{x x} \\
C= & v_{x x} v_{x}^{p-2}\left\{(3 p-4)(p-1)+2\left[(p-2)^{2}\right.\right. \\
& \left.\left.+2(p-1)^{2}\right]+6(p-2)^{2}(p-3) v v_{x}^{-2} v_{x x}+3(p-2)^{2}\right\} \\
D= & 3(p-2)^{2} v v_{x}^{p-3} \\
E= & {\left[(p-2)^{2}+2(p-1)^{2}\right](p-2)+(p-2)^{2}(p-3) }
\end{aligned}
$$

Suppose that $q=\left(x_{0}, t_{0}\right)$ is a point on the left interface for which (2.1) holds. Fix $\epsilon \in(0, a)$ and take $\delta_{0}=\delta_{0}(\epsilon)>0$ and $\eta_{0}=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{0} \equiv R_{\delta_{0}, \eta_{0}}\left(t_{0}\right) \subset P[u]$ and (2.5) holds. Thus we also have (2.6) and (2.7) in R_{0}. Then by rescaling and interior estimate we have

Proposition 3.1. There are constants $K \in \mathbb{R}^{+}, \delta \in\left(0, \delta_{0}\right)$, and $\eta \in\left(0, \eta_{0}\right) d e-$ pending only on p, q, and C_{2} such that

$$
\left|v^{(3)}(x, t)\right| \leq \frac{K}{x-\zeta(t)} \quad \text { in } R_{\delta, \eta}
$$

Proof. Set

$$
\delta=\min \left\{\frac{2 \delta_{0}}{3}, 2 s \eta_{0}\right\}, \quad \eta=\eta_{0}-\frac{\delta}{4 s}
$$

and define

$$
R(\bar{x}, \bar{t}) \equiv\left\{(x, t) \in \mathbb{R}^{2}:|x-\bar{x}|<\frac{\lambda}{2}, \bar{t}-\frac{\lambda}{4 s}<t \leq \bar{t}\right\}
$$

for $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$, where $s=a+\epsilon$ and $\lambda=\bar{x}-\zeta(\bar{t})$. Then $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ implies that $R(\bar{x}, \bar{t}) \subset R_{0}$. Since $\delta_{0} \geq \frac{3 \delta}{2}, \lambda<\delta$ and ζ is non-increasing, we have

$$
\begin{gathered}
t_{0}-\eta_{0}=t_{0}-\eta-\frac{\lambda}{4 s}<t<t_{0}+\eta<t_{0}+\eta_{0} \\
\bar{x}-\frac{\lambda}{2}=\bar{x}-\frac{\bar{x}+\zeta(\bar{t})}{2}=\frac{\bar{x}+\zeta(\bar{t})}{2}>\zeta\left(t_{0}+\eta_{0}\right) \\
\zeta\left(t_{0}-\eta\right)+\delta+\frac{\lambda}{2}<\zeta\left(t_{0}-\eta_{0}\right)
\end{gathered}
$$

Also observe that for each $(\bar{x}, \bar{t}) \in R_{\delta, \eta}, R(\bar{x}, \bar{t})$ lies to the right of the line $x=$ $\zeta(\bar{t})+s(\bar{t}-t)$. Next set $x=\lambda \xi+\bar{x}$ and $t=\lambda \tau+\bar{t}$. The function

$$
W(\xi, \tau) \equiv v_{x x}(\lambda \xi+\bar{x}, \lambda \tau+\bar{t})=v_{x x}(x, t)
$$

satisfies the equation

$$
\begin{align*}
W_{\tau}= & \left\{(p-2) \frac{v}{\lambda} v_{x}^{p-2} W_{\xi}+(3 p-4) v_{x}^{p-1} W\right\}_{\xi} \\
& +\left[2(p-2)^{2} v v_{x}^{p-3} v_{x x}-(p-2) v_{x}^{p-1}\right] W_{\xi} \tag{3.2}\\
& +\lambda\left[(p-2)^{2}(p-3) v v_{x}^{p-4}\left(v_{x x}\right)^{3}-(p-2) v_{x}^{p-2}\left(v_{x x}\right)^{2}\right]
\end{align*}
$$

in the region

$$
B \equiv\left\{(\xi, \tau) \in \mathbb{R}^{2}:|\xi| \leq \frac{1}{2},-\frac{1}{4 s}<\tau \leq 0\right\}
$$

and $|W| \leq C_{2}$ in B. In view of (2.6) and (2.7)

$$
(a-\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda} \leq \frac{v(x, t)}{\lambda} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda}
$$

and

$$
\zeta(\bar{t}) \leq \zeta(t) \leq \zeta(\bar{t})+s(\bar{t}-t) \leq \zeta(\bar{t})+\frac{\lambda}{4}
$$

Therefore,

$$
\frac{\lambda}{4}=\bar{x}-\frac{\lambda}{2}-\zeta(\bar{t})-\frac{\lambda}{4} \leq x-\zeta(t) \leq \bar{x}+\frac{\lambda}{2}-\zeta(\bar{t})=\frac{3 \lambda}{2}
$$

which implies

$$
\frac{(a-\epsilon)^{\frac{1}{p-1}}}{4} \leq \frac{v}{\lambda} \leq \frac{3(a+\epsilon)^{\frac{1}{p-1}}}{2}
$$

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [4]. Thus we conclude that there exists a constant $K=K\left(a, p, C_{2}\right)>0$ such that

$$
\left|\frac{\partial}{\partial \xi} W(0,0)\right| \leq K
$$

that is,

$$
\left|v^{(3)}(\bar{x}, \bar{t})\right| \leq \frac{K}{\lambda}
$$

Since $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ is arbitrary, this proves the proposition.
We now turn to the barrier construction. If $\gamma \in(0, \delta)$ we will use the notation

$$
R_{\delta, \eta}^{\gamma}=R_{\delta, \eta}^{\gamma}\left(t_{0}\right) \equiv\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)+\gamma \leq x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}
$$

Proposition 3.2. Let $R_{\delta_{1}, \eta_{1}}$ be the region constructed in the proof of Proposition 2.2 with

$$
\begin{equation*}
0<\delta_{1}<\frac{(p-1) a^{\frac{1}{p-1}}}{12(p-2)^{2} K} \tag{3.3}
\end{equation*}
$$

For $(x, t) \in R_{\delta_{1}, \eta_{1}}^{\gamma}$, let

$$
\begin{equation*}
\phi_{\gamma}(x, t) \equiv \frac{\alpha}{x-\zeta(t)-\gamma / 3}+\frac{\beta}{x-\zeta^{*}(t)} \tag{3.4}
\end{equation*}
$$

where ζ^{*} is given by (2.8), and α and β are positive constant less than $K / 2$. Then there exist $\delta \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ depending only on a, p and C_{2} such that

$$
L_{3}\left(\phi_{\gamma}\right) \geq 0 \quad \text { in } R_{\delta, \eta}^{\gamma}
$$

for all $\gamma \in(0, \delta)$.
Proof. Choose ϵ such that

$$
\begin{equation*}
0<\epsilon<\frac{(p-1) a}{13 p-23} \tag{3.5}
\end{equation*}
$$

There exist $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ such that (2.4), (2.6) and (2.7) hold in $R_{\delta_{2}, \eta}$.
Fix $\gamma \in\left(0, \delta_{2}\right)$. For $(x, t) \in R_{\delta_{2}, \eta}^{\gamma}$, we have

$$
\begin{aligned}
L_{3}\left(\phi_{3}\right)= & \frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{\zeta^{\prime}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta-\gamma / 3}+A+B\right\} \\
& +\frac{\alpha}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta^{*}}+A+B\right\} \\
& -C \phi_{3}-D\left(\phi_{3}\right)^{2}-E v_{x}^{p-3} v_{x x}^{3}-(p-2)^{2}(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}
\end{aligned}
$$

where A, B, C, D, and E are as above.
¿From (2.6), together with the fact that $x-\zeta^{*} \geq x-\zeta-\gamma / 3$ we have

$$
\frac{v}{x-\zeta^{*}} \leq \frac{v}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{\gamma}{\gamma-\gamma / 3}=\frac{3}{2}(a+\epsilon)^{\frac{1}{p-1}}
$$

¿From (3.3), we have

$$
\begin{equation*}
D \alpha, D \beta<1 / 2 D K<D K \leq \frac{(p-1) a}{4}+\frac{(p-1) \epsilon}{4} \tag{3.6}
\end{equation*}
$$

Then since $|C|$ is bounded and from (2.4) and (2.6), we have

$$
\begin{aligned}
& L_{3}\left(\phi_{3}\right) \\
& \geq \frac{\alpha}{Y^{2}}\left\{(p-1) a-(7 p-11) \epsilon-|C| Y-2 D \alpha-\bar{E} \frac{Y^{2}}{\alpha}\right\} \\
&+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{(p-1) a-(7 p-10) \epsilon-|C|\left(x-\zeta^{*}\right)-2 D \beta-\bar{E} \frac{\left(x-\zeta^{*}\right)^{2}}{\beta}\right\} \\
& \geq \frac{\alpha}{Y^{2}}\left\{\frac{(p-1) a}{2}-\frac{13 p-23}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{Y}{\alpha}\right)\right\} \\
&+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\frac{(p-1) a}{2}-\frac{13 p-21}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{x-\zeta^{*}}{\beta}\right)\right\}
\end{aligned}
$$

where $Y=x-\zeta-\gamma / 3$ and $\bar{E}=|E| v_{x}^{p-3} v_{x x}^{3}$. Since ϵ satisfies (3.5) we can choose $\delta=\delta_{2}\left(\epsilon, p, a, C_{2}\right)>0$ so small that $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$.

Remark 3.1. ¿From (3.6) the Proposition 3.2 will be true for any $\alpha, \beta \in(0, K)$.
Proposition 3.3. (Barrier Transformation). Let δ and η be as in Proposition 3.2 with the additional restriction that

$$
\begin{equation*}
\eta<\frac{\delta}{6 \epsilon} \tag{3.7}
\end{equation*}
$$

where ϵ is as in Proposition 3.2. Suppose that for some nonnegative constant β

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } R_{\delta, \eta} \tag{3.8}
\end{equation*}
$$

Then $v^{(3)}$ also satisfies

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{2 \alpha / 3}{x-\zeta(t)}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}(t)} \quad \text { in } R_{\delta, \eta} \tag{3.9}
\end{equation*}
$$

Proof. By Remark 3.1, for any $\gamma \in(0, \delta)$ since $\beta+2 \alpha / 3 \leq K$ the function

$$
\phi_{3}(x, t)=\frac{2 \alpha / 3}{x-\zeta-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}}
$$

satisfies $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$. On the other hand, on the parabolic boundary of $R_{\delta, \eta}^{\gamma}$ we have $\phi_{3} \geq v^{(3)}$. In fact, for $t=t_{1}$ and $\zeta_{1}+\gamma \leq x \leq \zeta_{1}+\delta$, with $\zeta_{1}=\zeta\left(t_{1}\right)$, we have

$$
\phi_{3}\left(x, t_{1}\right)=\frac{2 \alpha}{x-\zeta_{1}-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta_{1}}>\frac{4 \alpha / 3}{x-\zeta_{1}}+\frac{\beta}{x-\zeta_{1}}>v^{(3)}\left(x, t_{1}\right)
$$

while for $x=\zeta+\delta$ and $t_{1} \leq t \leq t_{2}$ we get, in view of (3.7),

$$
\begin{aligned}
\phi_{3}(\zeta+\delta, t) & \geq \frac{2 \alpha / 3}{\delta-\gamma / 3}+\frac{\beta}{\zeta+\delta-\zeta^{*}}+\frac{2 \alpha / 3}{\delta+6 \epsilon \eta} \\
& \geq \frac{2 \alpha / 3}{\delta}+\frac{\delta}{\zeta+\delta-\zeta^{*}}+\frac{\alpha / 3}{\delta} \geq v^{(3)}(\zeta+\delta, t)
\end{aligned}
$$

Finally, for $x=\zeta+\gamma, t_{1} \leq t \leq t_{2}$ we have

$$
\phi_{3}(\zeta+\delta, t)=\frac{2 \alpha / 3}{\gamma-\gamma / 3}+\frac{\beta+2 \alpha / 3}{\zeta+\gamma-\zeta^{*}} \geq \frac{\alpha}{\gamma}+\frac{\beta}{\zeta+\gamma-\zeta^{*}} \geq v^{(3)}(\zeta+\gamma, t)
$$

By the comparison principle we get

$$
\phi_{3} \geq v^{(3)} \quad \text { in } R_{\delta \cdot \eta}^{\gamma}
$$

for any $\gamma \in(0, \delta)$, and (3.9) follows by letting $\gamma \downarrow 0$.
Proposition 3.4. Let $q=\left(x_{0}, t_{0}\right)$ be a point on the interface for which (2.1) holds. Then there exist constants C_{3}, δ and η depending only on p, q and u such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{3} v\right| \leq C_{3} \quad \text { in } R_{\delta, \eta / 2}
$$

Proof. By Proposition 3.1 we have, by letting $\alpha=0$,

$$
v^{(3)}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } R_{\delta, \eta / 2}
$$

Even though the equation (3.1) is not linear for $v^{(3)}$, a lower bound can be obtained in a similar way.

4. Main Result

In this section we prove the interface is a C^{∞} function in $\left(t^{*}, \infty\right)$. We follow the methods in [1]. First we find the estimates of the derivatives of the form

$$
v^{(j)} \equiv\left(\frac{\partial}{\partial x}\right)^{j} v
$$

for $j \geq 4$. For the porous medium equation, we have [1] the following equation:

$$
\begin{aligned}
L_{j} v^{(j)} \equiv & v_{t}^{(j)}-(m-1) v v_{x x}^{(j)}-(2+j(m-1)) v_{x} v_{x}^{(j)}-c_{m j} v_{x x} v^{(j)} \\
& -\sum_{l=3}^{j^{*}} d_{m j}^{l} v^{(l)} v^{(j+2-l)}=0
\end{aligned}
$$

for $j \geq 3$ in $P[u]$, where $j^{*}=[j / 2]+1$, and the $c_{m j}$ and $d_{m j}^{l}$ are constants which depend only on their indices, but whose precise values are irrelevant. Note that L_{j} is linear in $v^{(j)}$. On the other hand for the p-Laplacian equation by a direct computation we have the following equation for $j \geq 4$,

$$
\begin{align*}
L_{j} v^{(j)}= & v_{t}^{(j)}-(p-2) v v_{x}^{p-2} v_{x x}^{(j)}-((j-2) A+B) v_{x}^{(j)}-C_{p j} v^{(j)} \tag{4.1}\\
& -F\left(v, v_{x}, \ldots, v^{(j-1)}\right)=0
\end{align*}
$$

where A and B are as before, and $C_{p j}$ involves only v and derivatives of order $<j$. Note that equation (4.1) is linear in $v^{(j)}$. We also follow the method in [1]. Hence our result is

Proposition 4.1. Let $q=\left(x_{0}, t_{0}\right)$ be a point on the interface for which (2.1) holds. For each integer $j \geq 2$ there exist constants C_{j}, δ and η depending only on p, j, q and u such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{j} v\right| \leq C_{j} \quad \text { in } R_{\delta, \eta / 2}
$$

The proof is done by induction on j. Suppose that $q=\left(x_{0}, t_{0}\right)$ is a point on the left interface for which (2.1) holds. Fix $\epsilon \in(0, a)$ and take $\delta_{0}=\delta_{0}(\epsilon)>0$ and $\eta_{0}=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{0} \equiv R_{\delta_{0}, \eta_{0}}\left(t_{0}\right) \subset P[u]$ and (2.5) holds. Thus we also have (2.6) and (2.7) in R_{0}. Assume that there are constants $C_{k} \in \mathbb{R}^{+}$for $k=3, \ldots, j-1$ such that

$$
\begin{equation*}
\left|v^{(k)}\right| \leq C_{k} \quad \text { on } R_{0} \quad \text { for } \quad k=3, \ldots, j-1 \tag{4.2}
\end{equation*}
$$

Observe that (4.2) hold for $k=3$ by Proposition 3.4.
By rescaling and interior estimates, we have
Proposition 4.2. There are constants $K \in \mathbb{R}^{+}, \delta \in\left(0, \delta_{0}\right)$, and $\eta \in\left(0, \eta_{0}\right)$ depending only on p, q and C_{k} for $k \in[2, j-1]$ with $j \geq 4$ such that

$$
\left|v^{(j)}(x, t)\right| \leq \frac{K}{x-\zeta(t)} \quad \text { in } R_{\delta, \eta}
$$

Proof. Set

$$
\delta=\min \left\{\frac{2 \delta_{0}}{3}, 2 s \eta_{0}\right\}, \quad \eta=\eta_{0}-\frac{\delta}{4 s}
$$

and define

$$
R(\bar{x}, \bar{t}) \equiv\left\{(x, t) \in \mathbb{R}^{2}:|x-\bar{x}|<\frac{\lambda}{2}, \bar{t}-\frac{\lambda}{4 s}<t \leq \bar{t}\right\}
$$

for $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$, where $s=a+\epsilon$ and $\lambda=\bar{x}-\zeta(\bar{t})$. Then $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ implies that $R(\bar{x}, \bar{t}) \subset R_{0}$. Since $\delta_{0} \geq \frac{3 \delta}{2}, \lambda<\delta$ and ζ is non-increasing, we have

$$
\begin{gathered}
t_{0}-\eta_{0}=t_{0}-\eta-\frac{\lambda}{4 s}<t<t_{0}+\eta<t_{0}+\eta_{0} \\
\bar{x}-\frac{\lambda}{2}=\bar{x}-\frac{\bar{x}+\zeta(\bar{t})}{2}=\frac{\bar{x}+\zeta(\bar{t})}{2}>\zeta\left(t_{0}+\eta_{0}\right) \\
\zeta\left(t_{0}-\eta\right)+\delta+\frac{\lambda}{2}<\zeta\left(t_{0}-\eta_{0}\right)
\end{gathered}
$$

Also observe that for each $(\bar{x}, \bar{t}) \in R_{\delta, \eta}, R(\bar{x}, \bar{t})$ lies to the right of the line $x=$ $\zeta(\bar{t})+s(\bar{t}-t)$. Next set $x=\lambda \xi+\bar{x}$ and $t=\lambda \tau+\bar{t}$. The function

$$
V^{(j-1)}(\xi, \tau) \equiv v^{(j-1)}(\lambda \xi+\bar{x}, \lambda \tau+\bar{t})=v^{(j-1)}(x, t)
$$

satisfies the equation

$$
\begin{align*}
V_{\tau}^{(j-1)}= & \left\{(p-2) \frac{v}{\lambda} v_{x}^{p-2} V_{\xi}^{(j-1)}+[(j-2) A+B] v_{x}^{p-1} V^{(j-1)}\right\}_{\xi} \\
& -\left[(p-2) v_{x}^{p-1}+(p-2)^{2} v v_{x}^{p-3} v_{x x}+(j-2) A+B\right] V_{\xi}^{(j-1)} \tag{4.3}\\
& +\lambda\left[C_{p j}-\left((j-2) A_{x}+B_{x}\right)\right] V^{(j-1)}+\lambda F\left(v, \ldots, v^{(j-2)}\right.
\end{align*}
$$

in the region

$$
B \equiv\left\{(\xi, \tau) \in \mathbb{R}^{2}:|\xi| \leq \frac{1}{2},-\frac{1}{4 s}<\tau \leq 0\right\}
$$

and $|W| \leq C_{2}$ in B. In view of (2.6) and (2.7)

$$
(a-\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda} \leq \frac{v(x, t)}{\lambda} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda}
$$

and

$$
\zeta(\bar{t}) \leq \zeta(t) \leq \zeta(\bar{t})+s(\bar{t}-t) \leq \zeta(\bar{t})+\frac{\lambda}{4}
$$

Therefore

$$
\frac{\lambda}{4}=\bar{x}-\frac{\lambda}{2}-\zeta(\bar{t})-\frac{\lambda}{4} \leq x-\zeta(t) \leq \bar{x}+\frac{\lambda}{2}-\zeta(\bar{t})=\frac{3 \lambda}{2}
$$

which implies

$$
\frac{(a-\epsilon)^{\frac{1}{p-1}}}{4} \leq \frac{v}{\lambda} \leq \frac{3(a+\epsilon)^{\frac{1}{p-1}}}{2}
$$

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [4]. Thus we conclude that there exists a constant $K=K\left(a, p, C_{1}, \ldots, C_{j-1}\right)>0$ such that

$$
\left|\frac{\partial}{\partial \xi} V^{(j-1)}(0,0)\right| \leq K
$$

that is,

$$
\left|v^{(j)}(\bar{x}, \bar{t})\right| \leq \frac{K}{\lambda}
$$

Since $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ is arbitrary, this proves the proposition.
We now turn to the barrier construction. If $\gamma \in(0, \delta)$ we will use the notation

$$
R_{\delta, \eta}^{\gamma}=R_{\delta, \eta}^{\gamma}\left(t_{0}\right) \equiv\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)+\gamma \leq x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}
$$

Proposition 4.3. Let $R_{\delta_{1}, \eta_{1}}$ be the region constructed in the proof of Proposition 2.2 with For $j \geq 4$ and $(x, t) \in R_{\delta_{1}, \eta_{1}}^{\gamma}$, let

$$
\begin{equation*}
\phi_{j}(x, t) \equiv \frac{\alpha}{x-\zeta(t)-\gamma / 3}+\frac{\beta}{x-\zeta^{*}(t)} \tag{4.4}
\end{equation*}
$$

where ζ^{*} is given by (2.8), and α and β are positive constant. Then there exist $\delta \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ depending only on $a, p, C_{1}, \ldots, C_{j-1}$ such that

$$
L_{j}\left(\phi_{j}\right) \geq 0 \quad \text { in } R_{\delta, \eta}^{\gamma}
$$

for all $\gamma \in(0, \delta)$.
Proof. Choose ϵ such that

$$
\begin{equation*}
0<\epsilon<\frac{a}{(j-2)(p-2)+6 p-8} \tag{4.5}
\end{equation*}
$$

There exist $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ such that (2.4), (2.6) and (2.7) hold in $R_{\delta_{2}, \eta}$. Fix $\gamma \in\left(0, \delta_{2}\right)$. For $(x, t) \in R_{\delta_{2}, \eta}^{\gamma}$, we have

$$
\begin{aligned}
L_{j}\left(\phi_{j}\right)= & \frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{\zeta^{\prime}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta-\gamma / 3}+(j-2) A+B\right\} \\
& -\frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{C_{p j}(x-\zeta-\gamma / 3)-\frac{(x-\zeta-\gamma / 3)^{2}}{\alpha} F\right\} \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta^{*}}+(j-2) A+B-C_{p j}\left(x-\zeta^{*}\right)\right\}
\end{aligned}
$$

where $A, B, C_{p j}$ and F are as before. ¿From (2.6), together with the fact that $x-\zeta^{*} \geq x-\zeta-\gamma / 3$ we have

$$
\frac{v}{x-\zeta^{*}} \leq \frac{v}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{\gamma}{\gamma-\gamma / 3}=\frac{3}{2}(a+\epsilon)^{\frac{1}{p-1}}
$$

Then from (2.4), (2.6) and (4.2), we have

$$
\begin{aligned}
L_{j}\left(\phi_{j}\right) \geq & \frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{a-((j-2)(p-2)+6 p-9) \epsilon-\delta_{2}\left(\left|C_{p j}\right|+\frac{\delta}{\alpha}|F|\right\}\right. \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{a-((j-2)(p-2)+6 p-8)-\delta_{2}\left(\left|C_{p j}\right|\right\}\right.
\end{aligned}
$$

Since ϵ satisfies (4.5) we can choose $\delta=\delta_{2}\left(\epsilon, p, a, C_{2}\right)>0$ so small that $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$.

Hence as in we have the following proposition whose proof can be found in [1].
Proposition 4.4. (Barrier Transformation). Let δ and η be as in Proposition 4.3 with the additional restriction that

$$
\begin{equation*}
\eta<\frac{\delta}{6 \epsilon} \tag{4.6}
\end{equation*}
$$

where ϵ is as in Proposition 4.3. Suppose that for some nonnegative constant β

$$
\begin{equation*}
v^{(j)}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} \tag{4.7}
\end{equation*}
$$

Then $v^{(j)}$ also satisfies

$$
\begin{equation*}
v^{(j)}(x, t) \leq \frac{2 \alpha / 3}{x-\zeta(t)}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}(t)} \quad \text { in } R_{\delta, \eta} \tag{4.8}
\end{equation*}
$$

Then as in [1], we can prove the C^{∞} regularity of the interface.

References

[1] D. G. Aronson and J. L. Vazquez, Eventual C^{∞}-regularity and concavity for flows in onedimensional porous media, Arch. Rational Mech. Anal. 99 (1987),no.4, 329-348.
[2] J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rational Mech. Anal. 103(1988) 39-80.
[3] L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an ndimensional porous medium, Ind. Univ. Math. J. 29 (1980), 361-381.
[4] O. A. Ladyzhenskaya, N.A. Solonnikov and N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, 23, Amer. Math. Soc., Providence, R. I., 1968.

Yoonmi Ham
Department of Mathematics, Kyonggi University
Suwon, Kyonggi-do, 442-760, Korea
E-mail address: ymham@@kuic.kyonggi.ac.kr
Youngsang Ko
Department of Mathematics, Kyonggi University
Suwon, Kyonggi-do, 442-760, Korea
E-mail address: ysgo@@kuic.kyonggi.ac.kr

[^0]: 1991 Mathematics Subject Classification. 35K65.
 Key words and phrases. p-Laplacian, free boundary, C-infinity regularity.
 (c)1999 Southwest Texas State University and University of North Texas.

 Submitted November 11, 1998. Published January 5, 1999.

