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Uniform controllability for Kirchhoff and

Mindlin-Timoshenko elastic systems ∗

Miguel Angel Moreles

Abstract

The Mindlin-Timoshenko operator is a perturbation of the Kirchhoff
operator and it is well known that there exist solutions to the exact con-
trollability problem for their associated systems. This article shows that
the solution of the controlled problem of the Mindlin-Timoshenko system
converges to that of Kirchhoff; that is, we show uniform controllability.

1 Introduction

We are concerned with the boundary controllability problem known as the
Exact-Controllability Problem (ECP). Suppose we have a well-posed initial-
boundary value problem for an evolution equation Lw = 0 in a cylindrical
domain Q = Ω× [0,+∞), where Ω is a bounded domain in Rn. The ECP deals
with the following question: Given Cauchy data in Ω at t = 0, can this data be
supplemented with appropriate inhomogeneous time-dependent boundary data
(boundary controls), prescribed in the lateral boundary of Q, such that the
solution of the initial-boundary problem will vanish for t ≥ T1 ?
In this work, we are interested in the evolution equations associated with

the Kirchhoff operator

L = ρh∂2t −
ρh3

12
∆∂2t +∆

2

and with the Mindlin-Timoshenko operator

LK = ρh∂
2
t −

ρh3

12
∆∂2t +∆

2 +
ρh

K

(
ρh3

12
∂4t −∆∂

2
t

)
,

where ∆ is the Laplacian Operator acting in the space variables, i.e.,

∆ =

n∑
i=1

∂2xi .
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When n = 2, the equations Lw = 0 and LKwK = 0, in a suitable do-
main with appropriate initial and boundary data, model vibrations of elastic
plates. In such a case w(x, t) represents the vertical displacement of the middle
surface. The physical constants are: ρ ≡ density, h ≡ plate thickness, K ≡
shear modulus. The Mindlin-Timoshenko equation is obtained by uncoupling
the Reissner-Mindlin Plate. See Lagnese [4], Lagnese & Lions [5] and Lagnese,
Leugering & Schmidt [6].

Komornik [3] studies the Reissner-Mindlin plate equation and established
that the control time is independent of K. A Similar result follows for the
corresponding Timoshenko beam equation. To our knowledge, there are no
results about convergence of the solution of the control problem for the Reissner-
Mindlin system to that of the Kirchhoff operator.

For the Timoshenko beam equation, a solution to this problem is presented
in Moreles [10]. In addition to uniform control time, it is shown that the solution
of the control problem for the Timoshenko system, converges in a strong sense
to the solution of the control problem of the Rayleigh system. The latter is the
one dimensional version of the Kirchhoff system. In this work, we generalize
this result to several space dimensions, in particular for plates.

The Mindlin-Timoshenko operator is hyperbolic and the solution of the ECP
is a direct application of Theorem 2 in Littman [8]. The method of solution
therein was successfully generalized to elastic operators (beams and plates) in
Littman [9]. It is observed that the Kirchhoff operator does not correspond to
those of the cited works. However, we show that Littman’s method still applies
and solve the ECP. Moreover the control time for both systems is the same and
independent of K.

Once the ECP is solved for both operators we prove uniformity, that is, we
show that the solution of the controlled problem for the Mindlin-Timoshenko
operator converges to that of Kirchhoff when K → +∞. Our proof rests on the
results in Moreles [10].

The outline of this article is as follows: Section 2 presents the statement of
the main result. The proof is carried out in the remaining sections. To illustrate
our result we consider a weak version of the ECP in Lasiecka & Triggiani [7].
In Section 3 we show the first step of Littman’s method. More precisely, we
show that the solutions of the Cauchy problems for the Mindlin-Timoshenko
and Kirchhoff operators are smooth away from the origin if Cauchy data with
compact support is provided. This is accomplished by studying the singular
support of the fundamental solutions. For the Mindlin-Timoshenko operator
there is nothing to do: the information about the singular support contained in
the principal part follows from the theory of hyperbolic operators. The Kirchhoff
operator, however, does require some analysis. We construct the fundamental
solution as a Fourier integral operator in the sense of Hörmander [1] and apply
the results therein to determine the singular support. In Section 4 we deal
with two perturbation problems that arise on Littman’s method, and prove
the analogue results to those in Moreles [10]. Consequently we deduce uniform
controllability.



EJDE–1999/03 Miguel Angel Moreles 3

The Theory of Distributions of L. Schwartz and the the Theory of Hyperbolic
Operators will be assumed throughout this article. As a classical reference we
have Hörmander’s book [2].

2 Main Result

Let Ω be a bounded domain in Rn. LetW l
2(Ω) be the Sobolev space of functions

f ∈ L2(Ω) for which the distributional derivatives ∂αx f are in L2(Ω) for |α| ≤ l,
and let the norm be denoted by ‖f‖l. When Ω = R

n we regard W l
2 as Hl and

‖f‖l =

(∫
Λ2l

∣∣∣f̂ ∣∣∣2)1/2 ,
where f̂ is the Fourier Transform of f , and

Λs(ξ) =
(
1 + |ξ|2

) s
2

, s ∈ R .

Let w0 and w1 be functions in Wm+l
2 (Ω), and let w2 and w3 be functions in

Wm+l−2
2 (Ω), where m and l are nonnegative integers with l > n

2 . Let ε be
a positive constant. Extend the Cauchy Data to have compact support in an
ε-neighborhood of Ω which we call again Ω. For b ≥ 0 we denote by Qb the set
Ω× [b,+∞).

Theorem 1 (i) Let T0 = d
√
ρh3/12, where d is the diameter of Ω. Then for

each T1 > 2T0 there exist solutions w(x, t) and wK(x, t) to the Cauchy
problems

Lw = 0, in Ω× {t ≥ 0} ,

w(x, 0) = w0(x) , wt(x, 0) = w
1(x) in Ω

and

LKwK = 0 , in Ω× {t ≥ 0} ,

∂jtwK(x, 0) = w
j(x) , j = 0, 1, 2, 3 in Ω

both vanishing in Ω × {t ≥ T1}. Moreover, If |α| ≤ m, then ∂αxwK con-
verges to ∂αxw when K → +∞ in the L

∞-norm in bounded subsets of
Q0.

(ii) If we restrict further w0 ∈ Wm+l+1
2 (Ω), w2 ∈ Wm+l−1

2 (Ω), then ∂αx ∂twK
converges to ∂αx ∂tw when K → +∞ in the L

∞-norm in bounded subsets
of Q0 also for |α| ≤ m.

The functions w(x, t) and wK(x, t) with the alleged properties are con-
structed in the proof. Hence to solve the ECP for both equations we just
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need to read off appropriate boundary conditions to have uniqueness of the re-
sulting initial-boundary-value problem. For instance, the following boundary
conditions guarantee uniqueness

fK = wK , gK = ∆wK in Γ× [0, T ] ;

f = w , g = ∆w in Γ× [0, T ] .

Here Γ = ∂Ω is the (smooth) boundary of Ω. Observe that these functions are
bounded in Q0. Moreover fK → f and gK → g in the L∞-norm.
Observe that the control time T1 in the theorem is independent of K, that is,

the control time is uniform. We shall see that the functions w(x, t) and wK(x, t)
are smooth in QT0 . Hence, in this set the convergence is uniform.

Now the drawbacks. From the point of view of Exact Controllability we have
a weak result. For instance, in Lasiecka & Triggiani [7] the Kirchhoff system is
considered with the following boundary conditions

w = 0 in Γ× [0, T ]

∆w = 0 in Γ0 × [0, T ]

∆w = u in Γ1 × [0, T ] ,

where Γ is the disjoint union of Γ0 and Γ1. Thus, only one control in part of
the boundary is required to drive the system to rest.
In contrast we require controls in the whole boundary. Also, these controls

need not be unique, and we offer no criteria for comparison. Furthermore, for
solving the initial-boundary-value problem we require on the Cauchy data more
regularity than usual. Our offering is convergence in a rather strong sense.

A natural continuation to this work, is to consider the problem under weaker
assumptions.

3 The Cauchy Problems

Theorem 2 Let uK and u be the solutions of the Cauchy problems

Lu = 0 in Rn × {t ≥ 0} , (1)

u(x, 0) = w0(x) , ut(x, 0) = w
1(x) in Rn

and

LKuK = 0 in Rn × {t ≥ 0} , (2)

∂jt uK(x, 0) = w
j(x) , j = 0, 1, 2, 3 in Rn .

Then uK and u are smooth in QT0 .

As remarked before, this theorem is obtained as a consequence of the study
of the singular support of the fundamental solutions.
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The Mindlin-Timoshenko Operator

Since the Mindlin-Timoshenko Operator is hyperbolic the problem is settled.
Indeed, the principal part is

LK4 =
ρ2h4

12K

(
∂2t −

K

ρh
∆

)(
∂2t −

12

ρh3
∆

)
.

It has two characteristic cones, namely

Γ =

{
(x, t) ∈ Rn+1 : t2 =

12

ρh3
|x|2 , t ≥ 0

}
Γ1 =

{
(x, t) ∈ Rn+1 : t2 =

K

ρh
|x|2 , t ≥ 0

}
with dual cones

Γ0 =

{
(x, t) ∈ Rn+1 : t2 =

ρh3

12
|x|2 , t ≥ 0

}
(3)

Γ01 =

{
(x, t) ∈ Rn+1 : t2 =

ρh

K
|x|2 , t ≥ 0

}
.

Thus if GK is the fundamental solution of L then

sing supp GK ⊂ Γ
0 ∪ Γ01 .

The Kirchhoff Operator

The principal part of the Kirchhoff Operator is

L4 =
ρh3

12
∆

(
∂2t −

12

ρh3
∆

)
.

Notice that the wave operator ∂2t −
12
ρh3∆ has characteristic cone Γ. We shall see

that this hyperbolic part of L4 determines the singularities of the fundamental
solution of L, that is, we show that

sing supp G ⊂ Γ0 .

For convenience we use the following notation

Dxj ≡ −i∂xj , Dx = Dx1 , . . . , Dxn , Dt ≡ −i∂t , ∆ = −∆ .

and write the Kirchhoff Operator in the form

P (Dx, Dt) =

(
1 +

h2

12
∆

)
D2t −

1

ρh
∆
2
. (4)

We shall construct a distributionG(x, t) supported in the half space
{
(x, t) ∈ Rn+1 : t ≥ 0

}
such that [(

1 + h2

12∆
)
D2t −

1
ρh∆

2
]
G(x, t) = δ(x, t) .
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Let

S(ξ, t) =
1

2λ(ξ)

(
eiλ(ξ)t − e−iλ(ξ)t

)
= i
sinλ(ξ)t

λ(ξ)
,

where

λ(ξ) =
|ξ|2√

ρh+ ρh3

12 |ξ|
2
. (5)

it satisfies [(
1 + h2

12 |ξ|
2
)
D2t −

1
ρh
|ξ|4
]
S(ξ, t) = 0 , for t > 0 . (6)

S(ξ, 0) = 0 , DtS(ξ, 0) = 1 .

Observe that

P (ξ,Dt) =

(
1 +

h2

12
|ξ|2
)
D2t −

1

ρh
|ξ|4

is obtained from (4) after applying the Fourier Transform with respect to x.
Choose χ(ξ) ∈ D such that χ(ξ) = 1 in a neighborhood of 0. Let

P0u(x, t) =
1

(2π)
n

∫
ei(x−y)·ξ

1

1 + h2

12 |ξ|
2S(ξ, t)χ(ξ)u(y) dξ dy

Au(x, t) =
1

(2π)
n

∫
eiϕ(x,y,ξ)a(ξ)u(y) dξ dy (7)

Bu(x, t) =
1

(2π)
n

∫
eiψ(x,y,ξ)a(ξ)u(y) dξ dy ,

where

a(ξ) =
1

2λ(ξ)
·

1

1 + h2

12 |ξ|
2 · (1− χ(ξ)) (8)

ϕ(x, y, ξ) = (x− y) · ξ + λ(ξ)t

ψ(x, y, ξ) = (x− y) · ξ − λ(ξ)t .

Since ∂ϕ
∂xi
= ξi it follows that

|∇xϕ|
2
+ |ξ|2 |∇ξϕ|

2 ≥ |ξ|2 . (9)

Moreover, λ(ξ) ∈ S1 and so is ϕ(x, y, ξ). Recall that for any real m Sm is the
set of symbols of order m.
Therefore, according to Definition 2.3 in Hörmander [1], ϕ is a phase func-

tion. Similar argument applies to ψ. Also, it is readily seen that a(ξ) in (8)
is in S−3. Then from Theorem 2.4 in Hörmander [1], A and B are Fourier
integral operators with symbol a(ξ) and phase functions ϕ(x, y, ξ), ψ(x, y, ξ)
respectively.
To study singularities of the fundamental solution, we need the following

definitions. Let Ωϕ be the set of all ((x, t), y) ∈ Rn+1 × Rn such that for some
constant C, depending on ((x, t), y),

1 ≤ C |∇ϕ|2 , |ξ| > C .
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Then the set Ωϕ is open, hence its complement, denoted by Fϕ, is closed. Define
similarly Ωψ and Fψ. For subsets X of R

n define

FϕX =
{
(x, t) ∈ Rn+1 : ((x, t), y) ∈ Fϕ for some y ∈ R

n
}
.

Our claim about the fundamental solution will be a consequence of the fol-
lowing theorem.

Theorem 3 Let Γ0 be the cone in (3), and let u = δ in ( 7). Define

Eδ(x, t) = P0δ(x, t) +Aδ(x, t)−Bδ(x, t)

Then Eδ is a distribution such that the singular support of Eδ is a subset of Γ0

Proof. We shall prove that in the complement of Γ0 the distribution Eδ(x, t)
is smooth. Observe that P0δ(x, t) is C

∞ in Rn+1; hence we need to consider
only Aδ(x, t) and Bδ(x, t).

In light of Corollary 2.7 in Hörmander [1], it suffices to show that if |x|2 6=
12
ρh3

t2 for t ≥ 0 then (x, t) /∈ Fϕ sing supp δ and (x, t) /∈ Fψ sing supp δ. We
prove the assertion for ϕ. For ψ, the proof is similar.
Our interest is u = δ, the Dirac’s Delta distribution. In this case

sing supp δ = {0} .

Thus (x, t) /∈ Fϕ sing supp δ is equivalent to ((x, t), 0) /∈ Fϕ that is ((x, t), 0) ∈
Ωϕ.
It can be easily shown that

∂ϕ

∂ξi
= xi +

1√
ρh
t(

1 + h2

12 |ξ|
2
)3/2 (2 + h2

12
|ξ|2
)
ξi ;

thus

∇ξϕ((x, t), 0, ξ) = x+

1√
ρh
t(

1 + h2

12 |ξ|
2
)3/2 (2 + h2

12
|ξ|2
)
ξ

and ∣∣∇ξϕ((x, t), 0, ξ)∣∣ ≥ ∣∣∣∣ |x| − 1√
ρh
t(

1 + h2

12 |ξ|
2
)3/2 (2 + h2

12
|ξ|2
)
|ξ|

∣∣∣∣ .
Consider the function

f(r) =
2 + h2

12 r
2(

1 + h2

12 r
2
)3/2 r , r ≥ 0 , r = |ξ| .

Then f(r)↘
√
12
h
when r →∞ and f attains its maximum value at r =

√
24
h

with f
(√
24
h

)
= 8
3
√
6

√
12
h .
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If |x| <
√
12
ρh3

t then |x| = (1− ε)
√
12
ρh3

t for some ε, 0 < ε < 1, thus

|∇ξϕ((x, t), 0, ξ)| ≥
t
√
ρh
f(r) − |x|

but f(r) ≥
√
12
h for r ≥

√
24
h , so

|∇ξϕ((x, t), 0, ξ)| ≥ ε

√
12

ρh3
t

or
|∇ξϕ((x, t), 0, ξ)|C ≥ 1 , if |ξ| > C

with C = max
{

1

ε
√

12
ρh3

t
,
√
24
h

}
, i.e. (x, t) ∈ Ωϕ.

For the case |x| >
√
12
ρh3 t we have |x| = (1 + ε)

√
12
ρh3 t for some ε > 0 , thus

|∇ξϕ((x, t), 0, ξ)| ≥ |x| −
t
√
ρh
f(r)

Choose ε̃ small enough so that

ε− ε̃

(
8

3
√
6
− 1

)
> 0

there is rε,ε̃ ≥
√
24
h
so that, if r > rε,ε̃ then f(r) ≤

[
1 + ε̃

(
8
3
√
6
− 1
)] √

12
h
. We

have

|∇ξϕ((x, t), 0, ξ)| ≥

√
12

ρh3
t

(
ε− ε̃

(
8

3
√
6
− 1

))
Again

|∇ξϕ((x, t), 0, ξ)|C ≥ 1 , if |ξ| > C

with C = max
{(√

12
ρh3 t

(
ε− ε̃

(
8
3
√
6
− 1
)))−1

, rε,ε̃
}
. Therefore (x, t) ∈ Ωϕ.

Finally we show that the singular support is contained in Γ0. Now we use
the phase function ψ. We have

∇ξψ((x, t), 0, ξ) = x−
t
ρh(

1 + h2

12 |ξ|
2
)3/2 (2 + h2

12
|ξ|2
)
ξ

In the cone Γ0, |x| =
√
12
ρh3

t so

∇ξψ((x, t), 0, ξ) = x−
h |x|
√
12

f(r)

r
ξ .

Let ξ = µx, with µ > 0 to be chosen later. Then

|∇ξψ((x, t), 0, ξ)| =

∣∣∣∣1− h
√
12
f (µ |x|)

∣∣∣∣ |x|
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Since f(r)↘
√
12
h when r ↗∞ it follows that for any C > 0 we may choose

µ >> 0 so that ∣∣∣∣1− h
√
12
f (µ |x|)

∣∣∣∣ |x| < 1C
that is if |x| =

√
12
ρh3

t |x| then (x, t) /∈ Ωψ , i.e., (x, t) ∈ Fψ and the singular

support of Eδ is a subset of Γ0 as asserted.
Let H(t) be the Heaviside function. From (6) we see that[(

1 +
h2

12
|ξ|2
)
D2t −

1

ρh
|ξ|4
](

i

1 + h2

12 |ξ|
2S(ξ, t)H(t)

)
= δ(t)

This fact together with the previous theorem give us

Corollary 3.1 If G(x, t) = iEδ(x, t)H(t), then G(x, t) is a fundamental solu-
tion of the Kirchhoff Operator supported in the half space t ≥ 0. Moreover the
singular support of G is a subset of Γ0.

Remark. Existence of fundamental solutions for differential operators with
constant coefficients is a classical result. In applications some times a more
explicit expression is necessary as illustrated in the present work. The Kirchhoff
operator is quasi-hyperbolic in the sense of Ortner & Wagner [11, 12]. They are
able to find explicit expressions for some of such operators. However, their
approach does not seem to apply here.

4 Perturbation Problems

¿From the Cauchy problems (1) and (2), we obtain the first perturbation prob-
lem.
After applying the Fourier Transform on the space variables, we obtain

L(iξ, t)U = 0

U(ξ, 0) =W 0(ξ) , Ut(ξ, 0) =W
1(ξ)

and

LK(iξ, t)UK = 0

∂jtUK(ξ, 0) =W
j(ξ) , j = 0, 1, 2, 3

Let R = Uk − U . We will establish the following inequalities

|R(ξ, t)| ≤
c(t)

K

[∣∣W 0
∣∣+ ∣∣W 1

∣∣+ Λ−2 (∣∣W 2
∣∣+ ∣∣W 3

∣∣)]
|∂tR(ξ, t)| ≤

c(t)
√
K

(
Λ1
∣∣W 0

∣∣+ ∣∣W 1
∣∣+ Λ−1 ∣∣W 2

∣∣+ Λ−2 ∣∣W 3
∣∣) (10)∣∣∂2tR(ξ, t)∣∣ ≤ c(t)

(
Λ2
∣∣W 0

∣∣+ Λ1 ∣∣W 1
∣∣+ ∣∣W 2

∣∣+ Λ−1 ∣∣W 3
∣∣) ,
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where c(t) is a polynomial on t independent of K. From these estimates, using
the fact that

∫
Λ−s converges for s > n, and Hölder’s inequality, for any multi-

index α we have that

|∂αx (uK(x, t)− u0(x, t))| ≤
c(t)

K

(∥∥w0∥∥
|α|+ s2

+
∥∥w1∥∥

|α|+ s2

+
∥∥w2∥∥

|α|+ s2−2
+
∥∥w3∥∥

|α|+ s2−2

)
and

|∂αx ∂t (uK(x, t)− u0(x, t))| ≤
c(t)
√
K

(∥∥w0∥∥
|α|+ s2+1

+
∥∥w1∥∥

|α|+ s2

+
∥∥w2∥∥

|α|+ s2−1
+
∥∥w3∥∥

|α|+ s2−2

)
.

Consequently, we have the following result.

Theorem 4 Let s > n and α be a multi-index such that |α| ≤ m. Assume that
w0 and are in w1 ∈ Hm+ s2 , and that w2 and w3 in Hm+ s2−2. Then

(i) ∂αx uK converges to ∂
α
x u when K → +∞ in the norm L∞ (Rn × [0, τ ]) with

τ < +∞.

(ii) If we restrict further w0 ∈ Hm+ s2+1 and w2 ∈ Hm+ s2−1, then ∂αx ∂tuK
converges to ∂αx ∂tu when K → +∞ in the norm L∞ (Rn × [0, τ ]) with
τ < +∞.

Remarks.

(i) Notice that in Theorem 1 l ≥ ds/2e.

(ii) Thanks to Estimate (10) we require less regularity of the Cauchy Data
than in Theorem 3.2 in Moreles [10]. Thus, Theorem 4 lead us to a slight
improvement of the main result therein.

(iii) Observe that the last estimate in (10) implies weaker convergence when
taking second derivatives with respect to t.

Let us discuss the proof of the estimates in (10). It is not difficult to see
that

U0(ξ, t) =W
0 cosλt+

1

λ
W 1 sinλt

with

λ ≡ λ(ξ) =
|ξ|2√

ρh+ ρh3

12 |ξ|
2
,
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as in (5). The remainder R satisfies

LK(iξ, t)R =
ρ2h4

12K F

∂jtR(ξ, 0) = R
j(ξ) ,

where F (ξ, t) = −∂4tU0 −
12
ρh3
|ξ|2 ∂2tU0 and

R0(ξ) = R1(ξ) = 0

R2(ξ) =W 2(ξ)− ∂2tU0 (ξ, 0) ,

R3(ξ) =W 3(ξ)− ∂3tU0 (ξ, 0) .

Then we obtain

F (ξ, t) = −

(
λ2 −

12

ρh3
|ξ|2
)(

λ2W 0 cosλt+ λW 1 sinλt
)
.

Notice that ∣∣λ2 − 12
ρh3
|ξ|2

∣∣ ≤ c ; (11)

hence, in terms of Λs we obtain

|F (ξ, t)| ≤ c
(
Λ2
∣∣W 0

∣∣+ Λ1 ∣∣W 1
∣∣) . (12)

Now we mimic the proof of Theorem 3.2 in Moreles [10] to obtain the esti-
mates (10).

Remark. Estimate (12) follows from the explicit form of F and ( 11). Com-
pare (12) with the estimate after (3.10) in Moreles [10].

The second perturbation problem follows from the proof of Theorem 2 in
Littman [8]. Let us rework such a proof to derive this perturbation problem as
well as the uniform time of controllability.
Let ϕ(t) be a cutoff function such that

ϕ(t) =

{
1 for t ≤ T0

0 for t ≥ T0 + ε .

Let f = L[uϕ] and fK = LK [uϕ]. Then f and fK are smooth and have
support in the strip T0 ≤ t ≤ T0 + ε.

Theorem 5 There are smooth solutions V and VK for

L[V ] = f and LK [VK ] = fK (13)

vanishing in a neighborhood of

Ω× {t = 0} and Ω× {t = T1} . (14)

Moreover, if |α|+l ≤ 3, then ∂αx ∂
l
tVK converges to ∂

α
x ∂

l
tV uniformly in compacta.
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Proof. For each unit vector ω let Iω =
{
s : s = x · ω , x ∈ Ω

}
. Then we have

L(∂x, ∂t)v(x · ω, t) =
[
ρh∂2t −

ρh3

12 ∂
2
s∂
2
t + ∂

4
s

]
v(s, t) ,

LK(∂x, ∂t)vK(x · ω, t) =
[
ρh∂2t −

ρh3

12 ∂
2
s∂
2
t + ∂

4
s +

ρh
K

(
ρh3

12 ∂
4
t − ∂

2
s∂
2
t

)]
vK(s, t) .

We obtain the beam operators of Rayleigh and Timoshenko

L(∂s, ∂t) = ρh∂
2
t −

ρh3

12 ∂
2
s∂
2
t + ∂

4
s

LK(∂s, ∂t) = ρh∂
2
t −

ρh3

12 ∂
2
s∂
2
t + ∂

4
s +

ρh
K

(
ρh3

12 ∂
4
t − ∂

2
s∂
2
t

)
which are hyperbolic in the s-direction. For both operators there are two fun-
damental solutions supported respectively in the cones

Γ0+ =
{
(s, t) ∈ R2 : t2 = ρh3

12 |s|
2 , s ≥ 0

}
Γ0− =

{
(s, t) ∈ R2 : t2 = ρh3

12 |s|
2 , s ≤ 0

}
.

Let

f(x, t) =

∫
|ω|=1

fω(s, t) dω and fK(x, t) =

∫
|ω|=1

fKω(s, t) dω .

be the plane wave decompositions of f and fK .
Let VωR , VωL , VKωR, and VKωR be the solutions to

L(∂s, ∂t)[VωR] = fω , s ≥ 0 ;

L(∂s, ∂t)[VωL] = fω , s ≤ 0 ; (15)

LK(∂s, ∂t)[VKωR] = fKω , s ≥ 0 ;

LK(∂s, ∂t)[VKωL] = fKω , s ≤ 0 .

Here we assume that 0 ∈ Ω.
We see that the supports of VωR , VωL , VKωR, and VKωR are bounded away

from the sets
Ω× {t = 0} and Ω× {t = T1}

Let
Vω = VωR + VωL , VKω = VKωR + VKωR (16)

and

V (x, t) =

∫
|ω|=1

Vω dω , VK(x, t) =

∫
|ω|=1

VKω dω .

These functions satisfy (13) and (14). ¿From (15), (16), and Theorem 4.2
in Moreles [10], it follow that ∂ms ∂

l
tVKω converges to ∂

m
s ∂

l
tVω uniformly in com-

pacta independently of ω. This proves the theorem.
Finally let

w = uϕ− V and wK = uKϕ− VK .

Then w and wK satisfy all the requirements of Theorem 1.
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