Removable singular sets of fully nonlinear elliptic equations *

Lihe Wang & Ning Zhu

Abstract

In this paper we consider fully nonlinear elliptic equations, including the Monge-Ampere equation and the Weingarden equation. We assume that

$$F(D^2u, x) = f(x) \quad x \in \Omega,$$

 $u(x) = q(x) \quad x \in \partial\Omega$

has a solution u in $C^2(\Omega) \cap C(\bar{\Omega})$, and

$$F(D^2v(x), x) = f(x) \quad x \in \Omega \setminus S,$$

 $v(x) = q(x) \quad x \in \partial \Omega$

has a solution v in $C^2(\Omega \setminus S) \cap \text{Lip}(\Omega) \cap C(\overline{\Omega})$. We prove that under certain conditions on S and v, the singular set S is removable; i.e., u = v.

1 Introduction

Removability of singularities of solutions to elliptic equations has studied extensible. Known results include the fact that isolated singularities of bounded harmonic functions are removable. Jörgens [4] stated the related result that the isolated singularity of the Monge-Ampere equation, in two dimensions, is removable if the solution is C^1 along a curve passing though the singularity. Jörgens' result was extended in 1995 by Beyerstedt [1] who considered isolated singularity for general equations in n-dimensions.

In this paper, we use rather elementary tools to prove removability of singular sets in arbitrary dimensions. Our result for the Monge-Ampere equation is optimal, as shown by the examples in [2].

^{*1991} Mathematics Subject Classifications: 35B65.

Key words and phrases: Nonlinear PDE, Monge-Ampere Equation, Removable singularity. ©1999 Southwest Texas State University and University of North Texas.

Submitted March 17, 1998. Published February 17, 1999.

Partially supported by NSF grant DMS-9801374 and a Sloan Foundation Fellowship

The Maximum Principle. In this paper, we use a generalized version of the Aleksandroff Maximum Principle (see Lemma 2 below). Let us start out with the following lemma.

Lemma 1 Let $B = \{x : \Gamma v(x) = v(x)\}$, where

$$\Gamma u(x) = \sup\{w(x) : w \text{ is convex and } w \leq v \text{ on } \bar{\Omega}\}.$$

If $v \in \text{Lip}(\Omega)$ and $v|_{\partial\Omega} \geq 0$, then $\{p : |p| < M/D\}$ is contained in the set

 $\{p: p \text{ is normal of the tangent plane of } z(x) = v(x) \text{ at some } x_0 \in B\}.$

Proof. For each p satisfying $|p| \leq M/D$, suppose that v take its minimum at x_0 , and $v(x_0) = -M$. Consider the plane π defined by

$$x_{n+1} = -M + p \cdot (x - x_0).$$

When $x \in \partial \Omega$, we have

$$x_{n+1} \le -M + |p \cdot (x - x_0)|$$

 $\le -M + |p|D \le 0.$

But min $_{partial\Omega}v(x)\geq 0$, so that, $-M*p\cdot(x-x_0)|_{\partial\Omega}\leq v(x)|_{\partial\Omega}$. We can take $M_0\leq -M$ such that for all $x\in \bar{\Omega}$ we have

$$M_0 + p \cdot (x - x_0) \le v(x)$$

and for all $M' > M_0$, there exist $x_1 \in \bar{\Omega}$, such that

$$M' + p \cdot (x_1 - x_0) > v(x_1)$$
.

We can also prove that the set

$$G = \{x : M_0 + p \cdot (x - x_0) = v(x)\}$$

satisfies $G \subset B$. In fact, if there is a point $y \in G$ with $y \notin B$, then $\Gamma v(y) < v(y) = M_0 + p \cdot (y - x_0)$. The set $G_1 = \{y : \Gamma v(y) < v(y), y \in \overline{\Omega}\}$ is open in $\overline{\Omega}$. Since $v(y) \geq v(y), y \in G_1$, we can take

$$\Gamma'v(x) = \left\{ \begin{array}{ll} \Gamma v(x) & x \notin G_1 \\ M_0 + p \cdot (x - x_0) & x \in \bar{G}_1 \, . \end{array} \right.$$

Then $\Gamma'v$ is convex, and $\Gamma'v \leq v, \Gamma'v(x) > \Gamma v(x)$ for $x \in G_1$, which is a contradiction to the definition of Γv . Therefore, $G \subset B$ and the present proof is complete.

Lemma 2 For $u \in \text{Lip}(\Omega)$, $u|_{\partial\Omega} \geq 0$, and $\min_{\bar{\Omega}} u = M < 0$, there is a constant C depending only on the domain Ω and n, such that

$$-\min_{\bar{\Omega}} u \le C \left[\left(\int_{B \setminus S} \det D^2 u(x) \, dx \right)^{1/n} + \left(\max \{ \nabla u(x) | x \in S \cap B \} \right)^{1/n} \right],$$

where B is the set $\{x : \Gamma u(x) = u(x)\}$, $S = \{x : D^2 u(x) \text{ does not exist }\}$, and $\nabla u(x_0)$ denotes all $p \in \mathbb{R}^n$ satisfying

$$p \cdot (x - x_0) + u(x_0) \le u(x).$$

Proof. By Lemma 1, we have

$$\begin{split} -\min_{\bar{\Omega}} u & \leq \frac{D}{K_n^{1/n}} \left[\operatorname{meas}\{p: p \text{ is normal to the tangent plane at } x \in \{\Gamma u = u\}\} \right]^{1/n} \\ & = \frac{D}{K_n^{1/n}} \left(\operatorname{meas}\{\nabla u(x): x \in \{\Gamma u = u\}, D^2 u(x) \text{ exits } \} \right)^{1/n} \\ & + \operatorname{meas}\{\nabla u(x): x \in \{\Gamma u = u\}, D^2 u(x) \text{ does not exist } \}^{1/n} \\ & = \frac{D}{K_n^{1/n}} \left(\int_{\{\Gamma u = u\} \backslash S} \det D^2 u \, dx \right)^{1/n} \\ & + \frac{D}{K_n^{1/n}} \left(\operatorname{meas}\{\nabla u(x): x \in \{\Gamma u = u\}, D^2 u(x) \text{ does not exist} \} \right)^{1/n} \end{split}$$

where $D = \dim \Omega$, and K_n is the volume of the unit ball in \mathbb{R}^n .

2 Main Theorem

Using the Lemmas 1 and 2, we can prove the following theorem.

Theorem 1 Let F(A, x) be a function defined on a convex cone C of symmetric matrices S^n , which satisfies the following conditions:

- 1. For A and B in C with A > B, F(A, x) > F(B, x).
- 2. The equation

$$F(D^2u(x), x) = 0 \quad x \in \Omega,$$

$$u(x) = g(x) \quad x \in \partial\Omega$$

has a solution u in $C^2(\Omega) \cap C(\bar{\Omega})$.

Also assume that $v \in C^2(\Omega \setminus S) \cap \operatorname{Lip}(\Omega) \cap C(\bar{\Omega})$ is a solution to

$$F(D^2v(x), x) = 0 \quad x \in \Omega \setminus S,$$

$$v(x) = g(x) \quad x \in \partial\Omega,$$

where $S \subset\subset \Omega$ satisfies

- 1. The dimension of S is l with l < n.
- 2. For every $x \in S$, there are l+1 independent C^2 curves $\{r_{xi}\}$ through x, with $i \in \{1, 2, \dots, l+1\}$, such that $v(r_{xi}) \in C^1$.

Then v is in C^2 , satisfies the equation in Ω , and u(x) = v(x).

Proof. Let w(x) = u(x) - v(x). Then $w(x)|_{x \in \partial\Omega} = 0$. Suppose $\min_{\bar{\Omega}} w < 0$. Then

$$-\inf_{\bar{\Omega}} w \leq C \left[\int_{\{\Gamma w = w\} \setminus S} \det(D^2 w(x)) dx \right]^{1/n} + C \left[\max\{\nabla w(x) : x \in S \cap \{\Gamma w = w\} \} \right]^{1/n}.$$

If there is $x_0 \in {\Gamma w = w} \setminus S$ such that $\det(D^2 w(x_0)) \neq 0$, then by the convexity of Γw , $D^2 w(x_0) \geq D^2 \Gamma w(x_0) \geq 0$. So $D^2 w(x_0) > 0$, or $D^2 u(x_0) > D^2 v(x_0)$. By the structure conditions on F we have

$$0 = F(D^2u(x_0), x_0) > F(D^2v(x_0), x_0) = 0$$

which is a contradiction.

Next, for $x_0 \in S \cap \{\Gamma w = w\}$, there are l+1 independent C^2 curves through x_0 satisfying $v(r_{x_0i}(t)) \in C^1$, with $i=1,2,\cdots,l+1$. Without loss of generality, we can assume that $r_{x_0i}(0) = x_0$ for $i=1,2,\cdots,l+1$. Then for any $p \in \{\nabla w(x_0)\} = \{p: w(x_0) + p \cdot (x-x_0) \leq w(x)\}$ we have

$$p \cdot \frac{d}{dt}(r_{x_0i}(0)) = c_i(x_0)$$
 for $i = 1, 2, \dots, l+1$.

Since $r_{x_0i}(t)$ are independent, we obtain that $\{\nabla w(x_0)\}$ is a subset in the n-(l+1) dimensional space. We have that

$$\begin{aligned} & \operatorname{meas}_n \{ \nabla w(x) : x \in S \cap \{ \Gamma w = w \} \} \\ & \leq & \operatorname{meas}_n [\{ x \in S \cap \{ \Gamma w = w \} \} \times \{ \nabla w(x) \}] \,. \end{aligned}$$

From

$$\dim S + \dim \{\nabla w\} = l + (n - l - 1) = n - 1 < n$$
,

and the boundedness of $\|\nabla w(x)\|$ and of S, we conclude that

$$\max\{\nabla w(x)|x\in S\cap\{\Gamma w=w\}\}=0\,,$$

which implies that

$$-\inf_{\bar{\Omega}}w\leq 0\,,$$

which, in turn, allows us to see that $w \ge 0$ or $u \ge v$. In a similar way, we can prove that

$$u \leq v$$
.

Thus u = v. This completes the present proof.

For the Monge-Ampere equation, we have the following corollary

Corollary 1 Suppose that

$$\det(D^2 u(x)) = f(x) \quad x \in \Omega,$$

$$u(x) = g(x) \quad x \in \partial\Omega$$

has a convex solution $u \in C^2(\Omega) \cap C(\bar{\Omega})$, and suppose that

$$\det(D^2v(x)) = f(x) \quad x \in \Omega \setminus S,$$
$$v(x) = q(x) \quad x \in \partial\Omega$$

has a convex solution $v \in C^2(\Omega \setminus S) \cap \operatorname{Lip}(\Omega) \cap C(\bar{\Omega})$. Also assume that $S \subset\subset \Omega$ satisfies

- 1. The dimension of S is l with l < n.
- 2. For every $x \in S$, there are l+1 independent C^2 curves $\{r_{xi}\}$ through x, with $i \in \{1, 2, \dots l+1\}$, such that $v(r_{xi}) \in C^1$.

Then v is in C^2 , satisfies the above equations in Ω , and u(x) = v(x).

Remark It is straight forward to prove this Corollary the above equation with a ∇u term added.

References

- [1] R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampére equations, Math. Z. 208 (1991), no. 3, 363–373.
- [2] L. Caffarelli, A note on the degeneracy of convex solutions to Monge-Ampere equation, Comm. Partial Diff. Eqns., 18(1993), 7-8, 1213-1217.
- [3] Dong Guang-chang, Second Order Linear Partial Differential Equations, Zhejiang University Press 1992.
- [4] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung $rt s^2 = 1$, Math. Ann. 129 (1955), 330–344.
- [5] Schulz and Wang, Isolated Singularities for Monge-Ampére Equations, proceeding of AMS, vol 123, No 12(1995), 3705-3708.

LIHE WANG

Department of Mathematics, University of Iowa Iowa City, IA 52242, USA E-mail address: lwang@math.uiowa.edu

Ning Zhu

Department of Mathematics, Suzhou University Suzhou 215006, China