Removable singular sets of fully nonlinear elliptic equations *

Lihe Wang \& Ning Zhu

Abstract

In this paper we consider fully nonlinear elliptic equations, including the Monge-Ampere equation and the Weingarden equation. We assume that $$
\begin{gathered} F\left(D^{2} u, x\right)=f(x) \quad x \in \Omega \\ u(x)=g(x) \quad x \in \partial \Omega \end{gathered}
$$ has a solution u in $C^{2}(\Omega) \cap C(\bar{\Omega})$, and $$
\begin{gathered} F\left(D^{2} v(x), x\right)=f(x) \quad x \in \Omega \backslash S, \\ v(x)=g(x) \quad x \in \partial \Omega \end{gathered}
$$ has a solution v in $C^{2}(\Omega \backslash S) \cap \operatorname{Lip}(\Omega) \cap C(\bar{\Omega})$. We prove that under certain conditions on S and v, the singular set S is removable; i.e., $u=v$.

1 Introduction

Removability of singularities of solutions to elliptic equations has studied extensible. Known results include the fact that isolated singularities of bounded harmonic functions are removable. Jörgens [4] stated the related result that the isolated singularity of the Monge-Ampere equation, in two dimensions, is removable if the solution is C^{1} along a curve passing though the singularity. Jörgens' result was extended in 1995 by Beyerstedt [1] who considered isolated singularity for general equations in n-dimensions.

In this paper, we use rather elementary tools to prove removability of singular sets in arbitrary dimensions . Our result for the Monge-Ampere equation is optimal, as shown by the examples in [2].

[^0]The Maximum Principle. In this paper, we use a generalized version of the Aleksandroff Maximum Principle (see Lemma 2 below). Let us start out with the following lemma.

Lemma 1 Let $B=\{x: \Gamma v(x)=v(x)\}$, where

$$
\Gamma u(x)=\sup \{w(x): w \text { is convex and } w \leq v \text { on } \bar{\Omega}\} .
$$

If $v \in \operatorname{Lip}(\Omega)$ and $\left.v\right|_{\partial \Omega} \geq 0$, then $\{p:|p|<M / D\}$ is contained in the set
$\left\{p: p\right.$ is normal of the tangent plane of $z(x)=v(x)$ at some $\left.x_{0} \in B\right\}$.

Proof. For each p satisfying $|p| \leq M / D$, suppose that v take its minimum at x_{0}, and $v\left(x_{0}\right)=-M$. Consider the plane π defined by

$$
x_{n+1}=-M+p \cdot\left(x-x_{0}\right)
$$

When $x \in \partial \Omega$, we have

$$
\begin{aligned}
x_{n+1} & \leq-M+\left|p \cdot\left(x-x_{0}\right)\right| \\
& \leq-M+|p| D \leq 0
\end{aligned}
$$

But min $\operatorname{partial} \Omega v(x) \geq 0$, so that, $-\left.M * p \cdot\left(x-x_{0}\right)\right|_{\partial \Omega} \leq\left. v(x)\right|_{\partial \Omega}$. We can take $M_{0} \leq-M$ such that for all $x \in \bar{\Omega}$ we have

$$
M_{0}+p \cdot\left(x-x_{0}\right) \leq v(x)
$$

and for all $M^{\prime}>M_{0}$, there exist $x_{1} \in \bar{\Omega}$, such that

$$
M^{\prime}+p \cdot\left(x_{1}-x_{0}\right)>v\left(x_{1}\right)
$$

We can also prove that the set

$$
G=\left\{x: M_{0}+p \cdot\left(x-x_{0}\right)=v(x)\right\}
$$

satisfies $G \subset B$. In fact, if there is a point $y \in G$ with $y \notin B$, then $\Gamma v(y)<$ $v(y)=M_{0}+p \cdot\left(y-x_{0}\right)$. The set $G_{1}=\{y: \Gamma v(y)<v(y), y \in \bar{\Omega}\}$ is open in $\bar{\Omega}$. Since $v(y) \geq v(y), y \in G_{1}$, we can take

$$
\Gamma^{\prime} v(x)= \begin{cases}\Gamma v(x) & x \notin G_{1} \\ M_{0}+p \cdot\left(x-x_{0}\right) & x \in \bar{G}_{1}\end{cases}
$$

Then $\Gamma^{\prime} v$ is convex, and $\Gamma^{\prime} v \leq v, \Gamma^{\prime} v(x)>\Gamma v(x)$ for $x \in G_{1}$, which is a contradiction to the definition of Γv. Therefore, $G \subset B$ and the present proof is complete.

Lemma 2 For $u \in \operatorname{Lip}(\Omega),\left.u\right|_{\partial \Omega} \geq 0$, and $\min _{\bar{\Omega}} u=M<0$, there is a constant C depending only on the domain Ω and n, such that

$$
-\min _{\bar{\Omega}} u \leq C\left[\left(\int_{B \backslash S} \operatorname{det} D^{2} u(x) d x\right)^{1 / n}+(\operatorname{meas}\{\nabla u(x) \mid x \in S \cap B\})^{1 / n}\right]
$$

where B is the set $\{x: \Gamma u(x)=u(x)\}, S=\left\{x: D^{2} u(x)\right.$ does not exist $\}$, and $\nabla u\left(x_{0}\right)$ denotes all $p \in \mathbb{R}^{n}$ satisfying

$$
p \cdot\left(x-x_{0}\right)+u\left(x_{0}\right) \leq u(x) .
$$

Proof. By Lemma 1, we have

$$
\begin{aligned}
-\min _{\bar{\Omega}} u \leq & \frac{D}{K_{n}^{1 / n}}[\operatorname{meas}\{p: p \text { is normal to the tangent plane at } x \in\{\Gamma u=u\}\}]^{1 / n} \\
= & \frac{D}{K_{n}^{1 / n}}\left(\operatorname{meas}\left\{\nabla u(x): x \in\{\Gamma u=u\}, D^{2} u(x) \text { exits }\right\}\right)^{1 / n} \\
& + \text { meas }\left\{\nabla u(x): x \in\{\Gamma u=u\}, D^{2} u(x) \text { does not exist }\right\}^{1 / n} \\
= & \frac{D}{K_{n}^{1 / n}}\left(\int_{\{\Gamma u=u\} \backslash S} \operatorname{det} D^{2} u d x\right)^{1 / n} \\
& +\frac{D}{K_{n}^{1 / n}}\left(\operatorname{meas}\left\{\nabla u(x): x \in\{\Gamma u=u\}, D^{2} u(x) \text { does not exist }\right\}\right)^{1 / n}
\end{aligned}
$$

where $D=\operatorname{dim} \Omega$, and K_{n} is the volume of the unit ball in \mathbb{R}^{n}.

2 Main Theorem

Using the Lemmas 1 and 2, we can prove the following theorem.

Theorem 1 Let $F(A, x)$ be a function defined on a convex cone C of symmetric matrices S^{n}, which satisfies the following conditions:

1. For A and B in C with $A>B, F(A, x)>F(B, x)$.
2. The equation

$$
\begin{gathered}
F\left(D^{2} u(x), x\right)=0 \quad x \in \Omega \\
u(x)=g(x) \quad x \in \partial \Omega
\end{gathered}
$$

has a solution u in $C^{2}(\Omega) \cap C(\bar{\Omega})$.
Also assume that $v \in C^{2}(\Omega \backslash S) \cap \operatorname{Lip}(\Omega) \cap C(\bar{\Omega})$ is a solution to

$$
\begin{gathered}
F\left(D^{2} v(x), x\right)=0 \quad x \in \Omega \backslash S, \\
v(x)=g(x) \quad x \in \partial \Omega
\end{gathered}
$$

where $S \subset \subset \Omega$ satisfies

1. The dimension of S is l with $l<n$.
2. For every $x \in S$, there are $l+1$ independent C^{2} curves $\left\{r_{x i}\right\}$ through x, with $i \in\{1,2, \cdots, l+1\}$, such that $v\left(r_{x i}\right) \in C^{1}$.

Then v is in C^{2}, satisfies the equation in Ω, and $u(x)=v(x)$.

Proof. Let $w(x)=u(x)-v(x)$. Then $\left.w(x)\right|_{x \in \partial \Omega}=0$. Suppose $\min _{\bar{\Omega}} w<0$. Then

$$
\begin{aligned}
-\inf _{\bar{\Omega}} w \leq & C\left[\int_{\{\Gamma w=w\} \backslash S} \operatorname{det}\left(D^{2} w(x)\right) d x\right]^{1 / n} \\
& +C[\operatorname{meas}\{\nabla w(x): x \in S \cap\{\Gamma w=w\}\}]^{1 / n}
\end{aligned}
$$

If there is $x_{0} \in\{\Gamma w=w\} \backslash S$ such that $\operatorname{det}\left(D^{2} w\left(x_{0}\right)\right) \neq 0$, then by the convexity of $\Gamma w, D^{2} w\left(x_{0}\right) \geq D^{2} \Gamma w\left(x_{0}\right) \geq 0$. So $D^{2} w\left(x_{0}\right)>0$, or $D^{2} u\left(x_{0}\right)>D^{2} v\left(x_{0}\right)$. By the structure conditions on F we have

$$
0=F\left(D^{2} u\left(x_{0}\right), x_{0}\right)>F\left(D^{2} v\left(x_{0}\right), x_{0}\right)=0
$$

which is a contradiction.
Next, for $x_{0} \in S \cap\{\Gamma w=w\}$, there are $l+1$ independent C^{2} curves through x_{0} satisfying $v\left(r_{x_{0} i}(t)\right) \in C^{1}$, with $i=1,2, \cdots, l+1$. Without loss of generality, we can assume that $r_{x_{0} i}(0)=x_{0}$ for $i=1,2, \cdots, l+1$. Then for any $p \in$ $\left\{\nabla w\left(x_{0}\right)\right\}=\left\{p: w\left(x_{0}\right)+p \cdot\left(x-x_{0}\right) \leq w(x)\right\}$ we have

$$
p \cdot \frac{d}{d t}\left(r_{x_{0} i}(0)\right)=c_{i}\left(x_{0}\right) \quad \text { for } i=1,2, \cdots, l+1
$$

Since $r_{x_{0} i}(t)$ are independent, we obtain that $\left\{\nabla w\left(x_{0}\right)\right\}$ is a subset in the $n-$ $(l+1)$ dimensional space. We have that

$$
\begin{aligned}
& \operatorname{meas}_{n}\{\nabla w(x): x \in S \cap\{\Gamma w=w\}\} \\
& \quad \leq \operatorname{meas}_{n}[\{x \in S \cap\{\Gamma w=w\}\} \times\{\nabla w(x)\}]
\end{aligned}
$$

From

$$
\operatorname{dim} S+\operatorname{dim}\{\nabla w\}=l+(n-l-1)=n-1<n
$$

and the boundedness of $\|\nabla w(x)\|$ and of S, we conclude that

$$
\operatorname{meas}\{\nabla w(x) \mid x \in S \cap\{\Gamma w=w\}\}=0
$$

which implies that

$$
-\inf _{\bar{\Omega}} w \leq 0
$$

which, in turn, allows us to see that $w \geq 0$ or $u \geq v$. In a similar way, we can prove that

$$
u \leq v
$$

Thus $u=v$. This completes the present proof.
For the Monge-Ampere equation, we have the following corollary
Corollary 1 Suppose that

$$
\begin{gathered}
\operatorname{det}\left(D^{2} u(x)\right)=f(x) \quad x \in \Omega \\
u(x)=g(x) \quad x \in \partial \Omega
\end{gathered}
$$

has a convex solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$, and suppose that

$$
\begin{gathered}
\operatorname{det}\left(D^{2} v(x)\right)=f(x) \quad x \in \Omega \backslash S, \\
v(x)=g(x) \quad x \in \partial \Omega
\end{gathered}
$$

has a convex solution $v \in C^{2}(\Omega \backslash S) \cap \operatorname{Lip}(\Omega) \cap C(\bar{\Omega})$. Also assume that $S \subset \subset \Omega$ satisfies

1. The dimension of S is l with $l<n$.
2. For every $x \in S$, there are $l+1$ independent C^{2} curves $\left\{r_{x i}\right\}$ through x, with $i \in\{1,2, \cdots l+1\}$, such that $v\left(r_{x i}\right) \in C^{1}$.

Then v is in C^{2}, satisfies the above equations in Ω, and $u(x)=v(x)$.
Remark It is straight forward to prove this Corollary the above equation with a ∇u term added.

References

[1] R. Beyerstedt, Removable singularities of solutions to elliptic MongeAmpére equations, Math. Z. 208 (1991), no. 3, 363-373.
[2] L. Caffarelli, A note on the degeneracy of convex solutions to MongeAmpere equation, Comm. Partial Diff. Eqns., 18(1993), 7-8, 1213-1217.
[3] Dong Guang-chang, Second Order Linear Partial Differential Equations, Zhejiang University Press 1992.
[4] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung rt $s^{2}=1$, Math. Ann. 129 (1955), 330-344.
[5] Schulz and Wang, Isolated Singularities for Monge-Ampére Equations, proceeding of AMS, vol 123, No 12(1995), 3705-3708.

Lihe Wang
Department of Mathematics, University of Iowa
Iowa City, IA 52242, USA
E-mail address: lwang@math.uiowa.edu
Ning Zhu
Department of Mathematics, Suzhou University
Suzhou 215006, China

[^0]: * 1991 Mathematics Subject Classifications: 35B65.

 Key words and phrases: Nonlinear PDE, Monge-Ampere Equation, Removable singularity. (C) 1999 Southwest Texas State University and University of North Texas.

 Submitted March 17, 1998. Published February 17, 1999.
 Partially supported by NSF grant DMS-9801374 and a Sloan Foundation Fellowship

