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Removable singular sets of fully nonlinear elliptic

equations ∗

Lihe Wang & Ning Zhu

Abstract

In this paper we consider fully nonlinear elliptic equations, including
the Monge-Ampere equation and the Weingarden equation. We assume
that

F (D2u, x) = f(x) x ∈ Ω ,

u(x) = g(x) x ∈ ∂Ω

has a solution u in C2(Ω) ∩ C(Ω̄), and

F (D2v(x), x) = f(x) x ∈ Ω \ S ,

v(x) = g(x) x ∈ ∂Ω

has a solution v in C2(Ω\S)∩Lip(Ω)∩C(Ω̄). We prove that under certain
conditions on S and v, the singular set S is removable; i.e., u = v.

1 Introduction

Removability of singularities of solutions to elliptic equations has studied ex-
tensible. Known results include the fact that isolated singularities of bounded
harmonic functions are removable. Jörgens [4] stated the related result that
the isolated singularity of the Monge-Ampere equation, in two dimensions, is
removable if the solution is C1 along a curve passing though the singularity.
Jörgens’ result was extended in 1995 by Beyerstedt [1] who considered isolated
singularity for general equations in n-dimensions.

In this paper, we use rather elementary tools to prove removability of singular
sets in arbitrary dimensions . Our result for the Monge-Ampere equation is
optimal, as shown by the examples in [2].
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The Maximum Principle. In this paper, we use a generalized version of the
Aleksandroff Maximum Principle (see Lemma 2 below). Let us start out with
the following lemma.

Lemma 1 Let B = {x : Γv(x) = v(x)}, where

Γu(x) = sup{w(x) : w is convex and w ≤ v on Ω̄} .

If v ∈ Lip(Ω) and v|∂Ω ≥ 0, then {p : |p| < M/D} is contained in the set

{p : p is normal of the tangent plane of z(x) = v(x) at some x0 ∈ B} .

Proof. For each p satisfying |p| ≤M/D, suppose that v take its minimum at
x0, and v(x0) = −M . Consider the plane π defined by

xn+1 = −M + p · (x− x0) .

When x ∈ ∂Ω, we have

xn+1 ≤ −M + |p · (x− x0)|

≤ −M + |p|D ≤ 0 .

But min partialΩ v(x) ≥ 0, so that, −M ∗ p · (x−x0)|∂Ω ≤ v(x)|∂Ω. We can take
M0 ≤ −M such that for all x ∈ Ω̄ we have

M0 + p · (x − x0) ≤ v(x)

and for all M ′ > M0, there exist x1 ∈ Ω̄, such that

M ′ + p · (x1 − x0) > v(x1) .

We can also prove that the set

G = {x :M0 + p · (x− x0) = v(x)}

satisfies G ⊂ B. In fact, if there is a point y ∈ G with y /∈ B, then Γv(y) <
v(y) = M0 + p · (y − x0). The set G1 = {y : Γv(y) < v(y), y ∈ Ω̄} is open in Ω̄.
Since v(y) ≥ v(y), y ∈ G1, we can take

Γ′v(x) =

{
Γv(x) x /∈ G1
M0 + p · (x − x0) x ∈ Ḡ1 .

Then Γ′v is convex, and Γ′v ≤ v,Γ′v(x) > Γv(x) for x ∈ G1, which is a
contradiction to the definition of Γv. Therefore, G ⊂ B and the present proof
is complete.

Lemma 2 For u ∈ Lip(Ω), u|∂Ω ≥ 0, and minΩ̄ u =M < 0, there is a constant
C depending only on the domain Ω and n, such that

−min
Ω̄
u ≤ C

[( ∫
B\S
detD2u(x) dx

)1/n
+
(
meas{∇u(x)|x ∈ S ∩B}

)1/n]
,

where B is the set {x : Γu(x) = u(x)}, S = {x : D2u(x)does not exist }, and
∇u(x0) denotes all p ∈ Rn satisfying

p · (x− x0) + u(x0) ≤ u(x) .



EJDE–1999/04 Lihe Wang & Ning Zhu 3

Proof. By Lemma 1, we have

−min
Ω̄
u ≤

D

K
1/n
n

[meas{p : p is normal to the tangent plane at x ∈ {Γu = u}}]1/n

=
D

K
1/n
n

(
meas{∇u(x) : x ∈ {Γu = u}, D2u(x) exits }

)1/n
+meas{∇u(x) : x ∈ {Γu = u}, D2u(x) does not exist }1/n

=
D

K
1/n
n

( ∫
{Γu=u}\S

detD2u dx
)1/n

+
D

K
1/n
n

(
meas{∇u(x) : x ∈ {Γu = u}, D2u(x) does not exist}

)1/n

where D = dim Ω, and Kn is the volume of the unit ball in R
n.

2 Main Theorem

Using the Lemmas 1 and 2, we can prove the following theorem.

Theorem 1 Let F (A, x) be a function defined on a convex cone C of symmetric
matrices Sn, which satisfies the following conditions:

1. For A and B in C with A > B, F (A, x) > F (B, x).

2. The equation

F (D2u(x), x) = 0 x ∈ Ω ,

u(x) = g(x) x ∈ ∂Ω

has a solution u in C2(Ω) ∩ C(Ω̄).

Also assume that v ∈ C2(Ω \ S) ∩ Lip(Ω) ∩ C(Ω̄) is a solution to

F (D2v(x), x) = 0 x ∈ Ω \ S ,

v(x) = g(x) x ∈ ∂Ω ,

where S ⊂⊂ Ω satisfies

1. The dimension of S is l with l < n.

2. For every x ∈ S, there are l + 1 independent C2 curves {rxi} through x,
with i ∈ {1, 2, · · · , l+ 1}, such that v(rxi) ∈ C1.

Then v is in C2, satisfies the equation in Ω, and u(x) = v(x).
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Proof. Let w(x) = u(x) − v(x). Then w(x)|x∈∂Ω = 0. Suppose minΩ̄w < 0.
Then

− inf
Ω̄
w ≤ C

[ ∫
{Γw=w}\S

det(D2w(x)) dx

]1/n

+C [meas{∇w(x) : x ∈ S ∩ {Γw = w}}]1/n .

If there is x0 ∈ {Γw = w}\S such that det(D2w(x0)) 6= 0, then by the convexity
of Γw,D2w(x0) ≥ D2Γw(x0) ≥ 0. So D2w(x0) > 0, or D2u(x0) > D2v(x0). By
the structure conditions on F we have

0 = F (D2u(x0), x0) > F (D
2v(x0), x0) = 0

which is a contradiction.
Next, for x0 ∈ S∩{Γw = w}, there are l+1 independent C2 curves through

x0 satisfying v(rx0i(t)) ∈ C
1, with i = 1, 2, · · · , l+1. Without loss of generality,

we can assume that rx0i(0) = x0 for i = 1, 2, · · · , l + 1. Then for any p ∈
{∇w(x0)} = {p : w(x0) + p · (x − x0) ≤ w(x)} we have

p ·
d

dt

(
rx0i(0)

)
= ci(x0) for i = 1, 2, · · · , l+ 1 .

Since rx0i(t) are independent, we obtain that {∇w(x0)} is a subset in the n −
(l + 1) dimensional space. We have that

measn{∇w(x) : x ∈ S ∩ {Γw = w}}

≤ measn[{x ∈ S ∩ {Γw = w}} × {∇w(x)}] .

From
dimS + dim {∇w} = l + (n− l − 1) = n− 1 < n ,

and the boundedness of ‖∇w(x)‖ and of S, we conclude that

meas{∇w(x)|x ∈ S ∩ {Γw = w}} = 0 ,

which implies that
− inf
Ω̄
w ≤ 0 ,

which, in turn, allows us to see that w ≥ 0 or u ≥ v. In a similar way, we can
prove that

u ≤ v .

Thus u = v. This completes the present proof.

For the Monge-Ampere equation, we have the following corollary

Corollary 1 Suppose that

det(D2u(x)) = f(x) x ∈ Ω ,

u(x) = g(x) x ∈ ∂Ω
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has a convex solution u ∈ C2(Ω) ∩ C(Ω̄), and suppose that

det(D2v(x)) = f(x) x ∈ Ω \ S ,

v(x) = g(x) x ∈ ∂Ω

has a convex solution v ∈ C2(Ω\S)∩Lip(Ω)∩C(Ω̄). Also assume that S ⊂⊂ Ω
satisfies

1. The dimension of S is l with l < n.

2. For every x ∈ S, there are l + 1 independent C2 curves {rxi} through x,
with i ∈ {1, 2, · · · l+ 1}, such that v(rxi) ∈ C1.

Then v is in C2, satisfies the above equations in Ω, and u(x) = v(x).

Remark It is straight forward to prove this Corollary the above equation with
a ∇u term added.
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