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Implicit quasilinear differential systems:

a geometrical approach ∗

Miguel C. Muñoz-Lecanda & N. Román-Roy

Abstract

This work is devoted to the study of systems of implicit quasilinear dif-
ferential equations. In general, no set of initial conditions is admissible for
the system. It is shown how to obtain a vector field whose integral curves
are the solution of the system, thus reducing the system to one that is
ordinary. Using geometrical techniques, we give an algorithmic procedure
in order to solve these problems for systems of the form A(x)ẋ = α(x)
with A(x) being a singular matrix. As particular cases, we recover some
results of Hamiltonian and Lagrangian Mechanics. In addition, a detailed
study of the symmetries of these systems is carried out. This algorithm
is applied to several examples arising from technical applications related
to control theory.

1 Introduction

Implicit systems of differential equations appear in many theoretical develop-
ments in Physics (such as analytical mechanics, relativistic models or gauge
theories), as well as in technical applications (for instance, circuit theory, net-
work analysis, large-scale interconnected systems or social-economic systems).
Systems of this kind appear for two reasons:

• There exist some constraints relating the variables and their derivatives up
to a certain order. Thus the number of degrees of freedom of the system
is often less than the number of variables.

• The system has some kind of physical symmetry: there is a group of
symmetries acting on the phase space of the system and some functions
(the constraints) are invariant.
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The outstanding feature that distinguishes this kind of differential system is
that the equations are not written in normal form. That is to say, all the highest
order derivatives of the variables are not isolated as functions of the lower ones.
Hence the general form of such a system (of order r) is F(t,x,x′, . . . ,x(r)) = 0.
In this paper we only deal with systems of the form

∑
j

Aij(x,x
′, . . . ,x(r−1))xj

(r)
= αi(x,x

′, . . . ,x(r−1))

where Aij is a matrix. Taking into account that every system of order r can be
transformed into another of first order, only systems of the form

∑
j

Aij(x)ẋ
j = αi(x) or simply A(x)ẋ = α(x) (1)

need to be considered. The question then is to find the functions xj(t) which
give the evolution of the variables.

If the matrix A is regular, the system is reduced to the normal form by mul-
tiplying both members of the equation by the inverse matrix A−1. In this case,
the system is given by a vector field; that is, an ordinary system of differential
equations in the normal form, and the solutions are the integral curves of this
vector field.

In this paper, we assume that the matrix A is singular and has constant rank.
Therefore, there is no vector field representing the system, and it cannot be
integrated analytically or numerically. This fact creates a new set of problems.
In fact, to obtain an appropriate geometric solution to the problem, it is stated
in terms of a differentiable manifoldM acting as the phase space of the system.
Then the above equations represent the coordinate form of the general problem.

As a consequence of the singularity of the matrix A, the system is possible
incompatible: not every set of values of the variables is admissible as initial
conditions for the system. Therefore, in order to solve the system, the first step
of the procedure must be to identify the set of admissible initial conditions;
these are termed “primary” constraints. This is not the end of the problem
however, since another consistency condition is required. In fact, the evolution
of the variables is restricted within the set of initial conditions. In other words,
for every value of the evolution parameter t, the functions x(t) have to take on
values in that set. Hence, the problem is not solved until a set of admissible
initial conditions verifying this consistency condition is found. We will call
this the final constraint submanifold. In order to transform the system into an
ordinary one, a vector field tangent to this submanifold must be found such that
its integral curves are the solutions of the initial system. This is the geometrical
interpretation of the consistency condition. Furthermore, a problem of non-
uniqueness of the solution (which is closely related to the identification of the
true physical states of the system) can also appear.
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In summary, there are two different problems. The first consists in finding
the final constraints submanifold, and the second in transforming the system
into a vector field tangent to this submanifold.
Solutions to these problems have been found by various means. In theoretical

mechanics, these kinds of equations are called “singular”, and the development
of Analytical Mechanics provides better means of obtaining equations of motion
of mechanical systems in which the true degrees of freedom are clearly identified,
and the corresponding system of differential equations are non-singular (i.e.,
regular) (see, for instance, [12]). In theoretical physics, mechanical systems
described by means of singular equations are both usual and important. Dirac
and Bergmann [11], [2], [10] were the first to make an analytical study of such
systems, although the greatest advances were made when the techniques of
Differential Geometry were applied for describing mechanical systems [1]. The
works of Gotay et al [15], [16], [17] and many others (see, for instance, [5],
[19], [31] and all the references quoted therein) have been devoted to solving
the problem of the compatibility and consistency of the equations of motion
for singular mechanical systems, both in the Hamiltonian and the Lagrangian
formulation, including systems of a higher order.
Nevertheless, equations of motion for mechanical systems are particular cases

of differential equations, since they are obtained from a variational principle
and start from a selected function (the Lagrangian or the Hamiltonian) which
contains all the dynamical information of the system. As a consequence, the
functions αi and the matrix A are closely related to that dynamical function.
In geometrical terms, A is the matrix representation of a closed 2-form and αi
are the component functions of a closed 1-form.
The most general case consists in having any matrix of functions and any

1-form (not necessarily closed). This situation arises in many technical appli-
cations, as mentioned above. Initial attempts at solving the problems posed
by these systems were aimed at finding a method of “inversion” for the singu-
lar matrix of the system using analytical and algebraic methods. Thus in [4]
equations like (1) with A and α constant matrices are studied, while in [37]
a generalization of this case is considered, where these matrices depend on a
small parameter and are singular for some values of this parameter. Questions
on singular systems in control theory are also analyzed in [9],[40], [7] and [39].
Numerical methods relating to the numerical treatment of ordinary differential
equations have likewise been developed (see, for instance, [22]).
The results thus obtained however are not completely satisfactory. Many

questions concerning the method and the solution remain unclear. It is for this
reason that some authors have investigated the geometrical treatment of these
problems. So, [38] is a work where a general geometric framework for certain
kinds of implicit equations is given, and a more precise formulation is developed
in [21] for these systems, as well as a reduction algorithm for these systems.
Questions related to the existence and uniqueness of solutions are treated in
[33] (which is a more geometric treatment of previous works of the authors,
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such as [34] and [32]). The existence of symmetries and constants of motion, as
well as integrability conditions, for these singular systems are analyzed in [25],
[29] and [26]. A different geometric framework is given in [6] by studying normal
canonical forms for singular systems. In [20], Gràcia and Pons have pioneered
the study of these systems, in the most general situation, from a geometric point
of view. Using fiber bundles techniques and the concept of sections along a map,
they have developed a geometrical framework which enables us to describe these
generalized singular systems, and to obtain therefrom the theoretical mechanical
models as a particular case (even for higher order theories). Finally, [18] is a
brief review of some of these problems and techniques.
In this paper, our goal is to use geometrical techniques to study implicit

systems of the kind mentioned above, in addition to some of their applications.
Within this context, our objectives could be stated more precisely as:

1. To give a simple geometrical description of these systems, including the
study of symmetries and the analysis of the mechanical systems as a par-
ticular case (“simple”, in the sense that the geometrical objects involved
are as easy as possible). Matrix A is understood as the representation of
a bilinear form.

2. To clarify and solve the problems of the compatibility and consistency of
implicit differential equations dealt with.

3. To develop a detailed algorithm which gives the solution to the problem.
This algorithm is the generalization of a previous one used for Hamiltonian
and Lagrangian systems.

4. To apply the obtained results to systems arising from particular problems.

In general, the algorithm we develop is easier to implement than the ana-
lytical or algebraic methods, and our geometric treatment is simpler than those
referred to above.
The paper is organized as follows: In section 2, we establish some preliminary

algebraic results which are then used in section 3, which in turn is devoted to
the study of the differentiable theory, and where we describe the algorithmic
procedure which solves the problems of compatibility and consistency, and which
constitutes the main part of the work. In section 4, we study symmetries for
implicit differential equations. Section 5 is devoted to explaining specific cases
of first and second-order implicit differential equations recovering as particular
cases, some results of the mechanics of singular systems. The final section
contains a detailed analysis of some examples of Control theory.
All the manifolds and maps are assumed to be real, and C∞ and the notation

is the usual one (for example, see [1]). In particular, X(M) and Ωp(M) are
respectively the C∞(M)-modules of differentiable vector fields and p-forms on
M .
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2 Algebraic theory

The general case

Let E be a finite dimensional real vector space with dim E = n and T a covariant
2-tensor on E (that is a bilinear form). Contraction with this tensor defines the
following maps, which we call left and right contractions respectively:

<T : E → E∗

v 7→ <T (v) :u 7→ T (v, u)
$T : E → E∗

v 7→ $T (v) :u 7→ T (u, v)

Both are R-linear. If T is a symmetric ( or antisymmetric) tensor then <T = $T
( or <T = −lT ). We will write <(v)T and $(v)T for the images of v by
<T and $T respectively. It is easy to prove that ker <T = (Im$T )` and
ker $T = (Im<T )`, then dim (ker <T ) = dim (ker $T ). (Let us recall that if
S is a subspace of E, then S` := {α ∈ E∗ | α(v) = 0, ∀v ∈ E} is the incident
subspace of S. The same holds for a subspace V of E∗). If both rT and $T are
injective then we say that T has no radical.

Let {e1, . . . , en} be a basis of E and {ω1, . . . , ωn} its dual basis. If the
expression of T is T =

∑
i,j aijω

i ⊗ ωj and A is the matrix (aij), then the

matrices of <T and lT in those bases are tA and A respectively.
Let α ∈ E∗ be a linear 1-form. We are interested in the study of the following

equations:

$(v)T = α (2)

<(v)T = α (3)

That is: is there any vector v ∈ E such that <T (v) = α (or $T (v) = α for the
second)?.

Obviously the necessary and sufficient condition for these equations to have
any solution is that α ∈ Im$T and α ∈ Im<T , respectively.
The following proposition transforms this obvious condition into a more

suitable one:

Proposition 1 1. The necessary and sufficient condition for $(v)T = α to
have any solution is that ker $T ⊂ ker α.

2. The necessary and sufficient condition for <(v)T = α to have any solution
is that ker <T ⊂ ker α.

Proof.
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1. Condition is necessary. In fact, suppose u ∈ E verifies <T (u) = α, then
for any e ∈ ker $T we have:

α(e) = <T (u)(e) = T (e, u) = 0

Condition is sufficient. If ker T ] ⊂ ker α then α ∈ (ker $T )` = Im <T
and the equation has a solution.

2. The same as above. ♦

Comments.

• In the given basis of E and E∗, the matrix expressions of (2) and (3) are

A


 λ

1

...
λn


 =


 α1...
αn


 ; tA


 λ

1

...
λn


 =


 α1...
αn




respectively, where v =
∑
i λ
iei, α =

∑
i αiω

i and tA is the transpose of
A.

• If dim (ker <T ) = dim (ker $T ) = 0 , then the equations (2) and (3) have
a single solution for every α.

• If dim (ker <T ) = dim (ker $T ) > 0 , and the equations (2) and (3) have
a solution, then it is not single. The difference of two solutions of (2) is an
element of ker <T and two solutions of (3) differ in an element of ker $T .

• If T is symmetric or antisymmetric then both equations are the same
(except for a sign in the second case).

• The tensor T defines another T ′ by means of the formula T ′(u, v) =
T (v, u). If A is the matrix of T in a basis, then tA is the matrix of
T ′ in the same basis. Hence, the problem <(v)T = α is the same as
$(v)T ′ = α. From now on we will consider the “left” problem.

Restriction to subspaces

A problem we need to solve is the following: Let H be a subspace of E, is there
any v ∈ H such that

$(v)T = α (4)

where α ∈ E∗?.
In order to solve this we require the following

Lemma 1 If H is a subspace of E then

1. <T (H) = (H⊥)`
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2. $T (H ) = (
⊥H )`

where H⊥ := {u ∈ E | T (v, u) = 0 , ∀v ∈ H} is the right orthogonal subspace
of H and ⊥H := {u ∈ E | T (u, v) = 0 , ∀v ∈ H} is the left orthogonal subspace
of H.

Proof.

1. We have that u ∈ (<T (H))` if and only if T (v, u) = 0 for every v ∈ H and
this is equivalent to saying that u ∈ H⊥. This shows that (<T (H))` =
(H⊥) and, since we are working with finite dimensional spaces, this proves
the assertion.

2. The proof is much the same as the last one. ♦

Now, in a way similar to the above proposition, we can prove that:

Proposition 2 The necessary and sufficient condition for the existence of any
v ∈ H such that equation (4) holds is that α ∈ (H⊥)`.

3 Differentiable theory

Statement of the problem and compatibility conditions

Let M be a n-dimensional differentiable manifold and T a 2-covariant tensor
field on M ; that is, a section of the bundle T∗M ⊗ T∗M →M .
Contraction with this tensor defines the following C∞(M)-module homo-

morphisms:

<T : X(M) → Ω1(M)
X 7→ <T (X) :Y 7→ T (X,Y )

$T : X(M) → Ω1(M)
X 7→ $T (X ) :Y 7→ T (Y,X)

We will write $(X )T and <(X)T for the images of X by <T and $T respec-
tively.
Let (U, xi) be a local system in M . Then, in the open set U we have

T =
∑
i,j

aijdx
i ⊗ dxj

where aij = T
(
∂
∂xi
, ∂
∂xj

)
. If we denote by A = (aij) the matrix of the coordi-

nates of T in this local system, then

<T =
∑
i,j

aijdx
i ⊗ dxj , $T =

∑
ij

ajidx
i ⊗ dx j
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Notice that ker <T = (Im$T )`, and ker $T = (Im<T )`. Consequently, for
any m ∈ M , dim ker (<T )m = dim ker (lT )m. If ker (<T )m = ker ($T )m = 0
for every m ∈M , we say that T has no radical.
dim ker (<T )m is a locally constant function onM . We suppose it is constant

everywhere in M .

Assumption 1 dim ker (<T )m does not depend on the point m ∈M .

Given a 2-covariant tensor field T on M and a differentiable 1-form α ∈
Ω1(M), we can consider the following equations for a vector field X ∈ X(M):

$(X )T = α , <(X )T = α

If T has no radical, then both equations have a single solution, since (<T )m and
($T )m are isomorphisms, for any m ∈ M . Observe that, as in the algebraic
case, given T , we can define another T ′ by means of T ′(X,Y ) := T (Y,X). Hence
the equation <(X)T = α is the same as $(X )T ′ = α.
Following from the above, henceforth we only consider the equation$(X )T =

α, and we call it a linear singular differential system; that is, a LSDS.

Given the LSDS $(X )T = α on the manifoldM , the problem we try to solve
is the following: to find a submanifold Pf ⊂ M and a vector field X ∈ X(M)
such that

1. $(X )T =
Pf
α (the symbol =

N
means an equality which holds on the points

of N for any closed submanifold N ⊂M).

2. X is tangent to Pf .

3. Pf is maximal with respect to conditions (1) and (2).

Observe that if (Pf , X) is the solution of the problem, then the integral curves
of X are tangent to Pf , and the tangent vectors to these curves verify the
equation at any point of the curves. Notice that when we obtain a solution to
the problem, we can calculate the integral curves of the vector field by analytical
or numerical methods. In general the vector field X is not unique.

As we have seen in section 2, the system has no solution anywhere in M ,
but only on the points m ∈M satisfying αm ∈ Im (<T )m. So we have:

Definition 1 The set

P1 = {m ∈M | αm ∈ Im (<T )m}

is called the primary constraint submanifold associated to the equation $(X )T =
α.
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It is clear that P1 is the maximal subset of M in which this equation has
solution. In other words, only the points of M belonging to P1 are admissible
as initial conditions of the equations. For this reason, P1 is sometimes called
the submanifold of initial conditions.

Assumption 2 P1 is a closed submanifold of M .

(Let us recall that a closed submanifold of M is a closed subset that is itself
a manifold. For instance, if ξ1, . . . , ξh are independent differentiable functions
on M , then the set {m ∈M ; ξi(m) = 0 , i = 1, . . . , h} is a closed submanifold
of M).

Proposition 3 P1 = {m ∈M | ker ($T )m ⊂ ker αm}

Proof. (=⇒) If m ∈ P1, then αm ∈ Im (<T )m, then, according to proposi-
tion 1, we have that ker ($T )m ⊂ ker αm .

(⇐=) If m ∈ M and ker (lT )m ⊂ ker αm then αm ⊂ (ker ($T )m)` =
Im (<T )m , and therefore the equation has a solution. ♦

Comments.

• If (U, xi) is a local system on M , T =
∑
aijdx

i ⊗ dxj and α =
∑
αidx

i,
then the local expression of the system $(X )T = α is

A


 λ

1

...
λn


 =


 α1...
αn




where X =
∑
λi

∂
∂xi
is the vector field we are looking for and A is the

matrix (aij).

• If T has no radical, that is dim ker (<T )m = 0 for every m ∈ M , then
the system is compatible everywhere in M , and the solution is unique.
This means that P1 = M and there is only one vector field X which is a
solution at every point of M .

• If T has radical, that is dim ker (<T )m > 0 for every m ∈ M , then the
system has a solution only on the points of P1. Moreover, the solution is
not unique and the difference between two solutions is in ker <T := {X ∈
X(M) | T (X,Y ) = 0 , ∀Y ∈ X(M)}. Hence, if X0 is a solution of the
system, then X0 +ker <T is the set of solutions at this level of the study.

• Sometimes we have an LSDS on a manifold M , but we are only interested
in its restriction to a submanifold M0 ⊂ M (for instance, when dealing
with singular Hamiltonian systems). In this case, the primary constraints
submanifold is P1 ∩M0. Then, we suppose that M0 is the zero set of a
finite family of functions on M , and the study continues in the same way.
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• Since we have assumed that P1 is a closed submanifold of M , we can
suppose that the vector field solutions of the system are defined everywhere
in M , although they are solutions only on the points of P1.

It is worth pointing out that the submanifold P1 can be defined as the zero
set of a family of functions. In fact, we have:

Corollary 1 P1 = {m ∈M | α(Z)m = 0 ∀Z ∈ ker $T}.
If Z ∈ ker $T , then the function ξ(1) := α(Z) is the primary constraint

associated to Z.

Stability conditions

Suppose that dim P1 6= 0 (if this is not the case, P1 is a set of isolated points
and the differential system has no solution) and let X0 + ker <T be the set of
solutions of the system on the submanifold P1.
The vector field solutions are solutions of the system only on the points of

P1. Then the integral curves of these vector fields must be contained in P1.
That is, these vector fields must be tangent to P1. As a consequence of this
fact, new conditions on the solutions arise. Hence we define:

Definition 2 The set

P2 := {m ∈ P1 | ∃Y ∈ ker <T , (X0 + Y )(m) ∈ TmP1}

is called the first generation secondary constraints submanifold associated to the
equation $(X )T = α.

But the submanifold P1 is defined as the zero set of a family of functions,
the primary constrains. Hence, the condition for a vector field to be tangent to
P1 is that its action on this family of functions goes to zero on the points of P1.
That is:

P2 = {m ∈ P1 | ∃Y ∈ ker <T , (X0 + Y )mα(Z) = 0 , ∀Z ∈ ker $T}

Now, in order to give another characterization of P2, we need to introduce
some notation. We denote by X(N) the subset of X(M) made of the vector
fields tangent to N . Then

X(N)⊥ := {X ∈ X(M) | T (Y,X) =
N
0 , ∀Y ∈ X(N)}

is the right orthogonal submodule of X(N) with respect to T . More precisely,
for any m ∈ N we write

TmN
⊥ := {u ∈ TmM | Tm(v, u) = 0 , ∀v ∈ TmM |N}
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then the vector fields of X(N)⊥ are the sections of the subbundle of TM |N
whose fibers are the subspaces TmN

⊥. In the same way, we can define

⊥X (N) := {X ∈ X (M) | T (X,Y ) =
N
0 , ∀Y ∈ X(N)}

which is called the left orthogonal submodule of X(N) with respect to T .
The following theorem gives a characterization of P2.

Theorem 1

P2 = {m ∈ P1 | α(Z)m = 0 , ∀Z ∈ X(P1)
⊥}

Proof. Let C = {m ∈ P1 | α(Z)m = 0 , ∀Z ∈ X(P1)⊥}. We have

1. P2 ⊂ C.

If m ∈ P2, there exists Y ∈ ker <T such that (X0 + Y )m ∈ TmP1. If
Z ∈ X(P1)⊥, we have:

α(Z)m = (<T (X0 + Y )(Z))m = (T (X0 + Y, Z))m = 0

then m ∈ C.

2. C ⊂ P2.

If m ∈ C and Z ∈ X(P1)⊥, then α(Z)m = 0, hence we have that αm ∈
(TmP

⊥
1 )
` = <T (TmP1). Hence, the system $(v)Tm = αm has solution

in TP1 and therefore m ∈ P2. ♦

Definition 3 If Z ∈ X(P1)⊥, the function ξ(2) := α(Z) is the secondary con-
straint associated to Z.

At this point we find ourselves in the same situation as at the end of the
last subsection. Hence the stability condition must be imposed again. The
procedure is iterative and we are going to analyze the general situation.
Consider the following sequence of subsets of M defined inductively:

P0 := M

P1 := {m ∈M | α(Z)m = 0 , ∀Z ∈ ker $T}

Pi+1 := {m ∈ Pi | α(Z)m = 0 , ∀Z ∈ X(Pi)
⊥} (i ≥ 1)

and the following

Assumption 3 The subsets Pi (for all i ≥ 1) are closed submanifolds of M .

Theorem 2 The equation $(X )T = α has solution tangent to Pk if and only
if

〈X(Pk)
⊥, α〉m = 0 , ∀m ∈ Pk
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Proof. (=⇒) Let X ∈ X(Pk) be a solution of the equation. If Z ∈ X(Pk)⊥

and m ∈ Pk, we have:

α(Z)m = ($(X )T )(Z )m = T (X ,Z ))m = 0

(⇐=) If the condition holds, and m ∈ Pk, then we have that αm ∈
(TmP

⊥
k )
` = <T (TmPk). Hence the equation has solution at m. ♦

Comments.

• The sequence {Pi} stabilizes necessarily. That is, there exists k ≥ 0 such
that Pk = Pk+1, because dim M is finite. This condition implies that
theorem 2 holds for Pk.

• If Pk = Ø or dim Pk = 0, then the system has no solution.

• If dim Pk > 0, then the system is compatible and the equation $(X )T =
α has solution tangent to Pk. In this case we call Pk the final constraints
submanifold and denote it by Pf . If X0 is a solution, then the set of
solutions is X0 + ker rTf , where

ker rTf := {Z ∈ X(Pf ) | <T (Z) =
Pf
0}

In some cases (classical analytical mechanics, linear circuits,...), we have
that ker rTf = {0}. Then the solution is unique.

In other cases (relativistic mechanics, electromagnetism,...), the solution
is not unique. The non uniqueness of the solution is called (in Physics)
gauge freedom, the elements of ker rTf are the gauge fields and two different
solutions are called gauge equivalent vector fields (see, for instance, [3] for
more details).

Notice that the last theorem characterizes Pf , but does not give the tangent
vector field X . In order to apply the algorithm for obtaining the couple (Pf , X)
we will proceed as follows:

• We calculate a local basis for ker <T . Let {Z1, . . . , Zh} be this basis. Then
P1 is defined by α(Zi) = 0, for I = 1, . . . , h. These are the compatibility
conditions.

• If X0 is a solution of the system on P1, then the general solution on P1 is
X = X0 +

∑
j fjZj , with fj arbitrary functions.

• In order to obtain P2, we apply X to the functions α(Zi) and we obtain
the system

X0(α(Zi)) +
∑
j

fjZj(α(Zi)) = 0 , i = 1, . . . , h
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The equations with Zj(α(Zi)) = 0 for every j leads to new constraints
given by X0(α(Zi)) = 0. They are the stability conditions defining P2.
The other equations fix conditions on the functions {fj}. That is, they
define a submodule of ker <T .

• Now, we proceed in the same way on P2, with the remaining functions
fj in the general solution and the new constraints. The algorithm stops
when we do not obtain new constraints.

This procedure is a generalization of the one developed in references [31]
and [30], where the particular cases of Hamiltonian and Lagrangian mechanics
is studied; that is, when the tensor T is antisymmetric and closed under the
action of the exterior differential operator (see also Sections 5 and 5). We call
it the Stabilization General Algorithm, or, in abbreviation, SGA.

Remark. Observe that in the first step of the algorithm (compatibility con-
ditions), we transform the initial implicit differential equation Aẋ − α = 0
into a differential algebraic equation (DAE), which is given by the vector field

X0 +
∑h
j=1 fjZj and the constraints 〈Zj , α〉 = 0 defining P1 (Z

1, . . . , Zh is a

basis of ker <T and f1, . . . , fh are free). Then we apply the algorithm (stabi-
lization condition) to this DAE to get Pf and the reduced equation on it.
The so-called index of this DAE (see, for instance, [23] or [13], and refer-

ences quoted therein) coincides with the number of steps needed to stabilize the
system, and to obtain Pf and the reduced equation, and hence it is equal to
f − 1.

4 Symmetries

Symmetries of a singular differential system

Let $(X )T = α be a singular differential system onM , which is assumed to be
compatible, Pf its final constraint submanifold, and S := {X0 + ker rTf } the
set of solutions.

Definition 4 A symmetry of the system is a diffeomorphism ϕ:M →M such
that:

1. ϕ(Pf ) = Pf .

2. If X ∈ S, then ϕ∗X ∈ S.

(The symbols ϕ∗ and ϕ
∗ denote the push-forward and the pull-back defined

by the diffeomorphism ϕ [1]).
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In the classical study of symmetries of a regular Hamiltonian system (M,Ω, h)
(where Ω is a symplectic form and h is a smooth function called the Hamilto-
nian of the system), the symmetries are considered to be symplectomorphisms of
(M,Ω); that is, diffeomorphisms ϕ:M →M such that ϕ∗Ω = Ω. A distinction
is then made between symmetries of the system, which verify that ϕ∗Xh = Xh,
(where Xh is the Hamiltonian vector field associated to h), and symmetries of
the Hamiltonian, satisfying ϕ∗h = h. It is clear that every symmetry of the
Hamiltonian is a symmetry of the system, but not the converse, and a simple
example is a symplectomorphism ϕ such that ϕ∗h = h+ c (with c ∈ R), which
is not a symmetry of the Hamiltonian but a symmetry of the system (see, for
instance, [1] for more information on these topics).
In the present case, the situation is different because now M has no pre-

scribed geometric structure. Thus, we have to study methods in order to find
symmetries which preserve the elements defining our system; that is, T and α.
The results thus obtained are:

Theorem 3 Let ϕ:M →M be a diffeomorphism such that ϕ(Pf ) = Pf .

1. If ϕ∗T |Pf= T |Pf and ϕ
∗α |Pf= α |Pf , then ϕ is a symmetry of the

system.

2. If ϕ is a symmetry of the system and ϕ∗T |Pf= T |Pf , then ϕ
∗α |Pf= α |Pf

3. If ϕ is a symmetry of the system and ϕ∗α |Pf= α |Pf then T and ϕ
∗T

give equivalent systems (in the sense that they have the same solutions).

In order to prove these results, we require the following:

Lemma 2 If X ∈ X(M) and ϕ:M →M is a diffeomorphism, then

(ϕ∗ ◦$(ϕ∗X ))T = ($(X ) ◦ ϕ
∗)T

Proof. Let Y ∈ X(M), we have:

[(ϕ∗ ◦$(ϕ∗X ))T ]Y = (ϕ∗($(ϕ∗X )T ))Y = ($(ϕ∗X )T ))ϕ∗Y

= T (ϕ∗X,ϕ∗Y ) = (ϕ
∗T )(X,Y )

= [$(X )(ϕ∗T )]Y = [($(X ) ◦ ϕ∗)T ]Y

Proof of the theorem.

1. Consider X ∈ S, then

$(ϕ∗X )T |Pf= (ϕ
∗−1 ◦$(X )) ◦ ϕ∗)T |Pf= ϕ

∗−1α |Pf= α |Pf
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2. If X ∈ S, then $(X )T |Pf= α |Pf , therefrom

ϕ∗($(X )T |Pf ) = ϕ
∗α |Pf

and, furthermore

ϕ∗($(X )T |Pf ) = $(ϕ
−1
∗ X ) ◦ ϕ

∗T |Pf= $(ϕ
−1
∗ X )T |Pf= α |Pf

3. LetX be a solution of the system defined by T , that is, $(X )T |Pf= α |Pf .
Then, we have:

$(X )ϕ∗T |Pf= ϕ
∗$(ϕ∗X )T |Pf= ϕ

∗α |Pf= α |Pf

Therefore, X is also a solution of the system defined by ϕ∗T . But ϕ−1

also verifies the same properties, hence the converse is also true. ♦

Infinitesimal symmetries

Next we see how the above concepts can be interpreted in terms of vector fields,
which is to say the infinitesimal version of the concept of symmetry.

Definition 5 A vector field D ∈ X(M) is an infinitesimal symmetry of the
system iff

1. D is tangent to Pf .

2. If X ∈ S then L(D)X ∈ S; that is, L(D)X −X ∈ ker <T ( L(D) denotes
the Lie derivative with respect to the vector field D).

Observe that this definition is equivalent to saying that, if ϕt is a local
uniparametric group associated to D, then ϕt are symmetries in the sense of
definition 4.
In a way analogous to the above subsection, we first have the following

results:

Proposition 4 1. If X ∈ S and D ∈ X(M) is a vector field tangent to Pf
such that L(D)T = 0 and L(D)α = 0, then L(D)X |Pf∈ ker <T |Pf .

2. If D ∈ X(M) is an infinitesimal symmetry and L(D)T = 0, then L(D)α =
0.

Proof.

1. If X ∈ S then L(X)T |Pf= α |Pf . Therefore

0 = L(D)α |Pf= L(D)($(X )T ) |Pf
= $(L(D)X )T |Pf +$(X ) L(D)T |Pf= $(L(D)X )T |Pf
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2. If X ∈ S then L(X)T |Pf= α |Pf . Therefore

0 = L(D)α |Pf= L(D)($(X )T ) |Pf
= $(L(D)X )T |Pf +$(X ) L(D)T |Pf

♦

The main result in relation to this topic is the following:

Proposition 5 Let D ∈ X(M) be a vector field tangent to Pf satisfying that
L(D)T |Pf= 0 and L(D)α |Pf= 0. Then the local uniparametric groups {ϕt} of
D transform integral curves of vector field solutions of the system into integral
curves of vector field solutions.

Proof. Let m ∈ M and γ: [0, s]→ M be an integral curve of a vector field
solution, that is, γ(t) ∈ Pf , ∀t ∈ [0, s] and $(γ̇(t))T |γ(t)= α |γ(t).
Let {ϕt} be the local uniparametric group of D defined in a neighborhood

of m. Consider now the curve σ(t) := (ϕt ◦ γ)(t). We see that

$(σ̇(t))T |σ(t)= α |σ(t)

We have that σ̇(t) = ϕt∗γ̇(t), and using lemma 2 we obtain

[ϕ∗t ◦$(σ̇(t))]T = [ϕ∗t ◦$(ϕt∗ ◦$(ϕt∗γ̇(t))]T = ($(γ̇(t))(ϕ
∗
tT )

= $(γ̇(t))T = α |γ(t)

because T is invariant by ϕt. Then

($(σ̇(t))T = ϕ∗tα |γ(t)= α |σ(t)

because L(D)α = 0, hence α is invariant by ϕt. ♦

Comments.

• The vector fields D ∈ X(M) tangent to Pf , which transform integral
curve solutions of the system into integral curve solutions of the system,
are called gauge vector fields of the system.

• Observe that, if D ∈ ker <T |Pf , then α(D) |Pf= 0, since Pf is a subman-
ifold such that 〈X(Pf )⊥, α〉 = 0 and ker rTf |Pf⊂ X(Pf )

⊥. Therefrom,
if α is a closed form and D ∈ ker rTf |Pf , then L(D)α = 0. Hence, if
D ∈ ker rTf |Pf , L(D)α = 0 and α is closed, then D is a gauge vector
field.

• Furthermore, if T ∈ Ω2(M); that is, an antisymmetric tensor; and α is
closed, then D ∈ ker rTf |Pf if and only if L(D)T |Pf= 0, and all the
vector fields belonging to ker rTf |Pf are gauge vector fields.
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• In this last case, ker rTf |Pf parametrizes the set of vector fields which are
solutions of the system, and the local uniparametric groups of these fields
parametrize the set of integral curve solutions passing through a point.
This is the case of Hamiltonian mechanics.

5 Particular cases

Presymplectic problems

In these cases, the general situation is the following: M is a n-dimensional
manifold, α ∈ Ω1(M) (is a 1-form) and T is a closed 2-form (i.e., T ∈ Ω2(M)
with dT = 0) such that rank T < n; that is, T is not regular.
These kind of systems have been studied in recent years. The problem

of the compatibility and consistency of the equations of motion is solved by
applying different but equivalent methods, such as the Presymplectic Constraint
Algorithm [15], [16], the algorithmic procedure of [30] and [31], or the generalized
algorithm of [20].

Hamiltonian problems

There are two cases of interest:

1. Singular Hamiltonian systems.

They can be treated as a particular case of the above, where now dim M =
n = 2k and α = dh (at least locally) for some h ∈ Ω0(M) called the
Hamiltonian function.

2. Regular Hamiltonian systems.

Once again, dim M = n = 2k and α = dh (at least locally) for some
h ∈ Ω0(M). The difference with the singular case is that rank T = 2k
(i.e., it is regular). The consequence of this fact is that <T and lT are linear
isomorphisms, hence the equations of motion are compatible everywhere
in M , and determined. This implies that Pf =M and the solution Xh ∈
X(M) is unique [1]. In this case, T is called a symplectic form and (M,T )
is a symplectic manifold.

In addition, we have that every symmetry of the Hamiltonian is a sym-
metry of the system.

Second Order Differential Equations problems: Mechanical
systems

Next we consider the particular case in which M = TQ is the tangent bundle of
some n-dimensional manifoldQ. Then, let π: TQ→ Q be the natural projection,
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J the vertical endomorphism and ∆ ∈ X (TQ) the Liouville vector field (i.e.,
the vector field of dilatations along the fibers of TQ). If (qi, vi) are natural
coordinates in TQ, the local expression of these elements are

J =
∑
i

dqi ⊗
∂

∂vi
, ∆ =

∑
i

vi
∂

∂vi

(see, for instance, [24] and [8] for more details about these geometric concepts).

The most interesting cases are the Lagrangian systems in which T is a 2-
form; that is, an antisymmetric 2-covariant tensor field. The standard formu-
lation of these models deals with a dynamical function L ∈ Ω0(TQ), called
the Lagrangian function, from which an exact 2-form ω ∈ Ω2(TQ) can be con-
structed, given by ω := −d(dL ◦ J), and another function E ∈ Ω0(TQ) (the
energy function), defined as E := L −∆(L) (see, for instance, [24] and [5] for
more details about all these concepts). In this situation, the problem is the
same as in the above cases, where ω plays the role of T and α = dE; that is,
the equation to be solved is

i(X)ω = dE (5)

Nevertheless, physical and variational considerations lead us to introduce an
additional feature: we must search for solutions satisfying the so-called second
order condition:

Tπ ◦X = IdTQ (6)

which can be set equivalently as

J(X) = ∆

A vector field satisfying the second order condition is said to be a holonomic
vector field or a second order differential equation (SODE), and is characterized
by the fact that its integral curves are canonical lifting of curves in Q.

If the system is regular (i.e., ω is a non-degenerate form) then the system
(5) is compatible and determined everywhere in TQ, and its unique solution
automatically satisfies the SODE condition (6) (see [5]).

If the system is singular (ω is a degenerate form), then to the problem of
the incompatibility and inconsistency of equations (5) we must add condition
(6) for the solutions. This fact introduces new constraints to those obtained in
the stabilization algorithm applied to the equations (5), and restricts the gauge
freedom (for a detailed discussion on this problem, see [31]).
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6 Examples

Example 1: Control systems

A general situation

First of all we analyze an example in Control theory that shows how the algo-
rithm behaves, depending on different situations which can arise.
Consider a control system described by the equations

Aẋ = Bx+ Cu

where u = {ui} (i = 1, . . . ,m) are the control parameters or inputs, x = {xi} ∈
R
n are the outputs, and A,B,C are constant matrices. In some cases the
inputs have the form u = Dẋ (D being another constant matrix), and hence
the equations of the system take the form

T ẋ = Bx (7)

where T = A− CD is sometimes a singular matrix.
In this case, the manifold M is Rn, (with {xi} as coordinates), the 1-form α

is α =
∑
i,j b

ijxjdxi (where B = (b
ij)) and T represents a constant 2-tensor in

M . Then we have that X =
∑
i fi(xj)

∂
∂xi
and the integral curves of the vector

field satisfying the equality are the solution of the system; that is, ẋi = fi(x).
For simplicity, we only consider the case n ≥ 4 and dim(ker T ) = 2. Then,

let

Y 1 =
∑
i

w1i
∂

∂xi
, Y 2 =

∑
i

w2i
∂

∂xi

be a basis of ker T and

Z1 =
∑
i

v1i
∂

∂xi
, Z2 =

∑
i

v2i
∂

∂xi

a basis of ker T t. Thus, the compatibility conditions are

α(Z1) ≡
∑
i,j

v1i b
ijxj = 0 , α(Z2) ≡

∑
i,j

v2i b
ijxj = 0 (8)

and, if X0 is a particular solution of the system, the general one is

X = X0 + g1Y
1 + g2Y

2 (9)

where, at first, g1, g2 are arbitrary functions.
We have the following possible situations:

1. Both equalities (8) hold identically.

Then the system of equations (7) is compatible everywhere in M but un-
determined because its solution is (9), which depends on two arbitrary
functions.
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2. The first equality does not hold identically, but the second does (or con-
versely). Then

ξ
(1)
1 := α(Z1) =

∑
i,j

v1i b
ijxj

is the only primary constraint which defines the submanifold P1, where
the system is compatible and has the vector field (9) as solution.

Now the stability condition of the SGA algorithm must be imposed, which
leads to

X(ξ
(1)
1 ) ≡ X0(ξ

(1)
1 ) + g1Y

1(ξ
(1)
1 ) + g2Y

2(ξ
(1)
1 ) = 0 (on P1)

Notice that the coefficients Y α(ξ
(1)
α ) are constant, since Y α are constant

vector fields. Then we have the following possibilities:

(a) Y 1(ξ
(1)
1 ) 6= 0 and Y

2(ξ
(1)
1 ) 6= 0.

In this case, one function g can be expressed in terms of the other.
For instance,

g2|P1 = −g1
Y 1(ξ

(1)
1 )

Y 2(ξ
(1)
1 )
−
X0(ξ

(1)
1 )

Y 2(ξ
(1)
1 )

= −
1∑

i,j v
1
i b
ijw2j


g1∑

i,j

v1i b
ijw1j +X0(

∑
i,j

v1i b
ijxj)




P1 is the final constraint submanifold, and the solution is not unique
since it depends on one arbitrary function

X |P1 = X0 + g1Y
1

−
1∑

i,j v
1
i b
ijw2j


g1∑

i,j

v1i b
ijw1j +X0(

∑
i,j

v1i b
ijxj)


Y 2

≡ X ′0 + g1

(
Y 1 −

∑
i,j v

1
i b
ijw1j∑

i,j v
1
i b
ijw2j

Y 2

)

(b) Y 1(ξ
(1)
1 ) = 0 and Y

2(ξ
(1)
1 ) 6= 0 (or conversely).

In this case, one function g can be completely determined

g2|P1 = −
X0(ξ

(1)
1 )

Y 2(ξ
(1)
1 )
= −
X0(

∑
i,j v

1
i b
ijxj)∑

i,j v
1
i b
ijw2j

P1 is the final constraint submanifold, and the solution is not unique:
it depends on one arbitrary function

X |P1 = X0 −
X0(

∑
i,j v

1
i b
ijxj)∑

i,j v
1
i b
ijw2j

Y 2 + g1Y
1 ≡ X ′0 + g1Y

1
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(c) Y 1(ξ
(1)
1 ) = 0, Y

2(ξ
(1)
1 ) = 0.

We have two possible situations:

i. X0(ξ
(1)
1 )|P1 = 0.

No arbitrary function can be determined or expressed in terms
of others. P1 is the final constraint submanifold, and the solution
is not unique: it depends on two arbitrary functions

X |P1 = X0 + g1Y
1 + g2Y

2

ii. X0(ξ
(1)
1 )|P1 6= 0.

We have a new constraint

ξ
(2)
1 := X0(ξ

(1)
1 ) = X0(

∑
i,j

v1i b
ijxj)

which, together with ξ
(1)
1 , defines the submanifold P2. Now we

are again in the same situation as at the beginning of item 2,
and the procedure continues in the same way.

3. Neither equality holds identically, and the functions ξ
(1)
α are linearly inde-

pendent. Then

ξ
(1)
1 := α(Z1) =

∑
i,j

v1i b
ijxj , ξ

(1)
2 := α(Z2) = v

2
i b
ijxj

are the primary constraints defining the submanifold P1, where the system
is compatible and has the vector field (9) as solution.

Now the stability condition of the SGA algorithm must be imposed, which
leads to the system of equations

X(ξ
(1)
1 ) ≡ X0(ξ

(1)
1 ) + g1Y

1(ξ
(1)
1 ) + g2Y

2(ξ
(1)
1 ) = 0 (on P1)

X(ξ
(1)
2 ) ≡ X0(ξ

(1)
2 ) + g1Y

1(ξ
(1)
2 ) + g2Y

2(ξ
(1)
2 ) = 0 (on P1)

This system can be written in matrix form as

E

(
g1
g2

)
≡

(
Y 1(ξ

(1)
1 ) Y

2(ξ
(1)
1 )

Y 1(ξ
(1)
2 ) Y

2(ξ
(1)
2 )

)(
g1
g2

)
= −

(
X0(ξ

(1)
1 )

X0(ξ
(1)
2 )

)
(on P1)

and we have the following possibilities:

(a) rank E = 2.

Both arbitrary functions can be determined by solving the last linear
system. P1 is the final constraint submanifold, and the solution is
unique.
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(b) rank E = 1.

One function g can be completely determined or expressed in terms
of the other, and, in general, a new compatibility condition appears
(a function which must vanish on P1). If this condition holds on
P1, then P1 is the final constraint submanifold, and the solution is
not unique: it depends on one arbitrary function. Otherwise, a new

constraint ξ
(2)
1 , defining the new submanifold P2, is obtained, and

the tangency condition must be applied to this constraint, as above.

(c) rank E = 0.

In this case, both functions are the compatibility conditions for the
system, and we are in the same situation as at the beginning of the
procedure, except that now the vanishing of these functions must be
studied on the submanifold P1.

Remarks:

• All the submanifolds and constraints appearing are linear.

• All the steps in the algorithm can be implemented using the Gauss method,
since all the systems of equations that appear are linear.

• The algorithm ends when we arrive at one of the situations marked in
the items 1, 2a, 2b, 2c(i), 3a, and in one of the situations of 3b, or when
dim Pi = 0. Only in this last case does the problem have no dynamically
consistent solution.

A particular case

As a particular case of this kind of situation, consider the following system of
equations:

ẋ1 = A11x1 +A12x2 + u1

0 = A21x1 +A22x2 + u2

where the Aij and ui are constants. These kind of system appears in many
technical applications. For instance, when subsystems with widely separated
natural frequencies are coupled (such as in the modeling of parasitic elements
in a system, or when an electrical generator is connected to an electrical trans-
mission network). Actually, this is a simplified model of a more general case in
which xi are vectors and Aij matrices [40].
The manifold M is R2 coordinated by {x1, x2}. The general form of the

vector field solution will be

X = f1(x)
∂

∂x1
+ f2(x)

∂

∂x2
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The tensor T is symmetric, again:

T = dx1 ⊗ dx1

that is, its associated matrix is

<T = $T =

(
1 0
0 0

)

and the 1-form α is

α = (A11x1 +A12x2 + u1)dx1 + (A21x1 +A22x2 + u2)dx2

A basis of ker T is made up by the vector field

Z1 =
∂

∂x2

Now, the primary constraint defining P1 is

ξ
(1)
1 := α(Z1) = A21x1 +A22x2 + u2

and the solution on the points of P1 is

X |P1 = (A11x1 +A12x2 + u1)
∂

∂x1
+ f2

∂

∂x2

Using the SGA, we obtain

0 = X(ξ
(1)
1 )|P1 = A21(A11x1 +A12x2 + u1) +A22f2 (10)

and the final solution depends on the value of the coefficients Aij . So we have
the following options:

1. A22 6= 0: then equation (10) enables us to determine the arbitrary func-
tion:

f2|P1 =
A21

A22
(A11x1 +A12x2 + u1)

and the final solution is

X |P1 = (A11x1 +A12x2 + u1)(
∂

∂x1
+
A21

A22

∂

∂x2
)

Summarizing, the system to be solved has been reduced to

ẋ1 = A11x1 +A12x2 + u1

ẋ2 =
A21

A22
(A11x1 +A12x2 + u1)

on the submanifold defined by

0 = A21x1 +A22x2 + u2

The solution of this system is unique (there is no gauge freedom).



24 Implicit Quasilinear Differential Systems EJDE–1999/10

2. A22 = 0: in this case we have:

(a) If A21 = 0 (and this implies u2 = 0 in order the system to be com-
patible): then equation α(Z1) = 0 is satisfied everywhere in M and
the solution is

X = (A11x1 +A12x2 + u1)
∂

∂x1
+ f2

∂

∂x2

In other words, there is gauge freedom. From the physical point of
view, this means that the coordinate x2 is an ignorable degree of
freedom.

(b) If A21 6= 0: then equation (10) gives the secondary constraint

ξ
(2)
2 = A11x1 +A12x2 + u1

Once again, we have two possible cases:

i. A12 = 0: then the constraints ξ
(1)
1 and ξ

(2)
2 define two parallel

lines in M , that is, Pf = Ø.

ii. A12 6= 0: then the constraints ξ
(1)
1 and ξ

(2)
2 define P2, which is a

single point. Therefore, this is another case with no solution.

Example 2: Sliding control

Single input systems

Once again, in the framework of Control theory, a particular problem which
often arises is the following: let

ẋ = F +Gu

be a system of differential equations in U ⊂ Rn, where {xi} (i = 1, . . . n) are
the coordinates, u:U → R is the input and

ẋ =
∑
i

ẋi
∂

∂xi
, F =

∑
i

fi(x)
∂

∂xi
, G =

∑
i

gi(x)
∂

∂xi

are vector fields in U . Then the question is to seek an input u such that the
evolution of the system is constrained to be in a submanifold

S ≡ {x ∈ U | ξ(1)(x) = 0}

where ξ(1):U → R is a differentiable function satisfying ∇ξ(1)(x) 6= 0 for every
x ∈ U .
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The study of this problem is equivalent to solving the following singular
system in M ⊂ Rn+1 (with {xi, u} as coordinates)(

Idn 0
0 0

)(
ẋ
u̇

)
=

(
F +Gu
ξ(1)

)

Now we apply the SGA as indicated in the above example. We first have that
the solution on S is

X =
∑
i

(fi + giu)
∂

∂xi
+ γ
∂

∂u
≡ F + uG+ γ

∂

∂u

Then the stability condition X(ξ(1)) = 0 (on S) means that the evolution of the
system must be in S. Thus there are two options:

1. If G(ξ(1)) 6= 0 (on S), then it is said that the system verifies the transver-
sality condition. In this case

F (ξ(1)) + uG(ξ(1)) = 0 ⇔ u = −
F (ξ(1))

G(ξ(1))
(on S)

and we obtain the so-called equivalent control method in the study of the
sliding control.

2. If G(ξ(1)) = 0 (on S) then ξ(2) ≡ F (ξ(1)) is a new constraint, and the
stabilization algorithm leads either to the new condition

(F + uG)(F (ξ(1))) = (F (F (ξ(1))) + u[G,F ](ξ(1)) = 0

⇔ u = −
F (F (ξ(1)))

[G,F ](ξ(1))
(on S)

if [G,F ](ξ(1)) 6= 0 (on S), or to another constraint ξ(2) ≡ F (F (ξ(1))), and
so on.

Observe that, with this method, the problem can be solved even though the
transversality condition does not hold. Compare with [36] and the method of
equivalent control for the solution of this kind of problem.

Multiple input systems

We now suppose that the control system has more than one input. In this case
the system of differential equations is

ẋ = F +Gjuj

defined in U ⊂ Rn. As above, {xi} (i = 1, . . . n) are the coordinates, uj :U → R
(j = 1, . . .m) are the inputs, and

ẋ =
∑
i

ẋi
∂

∂xi
, F =

∑
i

fi(x)
∂

∂xi
, Gj =

∑
i

gji (x)
∂

∂xi
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are vector fields in U . Inputs uj must now be found such that the evolution of
the system is constrained to a (n−m)-dimensional submanifold

S ≡ {x ∈ U | ξ(1)j (x) = 0}

where ξ
(1)
j :U → R are independent differentiable functions for every x ∈ U .

Once again, the study of the problem is equivalent to solving the following
singular system in M ⊂ Rn+m (with {xi, uj} as coordinates)(

Idn 0
0 (0)m

)(
ẋ
u̇

)
=

(
F +

∑
j G
juj

ξ(1)

)

where u = (u1, . . . , uj) and ξ
(1) = (ξ

(1)
1 , . . . , ξ

(1)
j ) The solution on S is

X =
∑
i

(fi +
∑
j

gjiuj)
∂

∂xi
+
∑
j

γj
∂

∂uj
≡ F +

∑
j

ujG
j +

∑
j

γj
∂

∂uj

Now the stability conditions are X(ξ
(1)
j ) = 0 (on S) and several options exist:

1. If the matrix Gj(ξ
(1)
k ) (j, k = 1, . . . ,m) has rank equal to m, then all

the functions uj can be determined, no new constraints appear and the
procedure ends.

2. If 0 ≤ rank Gj(ξ(1)k ) < m, then only some (or none) of the functions
uj can be determined; in addition, new constraints arise. Therefore, the
procedure follows in an iterative way.

A particular case

As a particular case, consider the following control system: a telescopic robotic
arm in an horizontal plane which moves following a determined trajectory, that
is, a tracking problem (see [28] for more details on the study of this system).
The robot is made of two arms of length l: the first, with mass m1, has

one fixed end, and the other, with mass m2, slides inside of the first. There is
a motor in the fixed end which makes the robot turn around this point, and
another motor, with mass m and a rotor of radius R, at the other end of the
first arm, which makes the second arm slide. The robot must carry a mass m0,
placed on the outer end of the second arm, from one point to another one along
a fixed curve. The problem consists in determining the torques τ1, τ2 of both
motors.
We take the origin at the fixed end. Then ϕ denotes the angle swept by

the robot and x the length of the second arm which emerges from the first one.
Then, the dynamical equations are

ϕ̈ =
τ1 − (2(m0 +m2)x + (2m0 +m2)l)ϕ̇ẋ

I + (m0 +m2)x2 + (2m0 +m2)lx
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ẍ =
1

m0 +m2

(
τ2

R
+ ϕ̇2(m2(x+

l

2
) +m0(x+ l))

)

(where I =
(
m+m0 +

m1+m2
3

)
l2 ). This system of second order differential

equations can be transformed into one of first order by adding the variables ω,
v, and the equations

ϕ̇ = ω , ẋ = v

As a trajectory, we take an arc of spiral whose implicit equation is

l + x− ϕ = 0 (11)

The new system can be expressed in the form (6), (in U ⊂ R4), where
ϕ, ω, x, v are the variables, τ1τ2 are the inputs, and

F = ω
∂

∂ϕ
−
(2(m0 +m2)x+ (2m0 +m2)l)ωv

I + (m0 +m2)x2 + (2m0 +m2)lx

∂

∂ω

+v
∂

∂x
+
ω2(m2(x+

l
2 ) +m0(x + l))

m0 +m2

∂

∂v

G1 =
1

I + (m0 +m2)x2 + (2m0 +m2)lx

∂

∂ω

G2 =
1

R(m0 +m2)

∂

∂v

and subjected to the constraint (11).
Now we write the system in the form of equation $(X )T = α, in M ⊂ R6,

which has {ϕ, ω, x, v, τ1, τ2} as coordinates. Hence, the tensor T and the 1-form
α are

T = dϕ⊗ dϕ+ dω ⊗ dω + dx⊗ dx+ dv ⊗ dv

α = ωdϕ+
τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv

I + (m0 +m2)x2 + (2m0 +m2)lx
dω + vdx

+
1

m0 +m2

(
τ2

R
+ ω2(m2(x+

l

2
) +m0(x+ l))

)
dv + (l + x− ϕ)dτ1

that is, the matrix form of the system is


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0







ϕ̇
ω̇
ẋ
v̇
τ̇1
τ̇2


 =




ω
τ1−(2(m0+m2)x+(2m0+m2)l)ωv
I+(m0+m2)x2+(2m0+m2)lx

v
τ2
R +ω

2(m2(x+
l
2 )+m0(x+l))

m0+m2
l + x− ϕ
0




As ker T is spanned by the vector fields ∂
∂τ1
, ∂
∂τ2
, the compatibility condition

gives the constraint
ξ(1) := l + x− ϕ = 0
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which defines P1 ↪→M . Then, the vector field solution on P1 is

X = ω
∂

∂ϕ
+
τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv

I + (m0 +m2)x2 + (2m0 +m2)lx

∂

∂ω
+ v
∂

∂x
(12)

+
1

m0 +m2

(
τ2

R
+ ω2(m2(x+

l

2
) +m0(x+ l))

)
∂

∂v

+f1
∂

∂τ1
+ f2

∂

∂τ2

Next, we have to impose (in an iterative way) the stability condition which
enables us to obtain a sequence of submanifolds P1 ←↩ P2 ←↩ P3 defined by the
constraints

ξ(2) := X(ξ(1)) = v − ω

ξ(3) := X(ξ(2)) =
τ2
R + ω

2[m2(x+
l
2 ) +m0(x+ l)]

m0 +m2
−

τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv

I + (m0 +m2)x2 + (2m0 +m2)lx

and a relation between the arbitrary functions f1, f2

0 = X(ξ(3))

=
2ω[m2(x+

l
2 ) +m0(x+ l)][τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv]

(m0 +m2)[I + (m0 +m2)x2 + (2m0 +m2)lx]
+

[τ1 − (2(m0 +m2)x + (2m0 +m2)l)ωv][2(m0 +m2)x+ (2m0 +m2)l]v

(I + (m0 +m2)x2 + (2m0 +m2)lx)2

+vω2 +
2ωv2(m0 +m2)

I + (m0 +m2)x2 + (2m0 +m2)lx
+

v[2x(m0 +m2) + (2m0 +m2)l][τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv]

(I + (m0 +m2)x2 + (2m0 +m2)lx)2

+
[ τ2R + ω

2(m2(x+
l
2 ) +m0(x+ l))][2(m0 +m2)x+ (2m0 +m2)l]ω

(m0 +m2)(I + (m0 +m2)x2 + (2m0 +m2)lx)

−
f1

I + (m0 +m2)x2 + (2m0 +m2)lx
+

f2

R(m0 +m2)

Thus, the vector field solution on P3 is (12), where the variables and the arbi-
trary functions are related by all the above relations. So we have the (regular)
system of differential equations

ϕ̇ = ω

ω̇ =
τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv

I + (m0 +m2)x2 + (2m0 +m2)lx
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ẋ = v

v̇ =
1

m0 +m2

(
τ2

R
+ ϕ̇2(m2(x+

l

2
) +m0(x+ l))

)
τ̇1 = f1

τ̇2 =

(
2ω[m2(x+

l
2 ) +m0(x+ l)][τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv]

(m0 +m2)[I + (m0 +m2)x2 + (2m0 +m2)lx]
+

[τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv][2(m0 +m2)x+ (2m0 +m2)l]v

(I + (m0 +m2)x2 + (2m0 +m2)lx)2

+vω2 +
2ωv2(m0 +m2)

I + (m0 +m2)x2 + (2m0 +m2)lx
+

v[2x(m0 +m2) + (2m0 +m2)l][τ1 − (2(m0 +m2)x+ (2m0 +m2)l)ωv]

(I + (m0 +m2)x2 + (2m0 +m2)lx)2

+
[ω2(m2(x+

l
2 ) +m0(x+ l))][2(m0 +m2)x+ (2m0 +m2)l]ω

(m0 +m2)(I + (m0 +m2)x2 + (2m0 +m2)lx)

−
f1

I + (m0 +m2)x2 + (2m0 +m2)lx

)
(−R(m0 +m2))

Observe that the inputs τ1, τ2 are not determined (their evolution depends on
an arbitrary function). At this point some criteria can be imposed for tracking
the trajectory in a predefined way, for instance, minimizing the cost (for going
from one point to another in a given time). Of course, the integral curves of X
are on the surface P3, and, hence, on P1.

7 Conclusions

The goal of this work is to give a relatively simple geometric framework which
allows us to describe systems of differential equations

A(x)ẋ = α(x)

(where A is a singular matrix which represents a 2-covariant tensor), as well as
solve the problems of incompatibility and inconsistency of these equations.
Our treatment enables us to overcome the difficulties arising from other

analytic and algebraic procedures previously developed for these systems. It
is important to point out that the geometric framework here developed is not
as general as the one in reference [20], but it is simpler. Both of them are
equivalent when they are used for describing the same system. In addition, in
our treatment we pay special attention to the study of the symmetries of these
systems and we give an accurate description of the algorithm.
It also represents an improvement on the other geometric treatments cited in

the introduction, since we have developed an algorithm which solves the above
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mentioned problems of incompatibility and inconsistency. In the most interest-
ing cases, the final result of the algorithm is a submanifold (of the space of states
where the system is defined) and a vector field solution tangent to this subman-
ifold, whose integral curves are the trajectories of the system. Consequently,
the restriction of the system of differential equations to the submanifold found
can be integrated by analytic or numerical methods.

In general, the vector field solution is not single. In fact, there are two
possibilities :

1. If the singularity of the initial system of differential equations arises from
a non suitable choice of the variables (that is, the initial phase space is
too large in order to describe the real degrees of freedom of the problem),
then in the final constraint submanifold the system has a single solution.

2. If the singularity of the system is a consequence of the existence of a
certain kind of internal symmetry, then the final system of equations can
be undetermined; that is, the solution of the system is not single. This
means that for every point in the final constraint submanifold which is
taken as an initial condition, the evolution of the system is not determined
because a multiplicity of integral curves (of different vector fields solution)
pass through it. This is known as the gauge freedom (in the physical
literature). The question of removing this ambiguity has already been
studied for some special cases (see, for instance, [27]).

Another essential point to which we pay special attention is the study of the
symmetries of these systems. This is a subject which has not previously been
treated (at least geometrically), and we believe our analysis is enlightening.

An interesting subject might be the study of non autonomous singular dif-
ferential equations; that is, those of the form:

A(x, t)ẋ = α(x, t)

As is known, these systems can be considered as autonomous by adding the
equation t′ = 1. It is obvious that this equation remains unchanged throughout
the algorithmic procedure, so the method is directly applicable to this kind of
system. Observe that the constraints may depend on time.

We further believe that the analysis of second order singular differential
equations is a subject of interest. Finally, as we have remarked in the examples,
problems on Control theory (such as those related to sliding control and others)
could be analyzed in this way.
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[31] M.C. Muñoz, N. Román Roy, “Lagrangian theory for presymplectic
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