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Nontrivial solutions to the semilinear

Kohn–Laplace equation on R3 ∗

Stepan Tersian

Abstract

The existence of nontrivial solutions to the semilinear Kohn–Laplace
equation

−∆Hu+ V (P )u = f(u)

is considered under appropriate assumptions on V (P ) and f(u). Results
are obtained using a variational method and a compact-embedding lemma.

1 Introduction

Variational methods have been used for obtaining homoclinic solutions of second-
order semilinear ordinary differential equations, and homoclinic type solutions
of semilinear elliptic equations on the whole space. See for example Ding and
Ni [3], Rabinowitz [8], Omana and Willem [6], and Korman and Lazer [7]. In
most of the references, the linear part of the equation is assumed strongly el-
liptic, which motivates us to consider the degenerate semilinear elliptic case. In
particular, we study the existence of a nontrivial solution, u ∈W 1,2

H (R
3), to the

semilinear Kohn–Laplace or Heisenberg equation

−∆Hu+ V (P )u = f(u), P (x, y, z) ∈ R3 , (1)

where

∆H =
∂2

∂x2
+

∂2

∂y2
+ 4((x2 + y2)

∂2

∂z2
+ y

∂2

∂z∂x
− x

∂2

∂x∂y
)

is the Kohn–Laplacian. We assume that V (P ) ∈ C(RnR),

V (P ) > 0, ∀P ∈ Rn , and (2)

V (P )→ +∞ as |P | → +∞ , (3)
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2 Solutions to the Kohn–Laplace equation EJDE–1999/12

where |P | =
√
x2 + y2 + z2 is the norm in R3. We assume that f(t) ∈ C(R)

satisfying

f(0) = 0, f(t) = o(|t|) as t→ 0 , (4)

f(t) = o(|t|3) as t→∞ , (5)

0 < µF (t) ≡ µ
∫ t
0 f(s) ds ≤ tf(t) with µ > 2. (6)

LetW 1,2
H (R

3) be the Sobolev space associated with the Kohn–Laplacian ∆H ,
and

X = {u(P ) ∈W 1,2
H (R

3) :

∫
R3

(|∇Hu(P )|
2 + V (x)|u(P )|2) dP <∞}.

Hereafter,
∫
means integration in R3. Our main result is as follows

Theorem 1 Let (2)–(6) hold for V and f . Then the equation −∆Hu+V (P )u =
f(u) has a nontrivial solution u ∈ W 1,2

H (R
3).

This paper is organized as follows: In the first section, we state some pre-
liminary results on the Kohn–Laplace operator and prove embedding lemmata
which are essential for the forthcoming considerations. We use properties of
R
3 as a homogeneous space, with homogeneous dimension 4 with respect to
the intrinsic distance, using the Sobolev and Poincare inequalities considered in
Biroli and Mosco [1], Biroli, Mosco and Tchou [2], and in Jerison [4]. In the
second section, we prove an embedding lemma and an existence result for (1)
using the mountain-pass theorem. This idea comes from Omana and Willem
[6], where homoclinic solutions of Hamiltonian systems are considered. There
are difficulties involved in checking that the corresponding functional satisfies
the Palais–Smale condition (as a difference with the one-dimensional case). To
overcome these difficulties, we prove a proposition that is analogous to the one
in P.L. Lions [5]. In a forthcoming paper by Biroli and Tersian, an extension to
semilinear equations related to a general Dirichlet’s form will be given.

2 Preliminary results

First, we recall the definition of the Kohn–Laplace operator ∆H . Let

ξ = ∂
∂x
+ 2y ∂

∂z
, η = ∂

∂y
− 2x ∂

∂z
,∇H = (ξ, η) = σ∇ ,

σ =

[
1 0 2y
0 1 −2x

]
, ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z
),

∆H = ∇2H = div (σ
Tσ∇) ,

∆H =
∂2

∂x2
+ ∂2

∂y2
+ 4((x2 + y2) ∂

2

∂z2
+ y ∂2

∂z∂x
− x ∂2

∂x∂y
) .

The operator ∆H is elliptic, P
TσTσP ≥ 0 for every P ∈ R3, but not necessarily

strongly elliptic, because the eigenvalues of the matrix

σTσ =


 1 0 2y
0 1 −2x
2y −2x 4y2 + 4x2
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are 0, 1, 1 + 4y2 + 4x2 and its rank is 2.
The intrinsic distance ρ(P, P ′) between P (x, y, z) and P ′(x′, y′, z′) associated

with the operator ∆H is defined as

ρ(P, P ′) =
(
((x− x′)2 + (y − y′)2)2 + (z − z′ − 2(x′y − xy′))2

)1/4
.

Under the distance ρ the intrinsic ball Bρ(P0, r) is defined as

Bρ(P0, r) = {P : ρ(P0, P ) ≤ r}.

For vectors P (x, y, z) and P ′(x′, y′, z′), we define the P ′ right translation as

P ⊕ P ′ = (x+ x′, y + y′, z + z′ + 2(x′y − xy′)).

Let m(B) denote the volume of the Euclidean ball with radius r, B(P0, r) ⊂ R3.

Proposition 2 (i) B(0, r) ⊂ Bρ(0, r) ⊂ B(0, r2) for r ≥ 1; and B(0, r2) ⊂
Bρ(0, r) ⊂ B(0, r) for 0 < r < 1.

(ii) m(Bρ(0, r)) = m(Bρ(P0, r)) = π
2r4/2.

Proof. (i) To show that B(0, r) ⊂ Bρ(0, r) for r ≥ 1, we notice that the
projection of both balls on the plane z = 0 is the disk

D = D(0, r) = {(x, y) : x2 + y2 ≤ r2} .

For z ≥ 0, (x, y) ∈ D, the boundaries of B(0, r) and Bρ(0, r) are graphs of the

functions z =
√
r2 − p2 and zρ =

√
r4 − p4, where p2 = x2 + y2, 0 ≤ p ≤ r.

Then we have z ≤ zρ and B(0, r) ⊂ Bρ(0, r) for r ≥ 1.
(ii) Making the change of variables

Φ :




x = p cos θ
√
sinϕ,

y = p sin θ
√
sinϕ,

z = p2 cosϕ,

where p ≥ 0, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, we have

m(Bρ(0, r)) =

∫ 2π
0

∫ π
0

∫ r
0

ρ3 dρ dψ dθ =
1

2
r4π2 .

The projection of the ball Bρ(P0, r) on the plane z = 0 is the disk D(P0, r) =
{(x, y) : (x− x0)2 + (y − y0)2 ≤ r2} and

m(Bρ(P0, r)) = 2

∫ ∫
D(P0,r)

(r4 − ((x− x0)
2 + (y − y0)

2)2)1/2dx dy

= 2

∫ ∫
D

(r4 − (x2 + y2)2)1/2dx dy

= m(Bρ(0, r)) =
1

2
r4π2.
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♦

By Proposition 2 it follows that R3 with respect to (ρ,m) is a homogeneous
space with homogeneous dimension 4, see Biroli and Mosco [1]. The space R3

for every r can be covered by intrinsic balls of radius r such that each point of
R
3 is contained in at most 4 balls.
Let us consider now the space W 1,2

H (R
3), as a completion of the space

C∞0 (R
3) under the norm

‖u‖2
W 1,2
H (R3)

=

∫
(|∇Hu(P )|

2 + |u(P )|2) dP .

For a domain Ω ⊂ R3 with smooth boundary, let

W 1,2
H (Ω) := {u ∈ L

2(Ω) :

∫
Ω

(|∇Hu(P )|
2 + |u(P )|2) dP <∞},

and let W 1,2
H,0(Ω) be the closure of C

∞
0 (Ω) with respect to the norm

‖u‖2
W 1,2
H (Ω)

=

∫
Ω

(|∇Hu(P )|
2 + |u(P )|2) dP .

The following Poincare inequality is proved by Jerison [4]:∫
Bρ(P0,r)

|u(P )− ū|2 dP ≤ Cr2
∫
Bρ(P0,kr)

|∇Hu(P )|
2 dP,

where C and k ≥ 1 are constants independent of P and r, and

ū =
1

m(Bρ(P0, r))

∫
Bρ(P0,r)

u(P ) dP .

Using this inequality and a homogeneous covering of R3 by intrinsic balls we
prove the following.

Lemma 3 The space W 1,2
H,0(Bρ(0, R)) is compactly embedded in L

2(Bρ(0, R))

and W 1,2
H (Bρ(0, R)) is compactly embedded in L

2(Bρ(0, R(1 + δ)) with δ > 0.

Proof. Let {uk} be a bounded sequence in W
1,2
H,0(Bρ(0, R)), with ‖uk‖W 1,2

H
≤

A, and uk → u weakly in W 1,2
H,0(Bρ(0, R)) and L

2(Bρ(0, R)). We also denote

by uk the extension of uk to R
3 by 0, which belongs to W 1,2

H (R
3). Let ε be

an arbitrary positive number and {Bj}, Bj = Bρ(Pj , r), be the covering of
BR = Bρ(0, R) by intrinsic balls with radius r = (

ε
32AC )

1/2, such that every
point of BR belongs to at most 4 balls Bj . By a result of Jerison [4]∫

Bj

|u(P )− ūj |
2 dP ≤ Cr2

∫
Bj

|∇Hu(P )|
2 dP ,
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where C is a constant independent of u and j, and

ūj =
1

m(Bj)

∫
Bj

u(P ) dP .

We have∫
BR

u(P )2 dP ≤ 2(
∑
j

∫
Bj

|u(P )− ūj |
2 dP +

∑
j

1

m(Bj)
(

∫
Bj

u(P ) dP )2)

≤
ε

16A

∑
j

∫
Bj

|∇Hu(P )|
2 dP +

C1

ε2

∑
j

(

∫
Bj

u(P ) dP )2

≤
ε

4A

∫
BR

|∇Hu(P )|
2 dP +

C1

ε2

∑
j

(

∫
Bj

u(P ) dP )2, (7)

where C1 = 2(32AC/π)
2. By (7) for wk,n = uk − un,∫

BR

w2k,n dP ≤
ε

4A

∫
BR

|∇Hwk,n|
2 dP +

C1

ε2

∑
j

(

∫
Bj

wk,n dP )
2

≤
ε

2
+
C1

ε2

∑
j

(

∫
Bj

wk,n dP )
2. (8)

Since uk → u weakly in L2(BR) we have that there exists N such that

∫
BR

wk,ndP ≤
ε3

2C1
for all k, n > N .

Then by (8) ∫
BR

w2k,ndP ≤ ε for all k, n > N ;

therefore, {uk} converges in L2(BR).
Using the extension by zero of u ∈ W 1,2

H (Bρ(0, R)) onBρ(0, R(1+δ))\Bρ(0, R),
with δ > 0, we deduce that

W 1,2
H (Bρ(0, R)) ⊂W

1,2
H,0(Bρ(0, R(1 + δ)).

By the first part, it follows that the inclusion

W 1,2
H (Bρ(0, R)) ⊂ L

2(Bρ(0, R(1 + δ))

is compact. ♦

Lemma 4 The embedding W 1,2
H (R

3) ⊂ L4(R3) is continuous.
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Proof. As the homogeneous dimension of (R3, ρ,m) is 4, by the Sobolev in-
equality [1],

(∫
Bρ(P0,r)

|u(P )|4 dP

)1/4

≤ C2

(
r2
∫
Bρ(P0,r)

|∇Hu(P )|
2 dP +

∫
Bρ(P0,r)

|u(P )|2 dP

)1/2
,

for u ∈ C∞0 (Bρ(P0, r)). Covering the Euclidean space R
3 by intrinsic balls

Bj = Bρ(Pj , r) such that each point of R
3 is covered by at most 4 balls for

u ∈ C∞0 (R
3), we have∫

R3

|u(P )|4 dP ≤
∑
j

C2(r
2

∫
Bj

|∇Hu(P )|
2 dP +

∫
Bj

|u(P )|2 dP )2

≤ 2C2(
∑
j

(

∫
Bj

|∇Hu(P )|
2 dP )2 + (

∫
Bj

|u(P )|2 dP ))2)

≤ 8C2(

∫
R3

|∇Hu(P )|
2 dP +

∫
R3

|u(P )|2 dP )2.

Then ‖u‖L4 ≤ C3‖u‖W 1,2
H
. ♦

3 Existence result

We consider the existence of a nontrivial solutions u ∈W 1,2
H (R

3) to the semilin-
ear Kohn–Laplace equation

−∆Hu+ V (P )u = f(u).

Suppose that V (P ) ∈ C(Rn,R) and f(t) ∈ C(R) satisfy assumptions (2)–(6).
By (6) it follows that there exists m > 0 such that

|F (t) ≥ m|t|µ, for|t| ≥ 1 . (9)

Let us consider the operator L = −∆H + V (x) in the space E = L2(R3)
under assumptions (2) and (3). Let X be the domain of operator L in E,

X = {u(P ) ∈W 1,2
H (R

3) :

∫
(|∇Hu(P )|

2 + V (x)|u(P )|2) dP <∞}.

It follows that V (P ) is uniformly positive; i.e., there exists a > 0 such that

V (P ) ≥ a > 0, ∀P ∈ R3. (10)

Notice that L is a positive selfadjoint operator in E. Then the graph norm of
L in X ,

‖u‖2Y = ‖u‖
2
L2 + ‖∇Hu‖

2
L2 ,
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is equivalent to the norm

‖u‖2 =

∫
(|∇Hu(P )|

2 + V (x)|u(P )|2) dP = 〈Lu, u〉 .

Also notice that X is a Hilbert space with the scalar product

(u1, u2) =

∫
(∇Hu1∇Hu2 + V (P )u1u2) dP .

Lemma 5 Suppose V (x) satisfies (2) and (3). Then the embedding of X in E
is compact.

Proof. Let {uk(P )} be a bounded sequence in X , with ‖uk‖ ≤ A, and uk → u
weakly in X . We shall show that uk → u strongly in E. Assuming that u = 0,
we prove that ∫

u2k(P ) dP → 0, as k →∞ . (11)

Let ε > 0, δ > 0 and R > 0 be such that

V (P ) ≥
1 +A

ε
if |P | ≥ R(1 + δ) . (12)

The operator S : X → W 1,2
H (B(0, R)), Su = u |B(0,R) is linear and continuous.

By Lemma 3 the inclusion W 1,2
H (B(0, R)) ⊂ L

2(B(0, R(1 + δ))) is compact and
therefore ∫

B(0,R(1+δ))

u2k(P ) dP → 0, as k →∞ .

Let k0 be such that for k ≥ k0∫
B(0,R(1+δ))

u2k(P ) dP ≤
ε

1 +A
.

Then for k ≥ k0,∫
u2k(P ) dP =

∫
|P |≥R(1+δ)

u2k(P ) dP +

∫
B(0,R(1+δ))

u2k(P ) dP

≤
ε

1 +A
(1 +

∫
|P |≥R(1+δ)

V (P )u2k(P ) dP )

≤
ε

1 +A
(1 + ‖uk‖

2)

≤ ε .

♦

Since W 1,2
H (R

3) is not included in L∞(R3) the approach by Omana and
Willem [6] does not work in the case. By Lemmas 3 and 4 we have the embed-
dings

X ⊂ L2(R3) = E compactly,

X ⊂ W 1,2
H (R

3) ⊂ L4(R3) .
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Now we prove the following proposition that is analogous to the one in P.L.
Lions [5].

Lemma 6 Suppose g ∈ C(R) satisfies

g(t) = o(|t|) as |t| → 0

g(t) = o(|t|3) as |t| → +∞ .

If {uk} is a bounded sequence in L4(R3) and uk → u in L2(R3), then∫
|g(uk)(uk − u)| dP → 0 as k → +∞ .

Proof. From the assumptions, for every ε > 0 there exists ρ > 0 such that
g(t) ≤ ε|t|3 for |t| ≥ ρ, and that there exists δ > 0 such that |g(t)| ≤ ε|t| when
|t| ≤ δ < ρ, we have

|g(t)| ≤ ε(|t|+ |t|3) + Cε|t|,

where Cε = δ
−1maxδ≤|t|≤ρ |g(t)|. Then∫

|g(uk)(uk − u)| dP ≤ ε

∫
(|uk|(|uk|+ |u|) + |uk|

3(|uk|+ |u|)) dP

+Cε

∫
|uk||uk − u| dP

≤ C1ε

∫
(|uk|

2 + |u|2 + |uk|
4 + |u|4) dP

+Cε

∫
|uk||uk − u| dP .

Then the result follows by the convergence in L2(R3) and the boundedness in
L4(R3) of {uk}. ♦

Let us consider the functional

ϕ(u) =
1

2
‖u‖2 −

∫
F (u(x)) dP . (13)

It can be proved that ϕ ∈ C1(X,R) and

〈ϕ′(u), v〉 = (u, v)−

∫
f(x, u(x))v(x)dP, ∀v ∈ X . (14)

The critical points of ϕ are weak solutions of the equation (1) in the function
space W 1,2

H (R
3). We are looking for nontrivial solutions, u 6= 0, in W 1,2

H (R
3) of

the equation (1).
To prove the existence of nontrivial critical points, u 6= 0, we apply the

mountain-pass theorem of Ambrosetti and Rabinowitz to the functional ϕ.

Lemma 7 If f ∈ C(R) satisfies (3)–(5), then the functional ϕ satisfies the
Palais–Smale condition in X.
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Proof. Let {uk} be a sequence in X such that

|ϕ(uk)| ≤ C, ϕ
′(uk)→ 0 in X

∗ (15)

as k→ +∞. Then there exists k0 such that for k ≥ k0

|〈ϕ′(uk), uk〉| ≤ µ‖uk‖.

Then

C + ‖uk‖ ≥ ϕ(uk)−
1

µ
〈ϕ′(uk), uk〉

= (
1

2
−
1

µ
)‖uk‖

2 +
1

µ

∫
(f(uk)uk − µF (uk)) dP

≥ (
1

2
−
1

µ
)‖uk‖

2 ;

so {uk} is bounded in X . By Lemmas 4, 5 and 6 there exists a subsequence
denoted again by {uk}, such that uk → u ∈ X weakly, uk → u in L2(R3)
strongly, and

lim
k→+∞

∫
|f(uk)(uk − u)| dP = 0 . (16)

By (15) we have that
|〈ϕ′(uk), v〉| ≤ εk‖v‖ . (17)

where εk → 0 as k → +∞. Then by (16) it follows

lim
k→+∞

(‖uk‖
2 − 〈u, uk〉) = lim

k→+∞

∫
f(uk)(uk − u) dP = 0 .

Then {uk} converges to u strongly in X . ♦

Proof of Theorem 1. The existence of a solution follows from the the mountain-
pass theorem. It remains to show its geometric conditions.
There exists a constant C such that

‖u‖E ≤ C‖u‖, ‖u‖L4 ≤ C‖u‖ .

Let 0 < ε < 1/(2C2). Then∫
F (u) dP ≤ ε(‖u‖2E + ‖u‖

4
L4) + Cε‖u‖

4
L4

≤ εC2‖u‖2 + (ε+ Cε)C
4‖u‖4

and

ϕ(u) ≥ (
1

2
− εC2)‖u‖2 − (ε+ Cε)C

4‖u‖4 > 0

for small enough ‖u‖ = r > 0.
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Let us take a u0 ∈ C∞0 (R
3) such that u0 > 0, suppu0 ⊂ B(0, 2) and

u0|B(0,1) = 1. Then ‖u0‖ > a|B(0, 1)| > ρ. By (9), for x ∈ B(0, 1), we
have

F (u0(x)) ≥ m|u0(x)|
µ .

For γ > 1, we have

ϕ(γu0) =
1

2
γ2‖u0‖

2 −

∫
F (γu0) dP

≤
1

2
γ2‖u0‖

2 −

∫
B(0,1)

F (γu0) dP

≤
1

2
γ2‖u0‖

2 − γµ|B(0, 1)| < 0 ,

for sufficiently large γ, because µ > 2. ♦
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