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Asymptotic properties of the magnetic integrated

density of states ∗

G. D. Raikov

Abstract

This article could be regarded as a supplement to [11] where we consid-
ered the Schrödinger operator with constant magnetic field and decaying
electric potential, and studied the asymptotic behaviour of the discrete
spectrum as the coupling constant of the magnetic field tends to infin-
ity. To describe this behaviour when the kernel of the magnetic field
is not trivial, we introduced a measure D(λ) defined on (−∞, 0) called
the “magnetic integrated density of states”. In this article, we study the
asymptotic behaviour of this measure as λ ↑ 0 and as λ ↓ λ0, λ0 being the
lower bound of the support of D.

1 Introduction

In [11], we considered the Schrödinger operator

H(µ) = H0(µ) + V, with H0(µ) = (i∇+ µA)
2
,

where A : Rm → Rm, m ≥ 2, is the magnetic potential, V : Rm → R is the
electric potential, and µ ≥ 0 is the magnetic-field coupling constant. Under the
assumptions that the magnetic field

B := {Bj,l}
m
j,l=1 , Bj,l :=

∂Al

∂Xj
−
∂Aj

∂Xl
, j, l = 1, . . . ,m ,

is constant with respect to X ∈ Rm, B 6= 0, and V is −∆-form-compact,
the asymptotic behaviour as µ → ∞ of the discrete spectrum of H(µ) was
investigated. The main result in [11] concerning the case

k := dimKerB ≥ 1 , (1.1)

is the source of motivation for the present paper. That is why, this result is
reproduced here in detail.
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In the sequel, we shall always assume that (1.1) is satisfied. Hence, in par-
ticular, m ≥ 3. Moreover, (1.1) implies

σ(H0(µ)) = σess(H0(µ)) = [µΛ,∞) ,

where Λ := 1
2Tr
√
B∗B is the first Landau level. On the other hand, since V is

assumed to be −∆-form-compact, the Kato-Simon inequality implies that V is
also H0(µ)-form-compact, µ > 0, and hence

σess(H(µ)) = σess(H0(µ)), µ ≥ 0 .

Set 2d := m − k = rankB. On Rm ≡ R2d+k, introduce the Cartesian
coordinates X = (x, y, z) with x ∈ Rd, y ∈ Rd, and z ∈ Rk, such that (x, y) ∈

RanB, z ∈ KerB and B := dA =
∑d
j=1 bjdy

j ∧ dxj where A :=
∑m
l=1AldX

l

(see [8, Subsection 2.3]). Denote by B+ the restriction of the matrix
√
B∗B to

RanB. If we consider RanB = R2d as a symplectic vector space with symplectic
form B, then

Bd

d!
= b1 . . . bd dx

1 ∧ dy1 . . . dxd ∧ dyd =
√
detB+ dx

1 ∧ dy1 . . . dxd ∧ dyd

is a volume form (see [5, p. 274]). In what follows we shall use the short-hand
notation X⊥ = (x, y), X⊥ ∈ RanB = R2d.
Our next goal is to define an auxiliary operator χ(X⊥) which acts in L

2(Rk),
with Rk = KerB, and depends on the parameter X⊥ ∈ R2d, R2d = RanB.
We shall write V ∈ Lr, r ≥ 1, if for each ε > 0,

V = V1 + V2, (1.2)

where V1 ∈ Lr(Rm) and supX∈Rm |V2(X)| ≤ ε.
Assume V ∈ Lm/2. Hence, in particular, V is −∆-form-compact.
Fix ε > 0 and write V as in (1.2). We shall say that X⊥ ∈ R2d is in the

regularity set of V1 if the integral
∫
Rk |V1(X⊥, z)|

m/2 dz is defined and finite.
Obviously, the complement of the regularity set of V1 is a null set. Moreover,
V (X⊥, .) is −∆-form-bounded with zero bound for every X⊥ in the regularity
set of V1. Fix X⊥ in the regularity set of V1, and set

χ(X⊥) = χ(V (X⊥)) := −∆z + V (X⊥, z)

where the sum should be understood in the sense of quadratic forms.
Obviously, for almost every X⊥ in the regularity set of V1, the operator

V (X⊥, .) is −∆-form-compact, and we have σess(χ(X⊥)) = [0,∞).
Let T be a linear selfadjoint operator in a Hilbert space. Denote by PI(T )

the spectral projection of T corresponding to an interval I ⊂ R. Set

N(λ;T ) := rankP(−∞,λ)(T ), λ ∈ R,

n±(λ;T ) := rankP(λ,∞)(±T ), λ > 0.
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For λ < 0 introduce the magnetic integrated density of states

D(λ) :=

∫
R2d

N(λ;χ(X⊥)) dX⊥. (1.3)

In [11] it is shown that under the assumptions V ∈ Lm/2 and λ < 0, the
right-hand side of (1.3) is well-defined. In particular, D(λ) is independent of
the particular choice of ε > 0 and the related decomposition (1.2) used for the
definition of χ(X⊥).
The main result of [11] concerning the case k ≥ 1 (see (1.1)) is reproduced

as follows.

Theorem 1.1 [11, Theorem 2.2] Suppose that B is constant, B 6= 0, and k ≥ 1.
Assume that V ∈ Lm/2, V ≤ 0, and V 6≡ 0. Let λ < 0 be a continuity point of
the function D. Then we have

lim
µ→∞

µ−dN(µΛ + λ;H(µ)) = (2π)−d
√
detB+D(λ). (1.4)

In order to explain why D(λ) was named the “magnetic integrated density
states” in [11], we shall recall briefly the definition and the basic property of
the usual (spatial) integrated density of states for the operator H̃ := −∆+ Q
where Q is a periodic function on Rm. Denote by Γ (respectively, by Γ∗) the
lattice (respectively, the dual lattice) of the periods of Q, and set T := Rm/Γ,
T∗ := Rm/Γ∗. Define the auxiliary operator χ̃(k) := (i∇−k)2+Q, k ∈ T∗, on
the Sobolev space H2(T). Introduce the (spatial) integrated density of states

D̃(λ) :=

∫
T∗
N(λ; χ̃(k)dk, λ ∈ R,

(note that our definition differs slightly from the standard one: usually, the
integrated density of states is defined as (2π)−mD̃(λ)). Further, set Tr :=
R
m/rΓ with an integer r ≥ 1. Evidently, volTr = rmvolT. Define the operator

H̃r := −∆+Q on H2(Tr). Then we have

lim
r→∞

r−mN(λ; H̃r) = (2π)
−m volT D̃(λ), λ ∈ R, (1.5)

(see e.g. [13, Theorem XIII.101] or [14, Subsection 4.3])).
The formal resemblance of (1.4) and (1.5) is the motivation for the choice of

the name “magnetic integrated density of states” for D(λ).
The function D(λ), λ < 0, is non-negative, and non-decreasing. Set

λ0 :=

{
−∞ if D(λ) > 0 for all λ < 0,
sup {λ ∈ (−∞, 0)|D(λ) = 0} otherwise.

(1.6)

Throughout the paper we suppose λ0 < 0.
The aim of the paper is to study the asymptotic behaviour of D(λ) as λ ↑ 0,

and as λ ↓ λ0.
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In Section 2 we investigate the asymptotic behaviour of D(λ) as λ ↑ 0,
imposing some supplementary regularity assumptions on V ; in particular, we
assume that V admits a power-like decay, i.e.

−V (X) � 〈X〉−α, α > 0, 〈X〉 := (1 + |X |2)1/2, X ∈ Rm, (1.7)

where −V (X) � 〈X〉−α, X ∈ Rm, means that there exist positive constants c1
and c2 such that the inequalities c1〈X〉−α ≤ −V (X) ≤ c2〈X〉−α hold for each
X ∈ Rm; analogous short-hand notations are systematically used in the sequel.
The asymptotic behaviour of D(λ) is essentially different in the case of rapid

decay (i.e. α > 2), or slow decay (i.e. α ∈ (0, 2]). If V decays rapidly, the type
of behaviour of D(λ) depends on k: if k = 1, the unbounded growth of D(λ) as
λ ↑ 0 is described by a power-like function, if k = 2, this growth is described
by a logarithmic function, and if k ≥ 3, D(λ) remains bounded as λ ↑ 0 (see
Theorems 2.1-2.3 below). If V decays slowly, the asymptotic behaviour of D(λ)
as λ ↑ 0 is of the same type for all k ≥ 1 (see Theorem 2.5 below). Moreover,
in Theorem 2.4 below we treat a particular example illustrating the asymptotic
behaviour of D(λ) as λ ↑ 0 in the border-line case α = 2.
It should be noted that in the 1980s and the early 1990s the asymptotic

behaviour of the quantity N(Λ + λ;H(1)) as λ ↑ 0 was investigated by several
authors (see [15], [17], [9], [10], [6]). The variety of apparently non-related
asymptotic formulas concerning different values of the decay rate α and the
deficiency index k, was somewhat unsatisfactory, and the problem to derive a
uniform formula describing the asymptotic behaviour of N(Λ+λ;H(1)) as λ ↑ 0
remained open. Comparing the earlier results on the asymptotics as λ ↑ 0 of
N(Λ + λ;H(1)) and the present results on the behaviour of D(λ), we find that
generically the asymptotic equivalence

N(Λ + λ;H(1)) ∼ (2π)−d
√
det B+D(λ) (1.8)

holds as λ ↑ 0.
In Section 3 we investigate the asymptotic behaviour as λ ↓ λ0 of D(λ) in

the case λ0 > −∞. More precisely, we impose some regularity assumptions on
V which, in particular, imply that

λ0 = E0 > −∞

where
E0 := inf

X⊥∈R2d
E(X⊥), (1.9)

and
E(X⊥) := inf σ(χ(X⊥)), X⊥ ∈ R

2d, (1.10)

and study the asymptotics as λ ↓ E0 of D(λ).
An important special case of the potentials considered in Section 3 are the

homogeneous ones V (X) = −g|X |−α with g > 0 and α ∈ (0, 1), in the case
m = 3 (i.e. k = 1 and d = 1). The first asymptotic term of D(λ) as λ ↓ E0 is
calculated explicitly at the end of Section 3.
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Finally, in Section 4 we assume m = 3, and introduce a class of asymptoti-
cally homogeneous potentials of order α ∈ [1, 2); in this case we have λ0 = −∞.
If α = 1, we find that D(λ) decays exponentially as λ→ −∞, while in the case
α ∈ (1, 2) its decay is power-like.
The main technical tools utilized in the proofs of these results consist of

variational methods and continuous perturbation theory. Moreover, in the cases
k = 1, 2, we decompose of the Birman-Schwinger operator |V (X⊥, .)|1/2(−∆z −
λ)−1|V (X⊥, .)|1/2, λ < 0, or some related operators, into a sum of a rank-one
operator divergent as λ ↑ 0, and a compact operator of lower-order growth as
λ ↑ 0. Similar decompositions have been used in [16], [4], [3], and later in [9]
(see also [8, Section 4.2]).

2 Asymptotic behaviour of D(λ) near the origin

2.1. In this subsection we treat the case of rapidly decaying potentials, i.e. we
suppose that V satisfies estimates (1.7) with α > 2. In the first two theorems
we deal with dimensions k = 1 and k = 2.
For s > 0, α > 2, and k = 1, 2, set

ν1(s) := vol

{
X⊥ ∈ R

2d| −

∫
Rk

V (X⊥, z) dz > s

}
.

Note that
ν1(s) � s

−2d/(α−k), s ↓ 0.

Theorem 2.1 Let k = 1. Suppose that V satisfies (1.7) with α > 2. In addi-
tion, assume

lim
δ↓0
lim sup
s↓0

ν1((1 − δ)s)

ν1(s)
= 1. (2.1)

Then we have
D(λ) ∼ ν1(2|λ|

1/2), λ ↑ 0. (2.2)

Remark. The assumptions of Theorem 2.1 entail

ν1(2|λ|
1/2) � |λ|−d/(α−1), λ ↑ 0. (2.3)

Proof of Theorem 2.1. The Birman-Schwinger principle implies

D(λ) =

∫
R2d

n+(1;G
(1)(λ,X⊥)) dX⊥ (2.4)

where G(1)(λ,X⊥) is an integral operator with kernel

G(1)(z1, z2;λ,X⊥) := |V (X⊥, z1)|
1/2R(1)(z1 − z2;λ)|V (X⊥, z2)|

1/2,

R(1)(z;λ) :=
1

2π

∫
R

eizζ

ζ2 + |λ|
dζ =

1

2|λ|1/2
e−|λ|

1/2|z|.
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Set

R(1)1 (λ) :=
1

2π

∫
R

dζ

ζ2 + |λ|
=

1

2|λ|1/2
,

R(1)2 (z;λ) :=
1

2π

∫
R

eizζ − 1

ζ2 + |λ|
dζ =

1

2|λ|1/2

(
e−|λ|

1/2|z| − 1
)
,

G(1)j (z1, z2;λ,X⊥) := |V (X⊥, z1)|
1/2R(1)j (z1 − z2;λ)|V (X⊥, z2)|

1/2, j = 1, 2,

and denote by G
(1)
j (λ,X⊥) the integral operator with kernel G

(1)
j (z1, z2;λ,X⊥),

j = 1, 2. Obviously,

G(1)(λ,X⊥) = G
(1)
1 (λ,X⊥) +G

(1)
2 (λ,X⊥)

and, therefore, the inequalities

n+(1 + δ;G
(1)
1 (λ,X⊥))− n−(δ;G

(1)
2 (λ,X⊥)) ≤ n+(1;G

(1)(λ,X⊥)) ≤

n+(1− δ;G
(1)
1 (λ,X⊥)) + n+(δ;G

(1)
2 (λ,X⊥)) (2.5)

hold for each δ ∈ (0, 1). Next, we make use of the estimate

n±(δ;G
(1)
2 (λ,X⊥)) ≤ ent

{
δ−2‖G

(1)
2 (λ,X⊥)‖

2
2

}
, δ > 0, (2.6)

where ent t denotes the integral part of the real number t, and ‖.‖2 denotes the
Hilbert-Schmidt norm. Employing (1.7) and the elementary estimate

|R(1)2 (z;λ)| ≤ |λ|
−(1−ε)/2|z|ε, z ∈ R, λ 6= 0, ε ∈ (0, 1],

we get

‖G(1)2 (λ,X⊥)‖
2
2 ≤

c′1|λ|
−(1−ε)

∫
R

∫
R

(1 + |X⊥|
2 + z21)

−α/2(1 + |X⊥|
2 + z22)

−α/2|z1 − z2|
2ε dz1dz2 =

c1|λ|
−(1−ε)〈X⊥〉

−2(α−1−ε) (2.7)

where ε ∈ (0, 1], ε < (α − 1)/2, and c1 is independent of λ and X⊥. Inserting
(2.7) into (2.6), we obtain

n±(δ;G
(1)
2 (λ,X⊥)) ≤ ent

{
δ−2c1|λ|

−(1−ε)〈X⊥〉
−2(α−1−ε)

}
. (2.8)

Integrating both sides of (2.8) with respect to X⊥ ∈ R2d, we derive the estimate∫
R2d

n±(δ;G
(1)
2 (λ,X⊥))dX⊥ ≤ c2|λ|

−d(1−ε)/(α−1−ε)

where ε ∈ (0, 1], ε < (α− 1)/2, and c2 = c2(δ) is independent of λ. Hence,∫
R2d

n±(δ;G
(1)
2 (λ,X⊥)) dX⊥ = o(|λ|

−d/(α−1)), λ ↑ 0. (2.9)
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Further, we note that G
(1)
1 (λ,X⊥) is a rank-one operator whose only non-

zero eigenvalue coincides with − 1
2|λ|1/2

∫
R
V (X⊥, z)dz.

Introduce the Heaviside function

θ(t) =

{
0 if t ≤ 0,
1 if t > 0.

Then we have

n+(1± δ;G
(1)
1 (λ,X⊥)) = θ

(
−

∫
R

V (X⊥, z)dz − (1 ± δ)2|λ|
1/2

)

and, hence, ∫
R2d

n+(1± δ;G
(1)
1 (λ,X⊥))dX⊥ = ν1((1 ± δ)2|λ|

1/2). (2.10)

The combination of (2.4), (2.5), (2.9), and (2.10) entails

ν1((1 + δ)2|λ|
1/2) + o(|λ|−d/(α−1)) ≤ D(λ) ≤

ν1((1− δ)2|λ|
1/2) + o(|λ|−d/(α−1)), λ ↑ 0, δ ∈ (0, 1). (2.11)

Bearing in mind (2.1) and (2.3), we find that (2.11) implies (2.2). ♦

Theorem 2.2 Let k = 2. Assume that V satisfies (1.7) with α > 2. In addi-
tion, suppose that (2.1) is valid. Then we have

D(λ) ∼ ν1(4π| ln |λ||
−1), λ ↑ 0. (2.12)

Remark. The assumptions of Theorem 2.2 entail

ν1(4π| ln |λ||
−1) � | ln |λ||2d/(α−2), λ ↑ 0.

Proof of Theorem 2.2. As in the proof of the preceding theorem we have

D(λ) =

∫
R2d

n+(1;G
(2)(λ,X⊥)) dX⊥, (2.13)

where G(2)(λ,X⊥) is an integral operator with kernel

G(2)(z1, z2;λ,X⊥) := |V (X⊥, z1)|
1/2R(2)(z1 − z2;λ)|V (X⊥, z2)|

1/2

and

R(2)(z;λ) :=
1

(2π)2

∫
R2

eizζ

|ζ|2 + |λ|
dζ =

1

2π
K0(|λ|

1/2|z|),

K0 being the modified Bessel function of zeroth order (see below (4.19)). Set

R
(2)
1 (λ) :=

1

(2π)2

∫
|ζ|<1

dζ

|ζ|2 + |λ|
=
1

4π
λ ↑ 0g((1 + |λ|)/|λ|),
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R(2)2 (z;λ) :=
1

(2π)2

∫
|ζ|<1

eiz.ζ − 1

|ζ|2 + |λ|
dζ = −

1

π2

∫ 1
0

∫ π
0

sin2 (cosϕ|z|r/2)

r2 + |λ|
rdrdϕ,

R(2)3 (z;λ) :=
1

(2π)2

∫
|ζ|>1

eiz.ζ

|ζ|2 + |λ|
dζ,

G(2)j (z1, z2;λ,X⊥) := |V (X⊥, z1)|
1/2R(2)j (z1 − z2;λ)|V (X⊥, z2)|

1/2, j = 1, 2, 3,

and denote by G
(2)
j (λ,X⊥) the integral operator with kernel G

(2)
j (z1, z2;λ,X⊥),

j = 1, 2, 3. Obviously,

G(2)(λ,X⊥) =
∑
j=1,2,3

G
(2)
j (λ,X⊥).

Therefore,

n+(1 + δ;G
(2)
1 (λ,X⊥))− n−(δ/2;G

(2)
2 (λ,X⊥))− n−(δ/2;G

(2)
3 (λ,X⊥))

≤ n+(1;G
(2)(λ,X⊥)) (2.14)

≤ n+(1 − δ;G
(2)
1 (λ,X⊥)) + n+(δ/2;G

(2)
2 (λ,X⊥)) + n+(δ/2;G

(2)
3 (λ,X⊥)) ,

for all δ ∈ (0, 1). By analogy with (2.6) write

n±(δ;G
(2)
j (λ,X⊥)) ≤ ent

{
δ−2‖G(2)j (λ,X⊥)‖

2
2

}
, δ > 0, j = 2, 3. (2.15)

It is easy to verify the estimates

‖G(2)2 (λ,X⊥)‖
2
2 ≤ c3〈X⊥〉

−2(α−2−ε), ε ∈ (0, α− 2), (2.16)

‖G(2)3 (λ,X⊥)‖
2
2 ≤ c4〈X⊥〉

−2(α−1), (2.17)

where c3 and c4 are independent of λ and X⊥. Inserting (2.17) or (2.16) into
(2.15), and integrating with respect to X⊥ ∈ R2d, we get∫

R2d

n±(δ;G
(2)
j (λ,X⊥)) dX⊥ = O(1), λ ↑ 0, j = 2, 3. (2.18)

Further, G
(2)
1 (λ,X⊥) is a rank-one operator whose only non-zero eigenvalue

coincides with − 1
4π ln ((1 + |λ|)/|λ|)

∫
R2
V (X⊥, z)dz. Hence,∫

R2d

n+(1 ± δ;G
(2)
1 (λ,X⊥))dX⊥ = ν1((1 ± δ)4π/ ln ((1 + |λ|)/|λ|), δ ∈ (0, 1).

(2.19)
Combining (2.13), (2.14), (2.18), and (2.19), and making use of (2.1), we come
to (2.12). ♦

Theorem 2.3 Let k ≥ 3. Assume that∫
Rk

|V (., z)|k/2 dz ∈ L1loc(R
2d), lim

|X⊥|→∞

∫
Rk

|V (X⊥, z)|
k/2 dz = 0.

Then we have
D(λ) = O(1), λ ↑ 0. (2.20)
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Remark. If k ≥ 3 and V satisfies (1.7) with α > 2, then the hypotheses of
Theorem 2.3 hold.

Proof of Theorem 2.3. Since k ≥ 3, we can apply the Rozenblyum-Lieb-
Cwickel estimate and write

N(λ;χ(X⊥)) ≤ ent

{∫
Rk

|V (X⊥, z)|
k/2dz

}
, λ ≤ 0.

Integrating with respect to X⊥ ∈ R2d, we come to (2.20). ♦

As already mentioned in the introduction, the asymptotic behaviour of
N(Λ + λ;H(1)) as λ ↑ 0 has been studied in [9] and [10].
If we compare Theorems 2.1–2.2 with [9, Theorem 2.4 i)-ii)], we find that

under the hypotheses of [9, Theorem 2.4 i)-ii)] which are quite similar although
slightly more restrictive than those of Theorems 2.1–2.2, asymptotic relation
(1.8) is valid.
Similarly, if we compare Theorem 2.3 with [9, Theorem 2.4 iii)], we find that

under the hypotheses of [9, Theorem 2.4 iii)] both quantities N(Λ + λ;H(1))
and D(λ) remain bounded as λ ↑ 0.
Moreover, the proofs of Theorems 2.1, 2.2, or 2.3 follow closely the ideas

of the proof of [9, Theorem 2.4] (see also [8, Theorems 4.5-4.6]) but are much
simpler. These circumstances would become clearer if we recall that in the proof
of [9, Theorem 2.4] the study of the asymptotics of N(Λ + λ;H(1)) is reduced
to the investigation of the behaviour as λ ↑ 0 of N(λ;H) where the operator

H := −
k∑
l=1

∂2

∂z2l
+

∫ ⊕
Rk

v(z) dz

acts in L2(Rd+ky,z ), and for each fixed z ∈ R
k the operator v(z) acts in L2(Rdy)

as a ΨDO with anti-Wick symbol VB(−η, y, z), (y, η) ∈ T ∗Rd = R2d, and

VB(X⊥, z) := V (B
−1/2
+ X⊥, z), X⊥ ∈ RanB = R2d.

Comparing the operators H and χ(X⊥), and, respectively, the quantities
N(λ,H) and D(λ), it is not difficult to understand the close similarity in the
behaviour of the quantities N(Λ+ λ;H(1)) and (2π)−d

√
det B+D(λ) as λ ↑ 0.

2.2. In this subsection we state a result concerning the intermediate case
where V satisfies (1.7) with α = 2. More precisely, we assume that the estimate

|V (X) + g〈X〉−2| ≤ c5〈X〉
−2−ε (2.21)

holds with g > 0, ε > 0 and c5 > 0.
On the Sobolev space H2(Rk) introduce the operator

has(g) := −∆− g〈z〉−2

whose negative spectrum is either empty or purely discrete. If k = 1, 2, then
has(g) has at least one negative eigenvalue for all g > 0, and if k ≥ 3, the
operator has(g) is non-negative if and only if g ≤ (k − 2)2/4.
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Assume that the negative spectrum of has(g) is not empty. Denote by
{−γl(g)}l≥1 the non-decreasing sequence of the negative eigenvalues of h

as(g).
Note that the estimate

γl(g) ≤ c6e
−c7l, l ≥ 1,

holds with positive numbers c6 and c7 independent of l.

Theorem 2.4 Assume that V satisfies (2.21). If the negative spectrum of
has(g) is non-empty, we have

D(λ) ∼
∑
l≥1

vol
{
X⊥ ∈ R

2d| |X⊥|
2 < γl(g)|λ|

−1
}
=
πd

d!

∑
l≥1

γl(g)
d |λ|−d, λ ↑ 0.

If k ≥ 3 and g < (k − 2)2/4, we have

D(λ) = O(1), λ ↑ 0.

We omit the elementary proof of Theorem 2.4, but note that under its hy-
potheses which coincide with those of [10, Theorem 2.4], the asymptotic relation
(1.8) still holds.

2.3. In this subsection we discuss briefly the case of slowly decaying poten-
tials, i.e. potentials satisfying (1.7) with α ∈ (0, 2).

Theorem 2.5 Let k ≥ 1. Assume that V ∈ C1(Rm) satisfies (1.7) with α ∈
(0, 2) and, moreover,

|∇V (X)| ≤ C〈X〉−α−1, C > 0, X ∈ Rm.

Set

ν2(λ) := (2π)
−k

∫
R2d

vol
{
(z, ζ) ∈ T ∗Rk| |ζ|2 + V (X⊥, z) < λ

}
dX⊥.

Then we have
D(λ) ∼ ν2(λ), λ ↑ 0. (2.22)

Remark. The assumptions of Theorem 2.5 entail

ν2(λ) � |λ|
−mα +

k
2 , λ ↑ 0.

The proof of Theorem 2.5 is based on well-known standard techniques such
as the covering of Rk by disjoint cubes of equal size, and the Dirichlet-Neumann
bracketing (cf. [13, Theorems XIII.81-XIII.82]); that is why we omit the details.
If we impose more restrictive assumptions and apply more sophisticated meth-
ods (see e.g. [6, Section 10.5]), we could obtain a sharp remainder estimate in
(2.22).
Finally, we note that under the hypotheses of Theorem 2.5 which coincide

with those of [9, Theorem 2.2], asymptotic relation (1.8) is valid again.
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3 Asymptotic behaviour of D(λ) as λ ↓ λ0. The
case λ0 > −∞

3.1. Set T (X⊥) := |V (X⊥, .)|1/2(−∆ + 1)−1/2. Under the general hypotheses
of Theorem 1.1 the family T (X⊥) of operators acting in L

2(Rk) is defined for
almost every X⊥ ∈ R2d.
We shall say that assumption H1 holds if and only if T (X⊥) is a family of

compact operators, continuous on R2d, such that ‖T (X⊥)‖ → 0 as |X⊥| → ∞.
Throughout the section we suppose that assumption H1 holds.
Recall the notations λ0, E(X⊥), X⊥ ∈ R2d, and E0 (see (1.6), (1.10), and

(1.9)).

Lemma 3.1 Let assumption H1 hold. Then we have

E0 > −∞. (3.1)

Proof. Fix X⊥ ∈ R2d, E > 0, and set TE(X⊥):=|V (X⊥, .)|1/2(−∆+ E)−1/2

so that T1(X⊥) = T (X⊥). Choose E > −E0(X⊥) and write

(χ(X⊥) + E)
−1 = (−∆+ E)−1/2

(
1− |TE(X⊥)|

2
)−1
(−∆+ E)−1/2, (3.2)

where

|TE(X⊥)| :=
√
TE(X⊥)∗TE(X⊥) ≡

√
(−∆+ E)−1/2|V (X⊥, .)|(−∆+ E)−1/2.

It is not difficult to check that if H1 is fulfilled, then ‖TE(X⊥)‖ → 0 as E →∞
uniformly with respect to X⊥ ∈ R2d. Choose E large enough so that we have,
say, ‖TE(X⊥)‖2 < 1/2 for all X⊥ ∈ R2d. Then, (3.2) entails

dist(−E, σ(χ(X⊥)))
−1 = ‖(χ(X⊥) + E)

−1‖ ≤ 2/E, ∀X⊥ ∈ R
2d.

Hence, −E < E(X⊥) for all X⊥ ∈ R2d, or −E < E0 which implies (3.1). ♦

Lemma 3.2 Let assumption H1 hold. Suppose that M ⊂ R2d and M⊂ C are
compact sets such that infX⊥∈M dist(M, σ(X⊥)) > 0. Then the operator family
(χ(X⊥) + E)

−1 is uniformly continuous with respect to (X⊥, E) ∈M ×M.

Proof. Write the resolvent identity

(χ(X ′⊥)+E
′)−1−(χ(X ′′⊥)+E

′′)−1 = (E′′−E′)(χ(X ′⊥)+E
′)−1(χ(X ′′⊥)+E

′′)−1+

(χ(X ′⊥) + E
′)−1(V (X ′′⊥, .)− V (X

′
⊥, .))(χ(X

′′
⊥) + E

′′)−1 =

(E′′ − E′)(χ(X ′⊥) + E
′)−1(χ(X ′′⊥) + E

′′)−1+

(χ(X ′⊥)+E
′)−1(−∆+1)1/2(|T (X ′′⊥)|

2− |T (X ′⊥)|
2)(−∆+1)1/2(χ(X ′′⊥)+E

′′)−1

(3.3)
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with E′, E′′ ∈ M, X ′⊥, X
′′
⊥ ∈ M . Obviously, the quantity ‖(χ(X⊥) + E)

−1‖ =
(dist(−E, σ(X⊥)))−1 is uniformly bounded with respect to (X⊥, E) ∈ (M,M).
Applying Lemma 3.1, pick a number E0 > −E0. Then the norm of the operator

(−∆+ 1)1/2(χ(X⊥) + E)
−1

= (−∆+ 1)1/2(−∆+ E0)
−1/2(−∆+ E0)

1/2 ×

(χ(X⊥) + E0)
−1/2(χ(X⊥) + E0)

1/2(χ(X⊥) + E)
−1

is uniformly bounded with respect to (X⊥, E) ∈ (M,M). Since the operator
T (X⊥) is continuous with respect to X⊥ ∈ M , we find that (3.3) implies the
continuity of (χ(X⊥) + E)

−1 with respect to (X⊥, E) ∈ (M,M). ♦

Proposition 3.1 Suppose that assumption H1 holds. Then E(X⊥) is continu-
ous on R2d, and, moreover, E(X⊥)→ 0 as |X⊥| → ∞.

Proof. Fix E > max {1,−E0}. We have ‖(χ(X⊥) +E)−1‖ = (E(X⊥) + E)
−1
,

X⊥ ∈ R2d. By Lemma 3.2, (E(X⊥) + E)
−1
, and, hence, E(X⊥) is continuous

with respect to X⊥ ∈ R2d. Moreover, (3.2) entails lim|X⊥|→∞ (E(X⊥) + E)
−1 =

1/E, and, therefore, lim|X⊥|→∞ E(X⊥) = 0. ♦

Set
Φ :=

{
X⊥ ∈ R

2d|E(X⊥) = E0
}
.

In the sequel we assume that E0 < 0. Since E(X⊥) is continuous and E(X⊥)→ 0
as |X⊥| → ∞, the set Φ is not empty and compact. Put

Φε :=
{
X⊥ ∈ R

2d| E(X⊥) < E0 + ε
}
, ε > 0,

Φ̃δ :=
{
X⊥ ∈ R

2d| dist (X⊥,Φ) < δ
}
, δ > 0.

The continuity of E(X⊥) and implies that for each ε > 0 there exists δ such that
Φ̃δ ⊆ Φε. On the other hand, the continuity of E(X⊥) combined with the fact
that E(X⊥) → 0 as |X⊥| → ∞ while E0 < 0, entails that for each δ > 0 there
exists an ε such that Φε ⊆ Φ̃δ.

Proposition 3.2 Let E0 < 0. For every sufficiently small ε > 0 there exists
δ > 0 such that

N(E0 + ε;χ(X⊥)) = 1, ∀X⊥ ∈ Φ̃δ. (3.4)

Proof. The equality (3.4) follows from the continuity of E(X⊥), and the fact
that E0 < 0 is the first eigenvalue of χ(X⊥), X⊥ ∈ Φ, which is simple (see [13,
Section XIII.12]). ♦

Fix X⊥ ∈ R2d and assume E(X⊥) < 0. Denote by P (X⊥) the spectral
projection of χ(X⊥) corresponding to E(X⊥).

Corollary 3.1 Let E0 < 0. Then the projection P is uniformly continuous in
a vicinity of Φ.
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Proof. Fix sufficiently small ε, denote by Γε the circle of radius ε centered at
E0, and choose δ > 0 so that dist (Γε, σ(χ(X⊥)))−1 is uniformly bounded with

respect to X⊥ ∈ Φ̃δ. Then we have

P (X⊥) = −
1

2πi

∫
Γε

(χ(X⊥)− E)
−1dE.

Applying Proposition 3.1, we easily deduce the continuity of P (X⊥) for X⊥ ∈

Φ̃δ. ♦

Corollary 3.2 Let assumption H1 hold. Then we have λ0 = E0.

Proof. The lemma is trivial if E0 = 0. Assume E0 < 0. Obviously, λ0 ≥ E0.
Fix ε > 0 small enough, and applying Proposition 3.2 choose δ > 0 such that

N(E0 + ε;χ(X⊥)) = 1 for all X⊥ ∈
¯̃Φδ. Therefore,

D(E0 + ε) ≥ vol Φ̃δ > 0.

Consequently, E0 + ε ≥ λ0 for all ε > 0. Hence, E0 = λ0. ♦

Putting together the results of this subsection, we obtain our first general
result on the behaviour of D(λ) as λ ↓ λ0.

Theorem 3.1 Let assumption H1 hold and E0 < 0. Then for sufficiently small
η > 0 we have

D(λ0 + η) ≡ D(E0 + η) = volΦη. (3.5)

3.2. In this subsection we estimate the difference E(X ′⊥) − E(X
′′
⊥) with

X ′⊥, X
′′
⊥ ∈ R

2d.
Let X⊥ ∈ R2d. Assume E(X⊥) < 0. Denote by ψ(X⊥) the eigenfunction of

χ(X⊥) corresponding to E(X⊥), normalized in L2(Rk), such that ψ(X⊥, z) > 0
for every z ∈ Rk (see [13, Section XIII.12]).
If we consider V (X ′⊥)− V (X⊥) as a perturbation to χ(X⊥), then the intu-

ition originating from analytic perturbation theory (see [7], [13, Chapter XII])
prompts us that

E(X⊥)− E(X
′
⊥) ∼

∫
Rk

ψ(X⊥, z)
2(V (X⊥, z)− V (X

′
⊥, z)) dz, X

′
⊥ → X⊥.

Lemma 3.3 Let assumption H1 hold. Let X ′⊥, X
′′
⊥ ∈ R

2d. Assume E(X ′⊥) < 0,
E(X ′′⊥) < 0. Then we have∫

Rk

ψ(X ′⊥, z)
2(V (X ′⊥, z)− V (X

′′
⊥, z)) dz ≤

E(X ′⊥)− E(X
′′
⊥) ≤

∫
Rk

ψ(X ′′⊥, z)
2(V (X ′⊥, z)− V (X

′′
⊥, z)) dz. (3.6)
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Proof. Since X ′⊥ and X
′′
⊥ enter (3.6) in a symmetric manner, it suffices to

prove only the second inequality which is implied immediately from the following
obvious relations

E(X ′⊥) = inf
u∈H1(Rk),u6=0

∫
Rk

(
|∇u(z)|2 + V (X ′⊥, z)|u(z)|

2
)
dz∫

Rk
|u(z)|2 dz

≤

∫
Rk

(
|∇ψ(X ′′⊥, z)|

2 + V (X ′⊥, z)ψ(X
′′
⊥, z)

2
)
dz,

E(X ′′⊥) =

∫
Rk

(
|∇ψ(X ′′⊥, z)|

2 + V (X ′′⊥, z)ψ(X
′′
⊥, z)

2
)
dz. ♦

3.3. In this and the following subsection we consider the special case where
Φ = {0}; in this case we shall say that assumption H2 holds.
Under some supplementary hypotheses we derive an asymptotic formula de-
scribing the behaviour of D(λ) as λ ↓ λ0, which is more explicit than (3.5). The
results of this subsection could be extended automatically to the case where
Φ consists of finitely many isolated points, and without any serious efforts to
the case where Φ is a closed manifold of positive co-dimension. We leave these
extensions to the interested reader.
Let assumptions H1 and H2 hold. For X⊥ ∈ R2d set

F (X⊥) :=

∫
Rk

ψ(0, z)2 (V (X⊥, z)− V (0, z)) dz,

F̃ (X⊥) := ‖|T (X⊥)|
2−|T (0)|2‖ ≡ ‖(−∆+1)−1/2(V (X⊥)−V (0))(−∆+1)

−1/2‖.

Note that (3.6) with X ′⊥ = X⊥ and X
′′
⊥ = 0 implies F (X⊥) ≥ 0, X⊥ ∈ R

2d,
and F (X⊥) = 0 implies X⊥ = 0.
We shall say that assumption H3 holds if and only if the estimate

F̃ (X⊥) ≤ c8F (X⊥) (3.7)

holds for sufficiently small |X⊥| and c8 independent of X⊥.

Remark. Evidently, for some c9 we have F (X⊥) ≤ c9F̃ (X⊥), X⊥ ∈ R2d.
Hence, the validity of H3 is equivalent to F (X⊥) � F̃ (X⊥), X⊥ → 0.

For η > 0 put ν3(η) := vol
{
X⊥ ∈ R2d|F (X⊥) < η

}
.

Theorem 3.2 Let assumptions H1–H3 hold. Moreover, suppose that

lim
δ↓0
lim sup
η↓0

ν3((1 + δ)η)/ν3(η) = 1. (3.8)

Then we have

D(E0 + η) ∼ ν3(η), η ↓ 0. (3.9)
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Proof. By Lemma 3.3

F (X⊥) +

∫
Rk

(V (X⊥, z)− V (0, z))(ψ(X⊥, z)
2 − ψ(0, z)2) dz ≤

E(X⊥)− E0 ≤ F (X⊥), (3.10)

where X⊥ ∈ R2d and |X⊥| is sufficiently small. Evidently,∣∣∣∣
∫
Rk

(V (X⊥, z)− V (0, z))(ψ(X⊥, z)
2 − ψ(0, z)2) dz

∣∣∣∣ ≤
F̃ (X⊥) ‖(−∆+ 1)

1/2(ψ(X⊥) + ψ(0))‖ ‖(−∆+ 1)
1/2(ψ(X⊥)− ψ(0))‖. (3.11)

Further,

‖(−∆+ 1)1/2(ψ(X⊥) + ψ(0))‖

≤ c10(‖(χ(X⊥) + E)
1/2ψ(X⊥)‖+ ‖(χ(0) +E)

1/2ψ(0)‖)

= c10((E(X⊥) + E)
1/2 + (E0 + E)

1/2)

≤ c11 , (3.12)

where E > −E0, and c10, c11 are independent of X⊥. Analogously,

‖(−∆+ 1)1/2(ψ(X⊥)− ψ(0))‖ ≤ c10‖(χ(0) +E)
1/2(ψ(X⊥)− ψ(0))‖. (3.13)

Next,

‖(χ(0)+E)1/2(ψ(X⊥)−ψ(0))‖
2 = 〈(χ(0)+E)(ψ(X⊥)−ψ(0)), ψ(X⊥)−ψ(0)〉 =

〈(|T (0)|2 − |T (X⊥)|
2)(−∆+ 1)1/2ψ(X⊥), (−∆+ 1)

1/2(ψ(X⊥)− ψ(0))〉+

E(X⊥)〈ψ(X⊥), ψ(X⊥)− ψ(0)〉 − E0〈ψ(0), ψ(X⊥)− ψ(0)〉+ E‖ψ(X⊥)− ψ(0)‖
2

where 〈., .〉 denotes the scalar product in L2(Rk).
Note that ψ(X⊥) = P (X⊥)ψ(0)/‖P (X⊥)ψ(0)‖. Taking into account Corol-

lary 3.1 and the fact that T (X⊥) is continuous, we conclude that

lim
X⊥→0

‖(χ(0) +E)1/2(ψ(X⊥)− ψ(0))‖
2 = 0

and hence, by (3.13),

lim
X⊥→0

‖(−∆+ 1)1/2(ψ(X⊥)− ψ(0))‖ = 0. (3.14)

Fix ε > 0, and bearing in mind (3.11)-(3.14) and assumption H3, suppose that
X⊥ is so small that we have

−εF (X⊥) ≤

∫
Rk

(V (X⊥, z)− V (0, z))(ψ(X⊥, z)
2 − ψ(0, z)2) dz. (3.15)
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The combination of (3.10) and (3.15) yields

(1− ε)F (X⊥) ≤ E0 − E(X⊥) ≤ F (X⊥), ∀X⊥ ∈ Φ̃δ, (3.16)

where δ = δ(ε) is small enough. Assume that η > 0 is so small that we have
Φ̄η ⊆ Φ̃δ. Then (3.16) implies

ν3(η) ≤ volΦη ≤ ν3((1− ε)
−1η). (3.17)

Now, (3.9) follows directly from (3.17), (3.5), and (3.8). ♦

3.4. In this subsection we assume m = 3 (i.e. k = 1 and d = 1), and deal
with homogeneous potentials

V (X) := −g|X |−α, g > 0, α ∈ (0, 1), X ∈ R3. (3.18)

Note that if V satisfies (3.18), then it belongs to the class L3/2 for all α ∈ (0, 2).
However, there is an essential difference between the case α ∈ (0, 1) considered in
this subsection, and the case α ∈ [1, 2) which will be dealt with in the following
section.
Fix ε > 0 and set

V1(X) :=

{
V (X), if |V (X)| > ε,
0, otherwise,

V2 := V − V1.

In the case α ∈ (0, 1) we have V1(X⊥, .) ∈ L1(R) for all X⊥ ∈ R2 and, in
particular, for X⊥ = 0. Consequently, the operator T (X⊥) is compact, and the
operator χ(X⊥) is well-defined for all X⊥ ∈ R2. Since V (X⊥, z) ≥ V (X⊥, 0) for
all X⊥ ∈ R2, z ∈ R, it is clear that E0 coincides with E(0), i.e. with the first
eigenvalue of the operator χ(0).
In the case α ∈ [1, 2) the potential V1(0, .) is not in L1(R), the operator χ(0)

is not well-defined and, as we shall see in the next section, λ0 = −∞.

Proposition 3.3 Let V satisfy (3.18) with α ∈ (0, 1). Then the operator family
T (X⊥) satisfies H1.

Proof. For X⊥ 6= 0 we have ‖|V (X⊥, .)|1/2‖ =
√
g|X⊥|−α/2. Moreover, the

multiplier |V (X⊥, .)|1/2 is uniformly continuous with respect to |X⊥| ≥ ε, ε > 0.
Since ‖T (X⊥)‖ ≤ ‖|V (X⊥, .)|1/2‖ for all X⊥ ∈ R2, it remains only to show that
T (X⊥) is continuous at X⊥ = 0. To this end, we write

|V (0, z)|1/2 − |V (X⊥, z)|
1/2 =

√
gα

4

∫ |X⊥|2
0

(t+ z2)−1−α/4dt,

and easily find that

‖T (X⊥)−T (0)‖
2 ≤ ‖T (X⊥)−T (0)‖

2
2 =

gα2

32

∫
R

{∫ |X⊥|2
0

(t+ z2)−1−α/4dt

}2
dz.
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Changing the variables t = |X⊥|2s, z = |X⊥|y, we get

‖T (X⊥)− T (0)‖
2
2 =

gα2

32
|X⊥|

1−α

∫
R

{∫ 1
0

(s+ y2)−1−α/4ds

}2
dy. (3.19)

Since α ∈ (0, 1), the right-hand side of (3.19) vanishes as |X⊥| → 0. ♦
Evidently, if (3.18) holds, then assumption H2 is fulfilled.

Proposition 3.4 Let V satisfy (3.18) with α ∈ (0, 1). Then assumption H3
holds.

Proof. Obviously

F (X⊥) = g

∫
R

(
|z|−α − (|X⊥|

2 + z2)−α/2
)
ψ(0, z)2 dz =

gα

2

∫
R

∫ |X⊥|2
0

(t+ z2)−1−α/2ψ(0, z)2 dtdz =

gα

2
|X⊥|

1−α

∫
R

ψ(0, |X⊥|y)
2

∫ 1
0

(s+ y2)−1−α/2 dsdy. (3.20)

Recall that H1(R) is continuously imbedded in C(R) ∩ L∞(R). Assume
|X⊥| < 1. Then (3.20) implies

F (X⊥) ≥
gα

2
|X⊥|

1−α min
|z|≤1

ψ(0, z)2
∫
|y|<1

dy

∫ 1
0

(s+ y2)−1−α/2ds. (3.21)

On the other hand, if (3.18) holds, we have

F̃ (X⊥) = sup
u∈H1(R),u6=0

∫
R
(V (X⊥, z)− V (0, z))|u(z)|2 dz

‖u‖2H1(R)
=

gα

2
|X⊥|

1−α sup
u∈H1(R),u6=0

∫
R

∫ 1
0
(s+ y2)−1−α/2|u(|X⊥|y)|2 dyds

‖u‖2H1(R)
≤

gα

2
|X⊥|

1−α

∫
R

∫ 1
0

(s+ y2)−1−α/2dyds sup
u∈H1(R),u6=0

‖u‖2L∞(R)
‖u‖2H1(R)

. (3.22)

Comparing (3.21) and (3.22), we find that (3.7) holds with c8 independent
of X⊥ ∈ Φ̃1. ♦

Proposition 3.5 Let V satisfy (3.18) with α ∈ (0, 1). Then we have

F (X⊥) ∼
g
√
παΓ((α + 1)/2)

(1− α)Γ(1 + α/2)
ψ(0, 0)2|X⊥|

1−α, X⊥ → 0. (3.23)
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Proof. Recall (3.20). Since the function
∫ 1
0 (s+ y

2)−1−α/2ds is in L1(Ry), the
dominated convergence theorem yields

lim
X⊥→0

∫
R

ψ(0, |X⊥|y)
2

∫ 1
0

(s+ y2)−1−α/2ds

= ψ(0, 0)2
∫
R

∫ 1
0

(s+ y2)−1−α/2 dy ds

=
2
√
πΓ((α+ 1)/2)

(1− α)Γ(1 + α/2)
ψ(0, 0)2. (3.24)

Inserting (3.24) into (3.20), we get (3.23). ♦

Combining Theorem 3.2 and Propositions 3.3 – 3.5, we obtain the following
result.

Theorem 3.3 Let V satisfy (3.18) with α ∈ (0, 1). Then we have

D(E0 + η) ∼ π

{
g
√
παΓ((α + 1)/2)

(1− α)Γ(1 + α/2)
ψ(0, 0)2

}2/(α−1)
η2/(1−α), η ↓ 0.

4 Asymptotic behaviour of D(λ) as λ ↓ λ0. The
case λ0 = −∞

4.1. Throughout the section we assume m = 3, i.e. d = 1, k = 1. Moreover, we
suppose

V = U +W (4.1)

where
U(X) := −g|X |−α, g > 0, α ∈ [1, 2), (4.2)

(cf. (3.18)), and W is a perturbation which is less singular at the origin than
U , and does not contribute to the main asymptotic term of D(λ) as λ→ −∞.
In this and the following subsection we assume W = 0. Put r := |X⊥|, and

Ng(λ; r) := N

(
λ;−

d2

dz2
− g(z2 + r2)−α/2

)
, λ < 0.

Then we have

D(λ) ≡ D(λ, g) = 2π

∫ ∞
0

Ng(λ; r) rdr. (4.3)

Moreover,
D(λ, g) = g−2/(2−α)D(g−2/(2−α)λ, 1). (4.4)

Proposition 4.1 Let V satisfy (4.1)-(4.2) with W = 0 and α ∈ (1, 2). Then
we have

lim
λ→−∞

|λ|1/(α−1)D(λ; g) = Cα ≡ Cα(g) := π

(
g
√
πΓ((α− 1)/2)

2Γ(α/2)

)2/(α−1)
. (4.5)
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Proof. Bearing in mind (4.4), we assume g = 1 without any loss of generality.
Moreover, we write N (λ; r) instead of N1(λ; r).
Introduce the semi-classical parameter h = |λ|−1/2, and change the variables

r = h2% in (4.3). Thus we get

D(λ) = 2πh4
∫ ∞
0

N (−h−2;h2%) %d%. (4.6)

Applying the minimax principle, we find that the quantity N (−h−2;h2%) coin-
cides with the maximal dimension of the linear subsets of C∞0 (R) whose nonzero
elements u satisfy the inequality∫

R

{
|u′|2 + h−2|u|2

}
dz < h−2α

∫
R

(h−4z2 + %2)−α/2|u|2 dz.

Scaling z = h2t and multiplying by h4, we find that N (−h−2;h2%) is equal to
the maximal dimension of the linear subsets of C∞0 (R) whose nonzero elements
w satisfy the inequality∫

R

{
|w′|2 + h2|w|2

}
dt < h2(2−α)

∫
R

(t2 + %2)−α/2|w|2 dt. (4.7)

Denote by Gh,% the integral operator with kernel

Gh,%(s, t) :=
h

2
(s2 + %2)−α/4e−h|s−t|(t2 + %2)−α/4.

Note that h2 e
−h|s−t| is the integral kernel of the operator h2

(
− d

2

dt2
+ h2

)−1
.

Applying the Birman-Schwinger principle, we find that (4.7) entails

N (−h−2;h2%) = n+(h
2(α−1);Gh,%). (4.8)

Further, set

G(1)h,%(s, t) :=
h

2
(s2 + %2)−α/4(t2 + %2)−α/4,

G(2)h,%(s, t) :=
h

2
(s2 + %2)−α/4

(
e−h|s−t| − 1

)
(t2 + %2)−α/4,

and denote by G
(j)
h,% the integral operator with kernel G

(j)
h,%(s, t), j = 1, 2. Then

we have
Gh,% = G

(1)
h,% +G

(2)
h,%,

and therefore the estimates

±n+(h
2(α−1);Gh,%) ≤ ±n+((1∓ ε)h

2(α−1);G
(1)
h,%) + n±(εh

2(α−1);G
(2)
h,%) (4.9)

hold for each ε ∈ (0, 1).

Next, G
(1)
h,% is a rank-one operator whose unique non-zero eigenvalue equals

h

2

∫
R

dx

(x2 + %2)α/2
= %1−αhC̃α, C̃α :=

√
πΓ((α − 1)/2)

2Γ(α/2)
.
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Hence, for ε ∈ (0, 1),

n+((1∓ ε)h
2(α−1);G

(1)
h,%) =

{
1, if % < (1∓ ε)−1/(α−1)C̃1/(α−1)α h−2+1/(α−1),
0, otherwise.

Thus we get

2πh4
∫ ∞
0

n+((1∓ ε)h
2(α−1);G

(1)
h,%) %d% =

(1∓ ε)−2/(α−1)πC̃2/(α−1)α h2/(α−1) = (1∓ ε)−2/(α−1)Cα|λ|
−1/(α−1). (4.10)

Further, for δ ∈ (0, (α− 1)/2) we have

‖G(2)h,%‖
2
2 =

h2

4

∫
R

∫
R

(s2 + %2)−α/2(t2 + %2)−α/2
(
e−h|s−t| − 1

)2
dsdt ≤

c12h
2(1+δ)

∫
R

|s|2δ(s2 + %2)−α/2 ds

∫
R

(t2 + %2)−α/2 dt = c13h
2(1+δ)%2(1−α+δ)

where c12 and c13 are independent of h and %. Using the estimate

n±(εh
2(α−1);G

(2)
h,%) ≤ ent

{
ε−2h4(1−α)‖G(2)h,%)‖

2
2

}
,

we find that
n±(εh

2(α−1);G
(2)
h,%) = 0

if % > c14h
(3−2α+δ)/(α−1−δ) with c14 := (ε

−2c13)
1/2(1−α+δ), and

n±(εh
2(α−1);G

(2)
h,%) ≤ c13ε

−2h2(3+δ−2α)%2(1−α+δ)

if % ≤ c14h(3−2α+δ)/(α−1−δ). Consequently,

2πh4
∫ ∞
0

n±(εh
2(α−1);G

(2)
h,%) %d% ≤ c15h

2(1−δ)/(α−1−δ) = c15|λ|
−(1−δ)/(α−1−δ)

where c15 depends on ε but is independent of h and %. Since α < 2, we have
1−δ
α−1−δ >

1
α−1 for δ > 0 small enough. Therefore,

2πh4
∫ ∞
0

n±(εh
2(α−1);G

(2)
h,%) %d% = o(|λ|

−1/(α−1)), λ→ −∞. (4.11)

The combination of (4.6) and (4.8)–(4.11) yields

lim inf
λ→−∞

|λ|−1/(α−1)D(λ) ≥ (1 + ε)−2/(α−1)Cα, (4.12)

lim sup
λ→−∞

|λ|−1/(α−1)D(λ) ≤ (1− ε)−2/(α−1)Cα. (4.13)

Letting ε ↓ 0 in (4.12) and (4.13), we get (4.5). ♦

4.2. In this section we consider the potential satisfying (4.1)–(4.2) with
α = 1 and W = 0, i.e. the Coulomb potential.

Proposition 4.2 Let V satisfy (4.1) - (4.2) with α = 1 and W = 0. Then we
have

lim
λ→−∞

|λ|e2
√
|λ|/gD(λ; g) = πe−2γE (4.14)

where γE is the Euler constant.
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Proof. As in the proof of Proposition 4.1 we assume g = 1 without any loss
of generality. Arguing as in the derivation of (4.6), we get

D(λ) = 2πh4
∫ 1
0

N (−h−2;h2%) %d%, h = |λ|−1/2. (4.15)

Here we have also taken into account the fact that (z2+r2)−1/2 < |λ| if r > |λ|−1,
z ∈ R, and, hence, N (λ; r) = 0 for r > |λ|−1.
However, now we need a modification of the proof of Proposition 4.1 since

the function
f%(t) := (t

2 + %2)−1/2, % > 0, (4.16)

does not belong to L1(Rt).
Define the unitary operator Fh : L2(R)→ L2(R) by

(Fhu)(ξ) :=

(
h

2π

)1/2 ∫
R

e−ixξhu(x) dx, h > 0.

Arguing as in the derivation of (4.8), we get

N (−h−2;h2%) = n+(1; f
1/2
% F

∗
hf
2Fhf

1/2
% ), (4.17)

where f := f1 (see (4.16)). The operator f
1/2
% F∗hf

2Fhf
1/2
% is unitarily equivalent

to Fhf
1/2
% F∗hf

2Fhf
1/2
% F∗h , whose non-zero eigenvalues coincide with the non-zero

eigenvalues of the operator Jh,% := fFhf%F∗hf . Therefore,

n+(1; f
1/2
% F

∗
hf
2Fhf

1/2
% ) = n+(1; Jh,%). (4.18)

Note that the operator Jh,% is an integral operator with kernel

Jh,%(s, t) :=
h

π
f(s)Rh,%(s− t)f(t)

where
Rh,%(z) := K0(h%|z|), z ∈ R \ {0},

and

K0(t) :=

∫ ∞
0

cos(tx)

(x2 + 1)1/2
dx = −

1

π

∫ π
0

et cos θ
{
γE + ln(2|t| sin

2 θ)
}
dθ, (4.19)

for t in R \ {0} is the modified Bessel (McDonald) function (see [1, (9.6.21),
(9.6.17)]). Obviously,

K0(t) = ϕ(t) ln |t|+ ω(t)

with

ϕ(t) := −
1

π

∫ π
0

et cos θ dθ,

ω(t) := −
1

π

∫ π
0

et cos θ
(
γE + ln 2 + ln sin

2 θ
)
dθ.
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Moreover, ϕ(0) = −1, ω(0) = ln 2− γE . Finally, [1, (9.6.27)] entails

K0(t) =

∫ ∞
0

e−|t| coshx dx ≤ e−|t|
∫ ∞
0

e−
|t|x2

2 dx =

√
π

2|t|
e−|t|.

Introduce the operators J
(l)
h,%, l = 1, 2, 3, as integral operators with kernels

J (l)(s, t) :=
h

π
f(s)R

(l)
h,%(s− t)f(t)

where
R
(1)
h,%(z) := ϕ(0) ln(h%) + ω(0) = − ln(h%) + ln 2− γE ,

R
(2)
h,%(z) := ϕ(0) ln |z| = − ln |z|,

R
(3)
h,%(z) := (ϕ(h%|z|)− ϕ(0)) ln(h%|z|) + ω(h%|z|)− ω(0) =

K0(h%|z|)− ln 2 + γE + ln(h%|z|).

Then we have Rh,%(z) =
∑3
l=1R

(l)
h,%(z) and, therefore, Jh,% =

∑3
l=1 J

(l)
h,%.

Note that the quantity J
(1)
h,%(z) is in fact independent of z, while J

(2)
h,%(z) is

independent of % and h. Moreover, for each δ ∈ (0, 1) there exits a constant
c = c(δ) independent of h and % such that the estimate

|R(3)h,%(z)| ≤ c(h%)
δ|z|δ (4.20)

holds for each h > 0, % > 0, and z ∈ R.
Define the orthogonal projection P : L2(R)→ L2(R) by

(Pu)(t) :=
1

π
f(t)

∫
R

u(s)f(s) ds, u ∈ L2(R).

Set Q := Id− P . Since J (1)h,%Q = 0, we have

Jh,% = PJh,%P +Q(J
(2)
h,% + J

(3)
h,%)Q+ 2ReP(J

(2)
h,% + J

(3)
h,%)Q.

Completing the squares, we derive the estimates

±Jh,% ≤ ±P
(
Jh,% ± ε|J

(2)
h,%| ± |J

(3)
h,%|
)
P (4.21)

±Q
(
J
(2)
h,% ± ε

−1|J (2)h,%|+ J
(3)
h,% ± |J

(3)
h,%|
)
Q, ∀ε > 0 .

For ε > 0 set

Z±1 ≡ Z
±
1 (ε, %, h) := P

(
Jh,% ± ε|J

(2)
h,%| ± |J

(3)
h,%|
)
P|PL2(R),

Z±2 ≡ Z
±
2 (ε, %, h) := Q

(
J
(2)
h,% ± ε

−1|J (2)h,%|+ J
(3)
h,% ± |J

(3)
h,%|
)
Q|QL2(R).
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Since L2(R) = PL2(R)⊕QL2(R), (4.21) implies that the inequalities

n+(1; Jh,%) ≥ n+(1;Z
−
1 (ε)) + n+(1;Z

−
2 (ε)), (4.22)

n+(1; Jh,%) ≤ n+(1;Z
+
1 (ε)) + n+(1;Z

+
2 (ε)), (4.23)

hold for each ε > 0. Note that if ε ∈ (0, 1), then the operator Z−2 (ε) is non-
positive, and hence

n+(1;Z
−
2 (ε)) = 0. (4.24)

Next, we show that for % ∈ (0, 1], every fixed ε > 0, and h small enough we have

n+(1;Z
+
2 (ε)) = 0. (4.25)

First, we apply the elementary estimates

n+(1;Z
+
2 (ε)) ≤ 4(1 + ε

−2)‖J
(2)
h,%‖

2
2 + 2‖J

(3)
h,%‖

2
2. (4.26)

Further,

‖J (2)h,%‖
2
2 =

h2

π2

∫
R

∫
R

(ln |s− t|)2(1 + s2)−1(1 + t2)−1 dsdt = c16h
2 (4.27)

with c16 independent of h and %. Similarly, (4.20) implies

‖J (3)h,%‖
2
2 ≤ c(δ)

2 h
2

π2
(h%)2δ

∫
R

∫
R

|s− t|2δ(1 + s2)−1(1 + t2)−1 dsdt =

c17h
2(h%)2δ ≤ c17h

2+2δ (4.28)

with δ ∈ (0, 1/2), and c17 independent of h and % ∈ (0, 1].
Fix ε ∈ (0, 1) and choose h so small that we have 4c16(1+ε−2)h2 +2c17h2+2δ

< 1. Then (4.26)–(4.28) entails (4.25).
Next the operator Z±1 (ε) is unitarily equivalent to “the operator”

j±h,%(ε) :=
1

π

(
〈Jh,%f, f〉L2(R) ± ε〈|J

(2)
h,%|f, f〉L2(R) ± 〈|J

(3)
h,%|f, f〉L2(R)

)
=

h (− ln(h%)− γE)±
ε

π
〈|J (2)h,%|f, f〉L2(R) +

1

π
〈
(
J
(3)
h,% ± |J

(3)
h,%|
)
f, f〉L2(R)

acting in C. Here we have taken into account the identities

1

π
〈J (1)h,%f, f〉L2(R) = h(− ln (h%)− γE + ln 2),

1

π
〈J
(2)
h,%f, f〉L2(R) = −

h

π2

∫
R

∫
R

ln |s− t|(1 + s2)−1(1 + t2)−1 dsdt = −h ln 2.

Therefore, the identities

n+(1;Z
±
1 (ε)) = n+(1; j

±
h,%(ε)). (4.29)
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are valid for each h > 0, % ∈ (0, 1], and ε ∈ (0, 1).
Fix an arbitrary η > 0, and bearing in mind (4.27)–(4.28), choose ε > 0 and

h > 0 so small that we have

±j±h,%(ε) ≤ ±j̃
±
h,%(η) := ±h (− ln(h%)− γE ± η) .

Thus we get
±n+(1; j

±
h,%(ε)) ≤ ±n+(1; j̃

±
h,%(η)). (4.30)

Finally, we take into account the elementary relation

n+(1; j̃
±
h,%(η)) =

{
1, if % < 1

h
e−1/h−γE±η,

0, otherwise.
(4.31)

Combining (4.5), (4.17), (4.18), (4.22)–(4.25), (4.29)–(4.31), we find that the
estimates

±D(λ) ≤ ±2πh4
∫ 1

h e
−1/h−γE±η

0

%d% = ±π|λ|−1e−2
√
|λ|−2γE±2η (4.32)

are valid for each fixed η > 0 and |λ| large enough. Multiplying (4.32) by

|λ|e2
√
|λ|, letting at first λ→ −∞, and then η ↓ 0, we come to (4.14). ♦

4.3. In this subsection we consider potentials V satisfying (4.1)–(4.2) with
α ∈ [1, 2) and general W .

Theorem 4.1 Let V satisfy (4.1)–(4.2) with α ∈ (1, 2) and |W | ≤ W1 +W2
where W1(X) = c|X |−α+ε0 , c > 0, ε0 ∈ (0, α − 1), W2 ≥ 0, and the operator

familyW2(X⊥)
1/2
(
− d

2

dz2 + 1
)−1/2

satisfies assumption H1. Then (4.5) remains

valid.

Proof. Fix δ ∈ (0, 1). The minimax principle yields

±N(λ;χ(V (X⊥))) ≤ ±N(λ;χ((1 ∓ δ)
−1U(X⊥)))+

N(λ;χ(−2δ−1W1(X⊥))) +N(λ;χ(−2δ
−1W2(X⊥))). (4.33)

On the other hand, Proposition 4.1 entails, for all δ ∈ (0, 1),

lim
λ→−∞

|λ|1/(α−1)
∫
R2

N(λ;χ((1∓ δ)−1U(X⊥))) dX⊥ = Cα((1∓ δ)
−1g), (4.34)

and ∫
R2

N(λ;χ(−ηW1(X⊥))) dX⊥ = O(|λ|−1/(α−ε0−1)) (4.35)

= o(|λ|−1/(α−1)), λ→ −∞, ∀η > 0,

Moreover, Lemma 3.1 implies

N(λ;χ(−ηW2(X⊥))) = 0, ∀X⊥ ∈ R
2. (4.36)
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for every fixed η > 0 and sufficiently large |λ|.
Integrating (4.33) with respect to X⊥ ∈ R2, and bearing in mind (4.34)-

(4.36), we get

lim sup
λ→−∞

|λ|1/(α−1)D(λ, g) ≤ Cα((1 − δ)
−1g),

lim inf
λ→−∞

|λ|1/(α−1)D(λ, g) ≥ Cα((1 + δ)
−1g),

with arbitrary δ ∈ (0, 1). Letting δ ↓ 0, we come to (4.5). ♦

Theorem 4.2 Let V satisfy (4.1)–(4.2) with α = 1 and let the asymptotic esti-
mate

∥∥|W (X⊥)|1/2
(
−
d2

dz2
− λ

)−1/2 ∥∥ = O (|λ|− 14−ε0) , λ→ −∞, (4.37)

hold with some ε0 > 0 uniformly with respect to X⊥ ∈ R2. Then (4.14) remains
valid.

Remark. Let |W | ≤W1 +W2 where W1(X) = c|X |−β , c > 0, β ∈ (0, 1), and
W2 is non-negative, bounded and decays at infinity. Obviously,

∥∥W1(X⊥)1/2
(
−
d2

dz2
− λ

)−1/2 ∥∥ ≤ ∥∥W1(0)1/2
(
−
d2

dz2
− λ

)−1/2 ∥∥, ∀X⊥ ∈ R2.
Utilizing [12, Theorem XI.20], we easily get

∥∥W1(0)1/2
(
−
d2

dz2
− λ

)−1/2 ∥∥ = O (|λ| 12− 1β ) , λ→ −∞.
On the other hand,

∥∥W2(X⊥)1/2
(
−
d2

dz2
− λ

)−1/2 ∥∥ ≤ ‖W2‖L∞(R3)|λ|−1/2, λ→ −∞.
Hence, in this case W satisfies (4.37).

Proof of Theorem 4.1. Assume λ < −1. Set δ(λ) := |λ|−
1
2−ε1 with ε1 ∈

(0, 2ε0).
Similarly to (4.33) we write

±N(λ;χ(V (X⊥))) ≤ ±N(λ;χ((1∓δ(λ))
−1U(X⊥)))+N(λ;χ(δ(λ)

−1W )(X⊥))).
(4.38)

Taking into account (4.3) and (4.14) with V = U = −g|X |−1, we get

lim
λ→−∞

|λ|e2
√
|λ|/g

∫
R2

N(λ;χ((1 ∓ δ(λ))−1U(X⊥))) dX⊥ =
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lim
λ→−∞

(1∓ δ)2|λ|e2
√
|λ|/g

∫
R2

N((1 ∓ δ)2λ;χ(U(X⊥)) dX⊥ =

lim
t→∞

e∓2t
−ε1/g lim

s→∞
se2
√
s/g

∫
R2

N(−s;χ(U(X⊥))) dX⊥ = πe
−2γE . (4.39)

On the other hand, the Birman–Schwinger principle and the minimax principle
entail

N(λ;χ(δ(λ)−1W (X⊥))) ≤

n+

(
δ(λ);

(
−
d2

dz2
− λ

)−1/2
|W (X⊥)|

(
−
d2

dz2
− λ

)−1/2)

Taking into account (4.37), we get

∥∥(− d2

dz2
− λ

)−1/2
|W (X⊥)|

(
−
d2

dz2
− λ

)−1/2 ∥∥ = O
(
|λ|−

1
2−2ε0

)
= o(δ(λ)), λ→ −∞ .

Hence, we have

N(λ;χ(δ(λ)−1W (X⊥))) = 0, ∀X⊥ ∈ R
2, (4.40)

for |λ| large enough. Integrating (4.38) with respect to X⊥ ∈ R2, and taking
into account (4.39) and (4.40), we obtain (4.14). ♦
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[5] L.Hörmander, Th Analysis of Linear Partial Differential Operators III.
Pseudo-Differential Operators Springer, Berlin-Heidelberg-New York, 1985.

[6] V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer,
Berlin-Heidelberg-New York, 1998.

[7] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-
Heidelberg-New York, 1966

[8] A. Mohamed, G.D.Raikov, On the spectral theory of the Schrödinger op-
erator with electromagnetic potential, In: Adv. Part. Diff. Eqns. 5, Pseudo-
Differential Calculus and Mathematical Physics, (1994) Akademie-Verlag,
pp. 298-390.

[9] G.D.Raikov, Eigenvalue asymptotics for the Schrödinger operator with
homogeneous magnetic potential and decreasing electric potential. I. Be-
haviour near the essential spectrum tips, Commun. Partial Diff. Eqns. 15
(1990), 407-434; Errata in Commun. P.D.E. 18 (1993), 1977-1979.

[10] G.D.Raikov, Border-line eigenvalue asymptotics for the Schrödinger op-
erator with electromagnetic potential, Int. Equat. Op. Theory 14 (1991),
875-888.

[11] G.D.Raikov, Eigenvalue asymptotics for the Schrödinger operator in
strong constant magnetic fields, Commun. P.D.E. 23, (1998) 1583-1620.

[12] M.Reed, B.Simon, Methods of Modern Mathematical Physics. III. Scat-
tering Theory, Academic Press, New York, 1979.

[13] M.Reed, B.Simon, Methods of Modern Mathematical Physics. IV. Anal-
ysis of Operators, Academic Press, New York, 1978.

[14] M.A. Shubin, The spectral theory and the index of elliptic operators with
almost periodic coefficients, Russian Math. Surveys 34 (1979), 109-157.

[15] A.V.Sobolev, Asymptotic behaviour of the energy levels of a quantum
particle in a homogeneous magnetic field, perturbed by a decreasing electric
field, I, Probl. Mat. Analiza, Leningrad University 9 (1984), 67-84 (Rus-
sian); Engl. transl. in J. Sov. Math. 35 (1986), 2201-2211.

[16] B.Simon, The bound state of weakly coupled Schrödinger operators in one
and two dimensions, Ann. Physics, 97 (1976), 279-288.

[17] H.Tamura, Asymptotic distribution of eigenvalues for Schrödinger opera-
tors with magnetic fields, Osaka J. Math. 25 (1988), 607-635.

Georgi D. Raikov

Section of Mathematical Physics
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl.8, 1113 Sofia, Bulgaria
Email address: gdraikov@omega.bg


