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PERSISTENCE OF INVARIANT MANIFOLDS FOR

PERTURBATIONS OF SEMIFLOWS WITH SYMMETRY

Chongchun Zeng

Abstract. Consider a semiflow in a Banach space, which is invariant under the

action of a compact Lie group. Any equilibrium generates a manifold of equilib-

ria under the action of the group. We prove that, if the manifold of equilibria is

normally hyperbolic, an invariant manifold persists in the neighborhood under any

small perturbation which may break the symmetry. The Liapunov-Perron approach
of integral equations is used.

I. Introduction

In the study of dynamical systems in finite-dimensional spaces, the theory of
invariant manifolds has proved to be an important tool. Invariant manifolds, along
with invariant foliations, can be used to construct coordinate systems in which the
differential equations are partially decoupled. These coordinate systems are very
useful in tracking the asymptotic behavior of orbits in neighborhoods of equilibria.
In recent years, the theory of invariant manifolds has been generalized to semiflows
in Banach spaces. See, for example, [BJ], [Ca], [CH], [CL1], [CL2], [H], [He], [Ke],
[MS], [BLZ] and others. Here we extend some of these results to the case where
an infinite-dimensional dynamical system is invariant under the action of a smooth
Lie group in such a way that an equilibrium gives rise to a manifold of equilibria
through the group action. The principal question addressed here is, what happens
to this manifold when the system is perturbed, possibly breaking the symmetry in
the system?
Let X be a Banach Space. Suppose S(t) is a semiflow generated by a semilinear

equation in X and suppose that it is invariant under the action in X of a connected
compact symmetry group G. If the origin 0 is an equilibrium and the group G
acts at 0 in a nondegenerate way, then the image of 0 under the group action is
a manifold of equilibria, diffeomorphic to G. Here we establish the persistence of
this manifold under small perturbations of the system provided the manifold is
normally hyperbolic. One can find many examples of systems of PDE’s which have
an inherent symmetry arising from an idealized model. One is interested in the
structural stability of such systems and in the behavior of solutions to a perturbed
system. An example may be found in the work by Bates [Ba] and Barrow & Bates
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[BB1], [BB2], [BB3], where periodic traveling waves for a Ginzburg-Landau system
are considered and the unperturbed system is invariant under the groupO(2)×O(2).
In order to prove the persistence, we require that the center subspace of the

linearized equation at 0 coincides with the tangent space of the manifold of equilib-
ria, that is, the manifold is normally hyperbolic. For finite-dimensional dynamical
systems, Fenichel [F1] and, independently, Hirsch, Pugh, and Shub [HPS] proved
that compact normally hyperbolic invariant manifolds persist under small pertur-
bations. Mañé [Mn] proved that normal hyperbolicity is also a necessary condition.
In infinite-dimensional spaces, Henry [He] proved the persistence of normally hy-
perbolic invariant manifolds which are graphs of maps from closed linear subspaces
to their complementary subspaces. A more general result can be found in [BLZ].
Traditionally, there are two methods dealing with invariant manifolds. One

dates back to Hadamard [Ha] and the other to Liapunov [Ly] and Perron [Pe].
The Hadamard approach, which is also called the graph-transform method, is more
geometric, while the Liapunov-Perron method is more analytic and the strategy is
to finds the manifolds as fixed points of some integral equations. In this work, we
use the analytic method of Liapunov-Perron.
Consider the equation

ut = F (u), (1)

where
F (u) = Au+ f(u)

and t > 0. The operator A, defined on a dense subspace D(A) of X, is the generator
of a strongly continuous semigroup T (t) on X. Assume that f is Lipschitz on X
and such that

f(0) = 0 and for any θ > 0, there exists a neighborhood U of 0, such that
Lip f |U < θ.

Thus, A is the linear part of the right side of (1). Following a standard result,
(See, for example, page 184, [Pa]) (1) determines a C0 semiflow S(t) on X, i.e.
S : [0,∞) ×X → X is continuous in both variables and

S(t1) ◦ S(t2) = S(t1 + t2)

for all t1, t2 ∈ [0,∞).
Let G be an n-dimensional connected compact Lie group and assume that G acts

smoothly (C2) on X and D(A) is invariant under the action of G. Furthermore,
assume that the semiflow generated by (1) is also G-invariant, i.e.,

S(t)(gu) = g(S(t)u) (2)

for all t ≥ 0, g ∈ G and u ∈ X. Throughout this paper, we shall use u, v and
so on to denote elements in X and g, h and so on to denote elements in G. With
a slight abuse of notation, for an element g ∈ G, we also use g to represent the
transformations on X defined by the group action and the left transformations Lg
on G defined by Lgh = gh for all h ∈ G. The invariance of the semiflow S(t) under
action of G can be written in another form: for all u ∈ D(A) and g ∈ G,

F (gu) = Dg(u)F (u),

where Dg(u)v ≡ limh→0
g(u+hv)−g(u)

h
is the derivative of the action of g on X.

Let φ̄ : G×X → X be the action, i.e. φ̄(g, x) = gx, which is C2 on G×X. Let
φx = φ̄|G×{x} for x ∈ X so that φx is a smooth map from G to X.

Assume that φ0 is one-to-one and Dφ0(e) is of rank n (where Dφx = DGφ̄(g, x)).
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Lemma 1. G(0) = φ0(G) is a C
2 compact submanifold of X, which is composed

of equilibria of the semiflow S(t).

Proof. Since

φx ◦ g = g ◦ φx : G→ X,

then,

Dφx(g) ◦Dg(e) = Dg(x)Dφx(e),

thus,

Dφx(g) = Dg(x)Dφx(e)(Dg(e))
−1,

therefore for all g ∈ G,Dφ0(g) is of rank n.
Combining this result with the fact that φ0 is one-to-one gives us the first con-

clusion.
Since 0 is an equilibrium of equation (1), (2) implies φ0(G) is composed of

equilibria, so it is invariant under the action of S(t). �

Since G is compact and Dφx(g) is continuous in G×X, there exists δ > 0, such
that Dφx(g) is of rank n for all g ∈ G and x ∈ Bδ(0), the ball of radius δ in X. So,
for all h ∈ G, Dφh(x)(g) = Dφx(gh) ◦DRh(g) is of rank n for the above g and x,
where Rh is the right translation in G. Also, there exists M̄ such that for all g, h ∈
G and x ∈ Bδ(h(0)), we have 1/M̄ < ‖Dg(x)‖ < M̄ . (In fact, we will use M̄ as a
universal upper bound.)
Let σ(A) be the spectrum of A. Let σs = {λ ∈ σ(A) |Re λ < 0}, σc = {λ ∈

σ(A) |Re λ = 0}, σu = {λ ∈ σ(A) |Re λ > 0}. Assume A satisfies:

(1) σc = {0},
(2) σu is compact,
(3) There exists α > 0 such that α < inf Re σu and −α > supRe σs.

Therefore, we have closed subspaces Xu,Xs,Xc corresponding to σu, σs, σc, in-
variant under A, and X = Xu ⊕ Xc ⊕ Xs, (see page 321 [TL]). Let Pu, Ps, Pc be
the corresponding projections. Let Pz = I − Pc = Pu + Ps. Assume

Xc = Dφ0(e)Te(G),

where Te(G) is the tangent space of G at e. Because of the previous assumption, Xc
is an n-dimensional subspace of X, which is the tangent space of the submanifold
φ0(G) at 0. Let As = A|Xs , Au = A|Xu , and Ac = A|Xc . Since G(0) consists of
equilibria, then F |G(0) = 0. Note that f is differentiable at u = 0 and f

′(0) = 0,
so that Ac = 0. Since Au has compact spectrum, so it is bounded and generates a
group eAut = Tu(t) = T |Xu satisfying ‖Tu(t)‖ ≤ M1e

αt for t < 0, where M1 ≥ 1.
Also, As generates a C0-semiflow Ts(t) = T (t)|Xs onXs. Assume ‖Ts(t)‖ ≤M2e

−αt

for t > 0, where M2 ≥ 1. By renorming, we may assume M1 =M2 = 1.
Now we consider a perturbed equation:

ut = Au+ f(u) + εH(u) ≡ Fε(u), (3)

where H(·) is Lipschitz on X with Lipschitz constant L. For the same reason as for
equation (1), it is clear that (3) determines a C0 semiflow Sε(t) on X. Our main
result is:
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Theorem. Under the above conditions, when ε is sufficiently small, there is a
Lipschitz invariant manifold of the semiflow Sε(t) near G(0).

Remark. The same result is true with H(u, ε) in place of εH(u) provided that
H(u, ε) is continuous, H(u, 0) = 0, and H is Lipschitz in u with the Lipschitz
constant converging to 0 as ε→ 0.

II. Proof of the Theorem.

Define ‖ · ‖ on Tg(G) as ‖v‖ = ‖Dφ0(g)v‖. We may use this norm to define a
metric d(·, ·) on G as the infimum of the length of the C1 curves lying in φ0(G)
joining two image points under φ0 in X.
Clearly d(g, h) ≥ ‖φ0g − φ0h‖. If ‖φ0gk − φ0g0‖ → 0 as k → +∞, there exists a

neighborhood U of g0 and a local coordinate ψ : U → Bn1 (0), the unit ball in R
n,

such that ψ(g0) = 0. Since φ0(G) is a compact submanifold of X, and in particular,
a proper submanifold of X, therefore φ0gk → φ0g0 in X, implies gk → g0 in G.
Suppose gk ∈ ψ−1(Bn1

2

(0)). Since φ0 ◦ψ−1 is a diffeomorphism and ‖Dφ0 ◦ψ−1‖ on

Bn1
2

(0) is bounded, it follows that d(gk, g0)→ 0.

So, d(·, ·) induces the same topology on φ0(G) as that inherited fromX and φ0(G)
is diffeomorphic to G. From this, there exits a constant C0 such that ‖φ0g−φ0h‖ ≤
d(g, h) ≤ C0‖φ0g − φ0h‖ for all g, h ∈ G.
Suppose the diameter of G under d(·, ·) isM > 0. Define Y = G×(Xs⊕Xu), φ =

φ̄|Y for (g, x) ∈ Y, v ∈ Tg(G), z ∈ Xs ⊕Xu,

Dφ(g, x)(v, z) = Dφ(g, x)(v, 0) +Dφ(g, x)(0, z)

= Dφx(g)v +Dg(x)(z)

= Dg(x)Dφx(e)(Dg(e))
−1v +Dg(x)(z)

= Dg(x)(Dφx(e)(Dg(e))
−1v + z), (4)

as in the proof of Lemma 1. Since

X = Xc ⊕Xs ⊕Xu

= Dφ0(e)Te(G) ⊕Xs ⊕Xu

= Dφ0(e)(Dg(e))
−1Tg(G) ⊕Xs ⊕Xu,

so, by the argument following Lemma 1, there exists δ > 0 such that for (g, x) ∈
Yδ = {(g, x) ∈ Y : ‖x‖ ≤ δ}, Dφ(g, x) is one-to-one and onto from TgG×(Xu⊕Xs)
to X. TgG× (Xu ⊕Xs) may be identified with T(g,x)Y , the direct sum of TgG and
Xu⊕Xs, with norm given by the sum of the two norms on TgG and Xu⊕Xs. Thus,
Dφ(g, x) is an isomorphism between T(g,x)Y and X. With this norm on T(g,x)Y
we may extend the metric d on Y in the natural way. It is easy to verify that
d((g1, x1), (g2, x2)) = d(g1, g2) + ‖x1 − x2‖ is a metric on Y .
Next we prove that when δ is small enough φ : Yδ → X is one-to-one. Otherwise,

there exists (gk, xk), (hk , yk) ∈ Y with xk → 0 and yk → 0 such that gkxk = hkyk,
which implies h−1k gkxk = yk. Since G is compact, without loss of generality, suppose

that h−1k gk converges to g. Let k → ∞, we get g(0) = 0, so, g = e, which implies

h−1k gk → e, h−1k gkxk = yk. But Dφ(e, 0) is an isomorphism so, by the Inverse
Function Theorem, φ is a local diffeomorphism near (e, 0). So, for k sufficiently
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large, h−1k gk = e and xk = yk, which is a contradiction. Therefore, there exists
δ > 0 such that φ : Yδ → X is one-to-one. By Inverse Function Theorem, φ is a
diffeomorphism from Yδ to φ(Yδ), an open subset containing φ0(G).
For g ∈ G define g : Y → Y as g(h, x) = (gh, x). Note that g ◦ φ = φ ◦ g, where

the g on the left side denotes the action on X and the g denotes the transformation
on Y . Define

π1 : Y → G, π1(g, x) = g,

π+2 : Y → Xu, π
+
2 (g, x) = Pux,

π−2 : Y → Xs, π
−
s (g, x) = Psx,

π2 = π
+
2 + π

−
2 .

These projections are clearly smooth.
Since φ is smooth andG is compact, from (4), it is easy to find constants a1, δ > 0

such that for all (g, x) ∈ Yδ,

a1 ≥ ‖Dφ(g, x)‖, ‖Dφ(g, x)
−1‖. (5)

So, for (g1, x1), (g2, x2) ∈ Yδ,

‖φ(g1, x1)− φ(g2, x2)‖/a1 ≤ d((g1, x1), (g2, x2)) ≤ a1‖φ(g1, x1)− φ(g2, x2)‖.

Now we pull back (1) and (3) through φ on Yδ:

F̃ (g, x) = (Dφ)−1F (φ(g, x)), (6)

F̃ε(g, x) = (Dφ)
−1Fε(φ(g, x)), (7)

for x ∈ Xs ⊕ Xu ∩ D(A) and g ∈ G. Let ηδ be a Lipschitz cut-off function such
that ηδ: [0,+∞) → [0, 1], ηδ = 1 on [0,

δ
2
], ηδ = 0 on [δ,+∞), and 0 ≤ Lipη ≤ 4

δ
.

In fact, we will consider ηδ(‖x‖)F̃ and ηδ(‖x‖)F̃ε instead of F̃ and F̃ε, but for
simplicity, we will just write F̃ and F̃ε. With this notation, F̃ and F̃ε are defined
on all of Y .
By definition F̃ (g, 0) = 0. Since g ◦ φ = φ ◦ g,

F̃ (g, x) = (Dφ)−1F (gx) = (Dφ)−1Dg(x)F (x)

= D(φ−1 ◦ g)(x)F (x) = D(g ◦ φ−1)(x)F (x)

= Dg(e, x)Dφ−1(x)F (x) = Dg(e, x)F̃ (e, x). (8)

So, F̃ is invariant under G.
Let F̃1 = Dπ1F̃ , F̃2 = Dπ2F̃ , F̃

+
2 = Dπ

+
2 F̃ and F̃

−
2 = Dπ

−
2 F̃ . Similarly, define

H̃1, H̃2, H̃
+
2 , H̃

−
2 , F̃ε,1, F̃ε,2, F̃

+
ε,1 and F̃

+
ε,2. Identity (8) and π1 ◦g = g ◦π1 imply that

F̃1(g, x) = Dπ1F̃ (g, x) = Dπ1Dg F̃ (e, x)

= DgDπ1F̃ (e, x) = DgF̃1(e, x), (9)

and π2 ◦ g = π2 implies that

F̃2(g, x) = Dπ2DgF̃ (e, x) = F̃2(e, x). (10)
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So F2 is independent of the first component and we can write F̃2(x) for x ∈ (Xs ⊕
Xu) ∩D(A). Also,

F̃2(x) = Dπ2(Dφ(e, x))
−1F (x) = Dπ2(Dφ(e, x))

−1(Ax+ f(x))

= Ax+Dπ2(Dφ(e, x))
−1f(x) = Ax+ f̃2(x), (11)

where f̃2(x) = Dπ2(Dφ(e, x))
−1f(x). From (9),

F̃1(g, x) = Dg(e)Dπ1(e, x)(Dφ(e, x))
−1F (x)

= Dg(e)Dπ1(e, x)(Dφ(e, x))
−1(Ax+ f(x))

= Dg(e)Dπ1(e, x)(0, Ax) +Dg(e)f̃1(x) = Dg(e)f̃1(x), (12)

where f̃1(x) = Dπ1(Dφ(e, x))
−1f(x). Let

Qε,1(g, x) = F̃1(g, x) + εH̃1(g, x) = Dg(e)f̃1(x) + εH̃1(g, x), (13)

Qε,2(g, x) = f̃2(x) + εH̃2(g, x). (14)

Similarly, define Q+ε,2 Q
−
ε,2. All this quantities are defined on Yδ, the image of a

tubular neighborhood of the manifold G(0) under φ. In the rest of the paper, we
shall only work in Y δ

2
. Let A2 = Au ⊕As. Consider

g′ = F̃1(g, x) + εH̃1(g, x) = Qε,1(g, x), (15)

x′ = A2x+ f̃2(x) + εH̃2(g, x) = A2x+Qε,2(g, x). (16)

This system is equivalent to (3) on Yδ/2. Equation (16) can be written as

ẋ+ = Aux
+ +Q+ε,2(g, x

+, x−), (17)

ẋ− = Asx
− +Q−ε,2(g, x

+, x−), (18)

where x+ = Pux and x
− = Psx. Notice by (5) that H̃, H̃1, H̃2, H̃

+
2 , and H̃

−
2 , are

still Lipschitz functions in Y δ
2
and the Lipschitz constants are independent of ε and

δ. Let M̄ be a universal upper bound of LipDφ, ‖Dg(e)‖, ‖Dπ‖, H̃ , the norms of
H̃1, H̃2, H̃

+
2 , and H̃

−
2 , and their Lipschitz constants on Yδ/2 and also bigger than

a1 in (5). In fact, we have used M̄ as an upper bound of ‖Dg‖ before. In the
following L(δ) always will denote a quantity, which depends on x and g such that
L(δ)→ 0 as δ → 0 uniformly in x and g. Then we have

‖Qε,1(g, x)‖ ≤ εM̄ + L(δ)‖x‖, (19)

‖Qε,2(g, x)‖ ≤ εM̄ + L(δ)‖x‖. (20)

Since

f̃2(x1)− f̃2(x2) = Dπ2Dφ
−1(x1)(f(x1)− f(x2))

+ (Dπ2Dφ
−1(x1)−Dπ2Dφ

−1(x2))f(x2),
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we have

‖f̃2(x1)− f̃2(x2)‖ ≤ ‖x1 − x2‖L(δ), (21)

In the same way we get

‖H̃2(g1, x1)− H̃2(g2, x2)‖ ≤ M̄(d(g1, g2) + ‖x1 − x2‖)

= M̄d((g1, x1), (g2, x2)). (22)

So,

‖Qε,2(g1, x1)−Qε,2(g2, x2)‖ ≤ (εM̄ + L(δ))‖x1 − x2‖

+ εM̄d(g1, g2), (23)

where all the above conclusions hold in Yδ/2.
Let

Z+ =

{
γ+ : G→ Xu| ‖γ

+(e)‖ ≤
δ

8
and γ+ is Lipschitz with Lipγ+ ≤

δ

8M

}
,

Z− =

{
γ− : G→ Xs| ‖γ

−(e)‖ ≤
δ

8
and γ− is Lipschitz with Lipγ− ≤

δ

8M

}
.

Recall thatM is the diameter of G. Define |·| on Z+, Z− as |γ±| = maxg∈G ‖γ±(g)‖.
Define |·| on Z+×Z− as |γ| = |γ+|+|γ−|. It is not hard to verify that Z+, Z−, Z+×
Z− are complete.
We shall define a contraction mapping E on Z+ × Z− so that the graph of

its fixed point is the unique invariant manifold in Y δ
2
for system (15) and (16).

The transformation E = (E+, E−) is defined in the following way. For any fixed
γ ∈ Z+ × Z−, we substitute γ(g) into equation (15) and obtain a vector field on
G which depends on γ. For any initial point g0 ∈ G, the trajectory g(t) of this
vector field exists for all t ∈ (∞,∞). Next, substitute g(t) and γ(g(t)) into the
high order part of equations (17) and (18) and derive two unautonomous equations
for x+ and x−, respectively. Solve equation (17) and (18) with zero value at ∞
and −∞, respectively. Suppose x+(t) and x−(t) are solutions, then we define
E+γ(g0) = x

+(0) and E−γ(g0) = x
−(0). Finally, we verify that E is a contraction

and the graph of its fixed point is an invariant manifold.
Take any γ ∈ Z+ × Z−. The argument before Lemma 4 depends on the choice

of γ. Since γ(g) ∈ Yδ/2,
ġ = Qε,1(g, γ(g)) (24)

defines a vector field on G.

Lemma 2. Suppose g1, g2 ∈ G, and g1(t), g2(t) are solutions of (24) with initial
values g1 and g2, respectively. We have

d(g1(t), g2(t)) ≤ e
C3(ε,δ)td(g1, g2),

where

C3(ε, δ) = εM̄ + L(δ)δ + (εM̄ + L(δ))
δ

4M
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is a constant independent of γ, g1, and g2.

When (24) is vector field on Rn, this estimate follows directly from the Gronwall’s
Inequality. Here, the difficulty is that G only has a Finsler structure on it.

Proof. Let g(t) be the solution of (24) with initial point g0. Obviously, g(t) depends
on γ. By (19)

d(g(t), e) ≤ d(g0, e) +

∫ t
0

‖Qε,1(g(s), γ(g(s)))‖ds

≤ d(g0, e) +

∫ t
0

(εM̄ + L(δ)‖γ(g(s))‖) ds

≤ d(g0, e) + εM̄t+

∫ t
0

L(δ)
δ

4M
d(g(s), e) + L(δ)‖γ(e)‖ ds

≤ d(g0, e) + (εM̄ + L(δ)‖γ(e)‖)t +

∫ t
0

L(δ)
δ

4M
d(g(s), e)ds.

Let

C1(δ) =
L(δ)δ

4M
, C2(ε, δ) = εM̄ + L(δ)

δ

4M
.

By Gronwall’s inequality,

d(g(t), e) ≤ d(g0, e)e
C1(δ)t +

C2(ε, δ)

C1(δ)
(eC1(δ)t − 1). (25)

For t < 0 we have the same estimate by changing t to |t|.
For g1, g2 ∈ G, let g1(t), g2(t) be solutions of (24) with initial values g1 and g2.

(We use Qε,1(g) to denote Qε,1(g, γ(g)).) Before we go further, we do some more
estimates. For (g1, x1), (g2, x2) ∈ Yδ/2, we have

‖Dφ0(g1)H̃1(g1, x1)−Dφ0(g2)H̃1(g2, x2)‖

= ‖Dφ0(g1)Dπ1(g1, x1)Dφ
−1(g1x1)H(g1x1)

−Dφ0(g2)Dπ1(g2, x2)Dφ
−1(g2x2)H(g2x2)‖

≤ ‖Dφ0(g1)Dπ1(g1, x1)Dφ
−1(g1x1)

−Dφ0(g2)Dπ1(g2, x2)Dφ
−1(g2x2)‖ · ‖H(g1x1)‖

+ ‖Dφ0(g2)Dπ1(g2, x2)Dφ
−1(g2x2)‖ ‖H(g1x1)−H(g2x2)‖

≤ M̄(d(g1, g2) + ‖x1 − x2‖), (26)

and

‖Dφ0(g1)F̃1(g1, x1)−Dφ0(g2)F̃1(g2, x2)‖

≤ ‖Dφ0(g1)Dg1(e)Dπ1(e, x1)Dφ
−1(x1)f(x1)

−Dφ0(g2)Dg2(e)Dπ1(e, x2)Dφ
−1(x2)f(x2)‖

≤ M̄‖x1 − x2‖L(δ) + L(δ)‖x1‖·

‖Dφ1(g1)Dg1(e)Dπ1(e, x1)Dφ
−1(x1)

−Dφ0(g2)Dg0(e)Dπ1(e, x2)Dφ
−1(x2)‖

≤ ‖x1 − x2‖L(δ) + M̄L(δ)δ(d(g1 , g2) + ‖x1 − x2‖)

≤ L(δ)‖x1 − x2‖+ L(δ)δd(g1 , g2). (27)
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So,

‖Dφ0Qε,1(g1, x1)−Dφ0Qε,1(g2, x2)‖ ≤ (εM̄ + L(δ)δ)d(g1 , g2)

+ (εM̄ + L(δ))‖x1 − x2‖. (28)

For all a > 0 take a smooth curve c(r) on G, r ∈ [0, 1], such that c(0) = g1, c(1) = g2

and d(g1, g2) ≥

∫ 1
0

‖c′(r)‖dr−a. Let g(t, r) denote the solution of (24) with initial

value c(r). If γ and Qε,1 are smooth, by (28), we have

∫ 1
0

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤

∫ 1
0

‖c′(r)‖dr +

∫ 1
0

∣∣∣∣
∣∣∣∣
∫ t
0

∂

∂s

∂

∂r
g(s, r)ds

∣∣∣∣
∣∣∣∣ dr

≤

∫ 1
0

‖c′(r)‖dr +

∫ 1
0

∫ t
0

∣∣∣∣
∣∣∣∣ ∂∂r Qε,1(g(s, r))

∣∣∣∣
∣∣∣∣ dsdr

≤

∫ 1
0

‖c′(r)‖dr +

∫ t
0

∫ 1
0

∣∣∣∣
∣∣∣∣DQε,1

(
∂

∂r
g(s, r),Dγ(

∂

∂r
g(s, r))

)∣∣∣∣
∣∣∣∣ drds

≤

∫ 1
0

‖c′(r)‖dr +

∫ t
0

∫ 1
0

(
εM̄ + L(δ)δ + (εM̄ + L(δ))

δ

4M

) ∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣ drds.

Let C3(ε, δ) = εM̄ + L(δ)δ + (εM̄ + L(δ))
δ

4M
. So,

∫ 1
0

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤

∫ 1
0

‖c′(r)‖dr + C3(ε, δ)

∫ t
0

∫ 1
0

∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣ drds,

which implies, ∫ 1
0

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤ eC3(ε,δ)t

∫ 1
0

‖c′(r)‖dr (29)

Now not all of them are smooth but they are Lipschitz and that is enough. We still
have the same estimate. Therefore,

d(g1(t), g2(t)) ≤

∫ 1
0

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤ eC3(ε,δ)t(d(g1, g2) + a),

and thus,
d(g1(t), g2(t)) ≤ e

C3(ε,δ)td(g1, g2). (30)

We will define a map E = (E+, E−) on Z+ × Z−. For brevity, below we use
Q(g(s)) to denote Q(g(s), γ(g(s))) and define

E+γ(g0) = −

∫ +∞
0

Tu(−s)Q
+
ε,2(g(s))ds, (31)

E−γ(g0) =

∫ 0
−∞

Ts(−s)Q
−
ε,2(g(s))ds, (32)

where g(s) is the solution of (24) with initial value g0 and recall that Tu, Ts are the
semiflows generated by Au, As.
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Lemma 3. E maps Z+ × Z− to itself if

εM̄ + L(δ)δ

α
<
δ

8
(C1)

and
C4(ε, δ)

α− C3(ε, δ)
≤

δ

8M
(C2)

hold.

Proof. First we verify that E+ and E− are well-defined. Since |γ| ≤
δ

2
and by

(20), ‖Q±ε,2(g(s))‖ is bounded, along with the condition on Ts, Tu, we see that E is
well-defined. Second we prove Eγ ∈ Z+ × Z− under proper conditions. By (20),

‖E+γ(e)‖ ≤

∫ +∞
0

e−αs
(
εM̄ + L(δ)

δ

2

)
ds ≤

εM̄ + L(δ) δ
2

α
.

Similarly

‖E−γ(e)‖ ≤

∫ 0
−∞

eαs
(
εM̄ + L(δ)

δ

2

)
ds ≤

εM̄ + L(δ) δ2
α

.

So, if condition (C1) holds, then ‖E+γ(e)‖ ≤
δ

8
and ‖E−γ(e)‖ ≤ δ

8 . For g1, g2 ∈ G,

let g1(t), g2(t) denote the solution of (24) with initial data g1, g2, respectively. Then
by (23),

‖E+γ(g1)− E
+γ(g2)‖ ≤

∫ +∞
0

e−αs‖Q+ε,2(g1(s))−Q
+
ε,2(g2(s))‖ds

≤

∫ +∞
0

e−αs(εM̄(d(g1(s), g2(s)) + (εM̄ + L(δ))
δ

4M
d(g1(s), g2(s)))ds

=

∫ +∞
0

e−αs
(
εM̄ + εδ

M̄

4M
+
L(δ)δ

4M

)
d(g1(s), g2(s))ds.

Let C4(ε, δ) = εM̄ + εδ
M̄

4M
+
L(δ)δ

4M
. By (30)

‖E+γ(g1)− E
+γ(g2)‖

≤

∫ +∞
0

C4(ε, δ)e
−(α−C3(ε,δ))sd(g1, g2)ds

=
C4(ε, δ)

α− C3(ε, 2)
d(g1, g2). (33)

The same is true for ‖E−γ(g1) − E−γ(g2)‖. Therefore, if condition (C2) holds
then Eγ satisfies the condition on the C0 norm and Lipschitz constant and Eγ ∈
Z+ × Z−.

Finally, we prove
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Lemma 4. E is a contraction if conditions (C1), (C2), and

εM̄ + L(δ)

(
1

α
+
C4(ε, δ)

C3(ε, δ)

1

α− C3(ε, δ)

)
<
1

2
(C3)

hold.

Proof. For γ1, γ2 ∈ Z+ × Z− let g1(t), g2(t) be the solutions of (24), with initial
value g0, and with γ replaced by γ1, γ2, respectively. Then by (23),

‖E+γ1(g0)− E
+γ2(g0)‖ ≤

∫ +∞
0

e−αs‖Q+ε,2(g1(s), γ1(g1(s)))

−Q+ε,2(g2(s), γ2(g2(s)))‖ds

≤

∫ +∞
0

e−αs(εM̄d(g1(s), g2(s)) + (εM̄ + L(δ))(‖γ1(g1(s))− γ1(g2(s))‖

+ ‖γ1(g2(s))− γ2(g2(s))‖))ds

≤

∫ +∞
0

e−αs((εM̄ + (εM̄ + L(δ))
δ

4M
) d(g1(s), g2(s))

+ (εM̄ + L(δ))|γ1 − γ2|)ds. (34)

Let γ(r) = (2− r)γ1 + (r− 1)γ2, r ∈ [1, 2], which is a homotopy between γ1 and γ2
and γ(1) = γ1, and γ(2) = γ2. Let g(t, r) denote the solution of (24) with γ = γ(r)
and initial data g(0, r) = g0. Similar to the derivation of (30) we find

∫ 2
1

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤

∫ 2
1

∫ t
0

∣∣∣∣
∣∣∣∣ ∂∂r ∂∂s g(s, r)

∣∣∣∣
∣∣∣∣ dsdr

≤

∫ t
0

∫ 2
1

∣∣∣∣
∣∣∣∣ ∂∂r Qε,1(g(s, r), γ(r)(g(s, r)))

∣∣∣∣
∣∣∣∣ drds

≤

∫ t
0

∫ 2
1

∣∣∣∣
∣∣∣∣DQε,1

(
∂

∂r
g(s, r),

∂

∂r
((2− r)γ1(g(s, r))

+ (r − 1)γ2(g(s, r)))

)∣∣∣∣
∣∣∣∣drds

≤

∫ t
0

∫ 2
1

(εM̄ + L(δ)δ)

∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣+ (εM̄ + L(δ))(

δ

4M

∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣+ ‖γ1(g(s, r)) − γ2(g(s, r))‖

)
drds

≤

∫ t
0

∫ 2
1

(εM̄ + L(δ))|γ1 − γ2|+C3(ε, δ)

∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣ drds

≤ (εM̄ + L(δ))|γ1 − γ2|t+

∫ t
0

∫ 2
1

C3(ε, δ)

∣∣∣∣
∣∣∣∣ ∂∂r g(s, r)

∣∣∣∣
∣∣∣∣ drds.

Therefore, ∫ 2
1

∣∣∣∣
∣∣∣∣ ∂∂r g(t, r)

∣∣∣∣
∣∣∣∣ dr ≤ (εM̄ + L(δ))eC3(ε,δ)tC3(ε, δ)

|γ1 − γ2|. (35)
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Returning to (34),

‖E+γ1(g0)−E
+γ2(g0)‖ ≤

∫ +∞
0

e−αs(C4(ε, δ)(εM̄ + L(δ))
eC3(ε,δ)s

C3(ε, δ)

+ (εM̄ + L(δ)))|γ1 − γ2|ds

≤ (εM̄ + L(δ))|γ1 − γ2|

(
1

α
+
C4(ε, δ)

C3(ε, δ)

1

α− C3(ε, δ)

)
. (36)

Similarly

‖E−γ1(g0)− E
−γ2(g0)‖

≤ (εM̄ + L(δ))|γ1 − γ2|

(
1

α
+
C4(ε, δ)

C3(ε, δ)

1

α− C3(ε, δ)

)
. (37)

Therefore, E is a contraction if condition (C3) holds.

Therefore there exists a unique fixed point γ0 ∈ Z+ × Z−. Next, we prove

Lemma 5. {(g, γ0(g))| g ∈ G} is an invariant set of system (15), (17), (18).

Proof. For g0 ∈ G, let g(t) be the solution of (24) withγ = γ0. Writing γ0(g) =
(γ+0 (g) + γ

−
0 (g)) ∈ Xu ⊕Xs, we have

γ+0 (g0) = −

∫ +∞
0

Tu(−s)Q
+
ε,2(g(s))ds,

which implies, for t0 > 0,

Tu(t0)γ
+
0 (g0) = −

∫ +∞
0

Tu(t0 − s)Q
+
ε,2(g(s))ds

= −

∫ t0
0

Tu(t0 − s)Q
+
ε,2(g(s))ds −

∫ +∞
0

Tu(−s)Q
+
ε,2(g(s + t0))ds

= −

∫ t0
0

Tu(t0 − s)Q
+
ε,2(g(s))ds + γ

+
0 (g(t0)).

In the same way, we have

γ−0 (g0) = Ts(t0)γ
−
0 (g0) +

∫ t0
0

Ts(t0 − s)Q
−
ε,2(g(s))ds.

Therefore, (g(t), γ0(g(t))) is a solution of that system, which implies that (g, γ0(g))
is an invariant manifold.

Finally, we consider the condition C1, C2, C3.

(C1) :
εM̄ + L(δ)δ

α
<
δ

8
,

(C2) :
δ

8M
≥

C4(ε, δ)

α− C3(ε, δ)
=

εM̄ + εδ M̄4M +
L(δ)δ
4M

α−
(
εM̄ + L(δ)δ +

(
εM̄ + L(δ)

)
δ
4M

) ,
(C3) :

1

α
> εM̄ + L(δ)

(
1

α
+
C4(ε, δ)

C3(ε, δ)

1

α−C3(ε, δ)

)

= εM̄ + L(δ)

(
1

α
+

εM̄ + εδ M̄4M +
L(δ)δ
4M

εM̄ + L(δ)δ + εδ M̄
4M
+ L(δ)δ

4M

1

α− C3(ε, δ)

)
.
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Note that L(δ) → 0 as δ → 0. It is easy to see that all these conditions are
satisfied if ε � δ � 1. In Yδ/2, the equation is equivalent to (3) in X, therefore,
when ε � δ � 1 there is an invariant manifold near φ0(G), which is given by
{gγ0(g) | g ∈ G}. �
Acknowledgment. I would like to thank the referee for carefully reading the
manuscript and making very useful suggestions.
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