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Periodic traveling waves for a nonlocal

integro-differential model ∗

Peter Bates & Fengxin Chen

Abstract

We establish the existence, uniqueness and stability of periodic trav-
eling wave solutions to an intrego-differential model for phase transitions.

1 Introduction

In this paper, we are concerned with the following integro-differential model for
phase transitions

ut −Duxx − d(J ∗ u− u)− f(u, t) = 0, (1.1)

where x ∈ R and D, d are nonnegative constants with D + d 6= 0; J ∗ u(x, t) =∫
Rn
J(x − y)u(y, t)dy is the convolution of J and u(x, t); J ∈ C1(R)

⋂
L1(R);

f(u, · ) is T−periodic, i.e., f(u, t + T ) = f(u, t) for all u, t ∈ R; and f(·, t) is
bistable. Other conditions on J and f are specified below. A typical example
of f is the cubic potential function f = ρ(1 − u2)(2u − γ(t)), where ρ > 0 is a
constant, γ(t) is T−periodic and 0 < γ(t) < 2.
When d = 0, equation (1.1) is the classical Allen-Cahn equation [12] for

which the results are known. Therefore, we will assume d > 0 throughout. Equa-
tion (1.1) can be considered as a nonlocal version of the Allen-Cahn equation
which incorporates spatial long range interaction. When d = 0 and f(u, · ) =
f(u) is independent of t, the traveling wave solution of the form u(x, t) =
U(x − ct) is studied in [12] and [13](see also their references). The nonlocal
autonomous case is studied in [5]. X. Chen [9] applied a “squeezing” technique,
due to a strong comparison principle, to study the existence, uniqueness and sta-
bility of traveling wave solutions for a variety of autonomous nonlocal evolution
equations, which includes the Allen-Cahn reaction-diffusion equation, neural
networks, the continuum Ising model, and a thalamic model. When f(u, t) is
T -periodic, periodic traveling wave solutions of the bistable reaction diffusion
are studied in [2]. In this paper, we will establish similar results to those in [2]
but for the more general equation (1.1).
We assume in this paper that

∗1991 Mathematics Subject Classifications: 35K55, 35Q99.
Key words and phrases: nonlocal phase transition, periodic traveling waves, stability.
c©1999 Southwest Texas State University and University of North Texas.
Submitted June 15, 1999. Published August 19, 1999.

1



2 Periodic traveling waves EJDE–1999/26

H1) f ∈ C2,1(R× R) is periodic in t with period T , i.e., there is a T > 0 such
that f(u, t) = f(u, t+ T ) for all u, t ∈ R.

H2) The period map P (α) := w(α, T ), where w(α, t) is the solution to

wt = f(w, t), for all t ∈ R, w(α, 0) = α, (1.2)

has exactly three fixed points α−, α0, α+, satisfying α− < α0 < α+. In
addition, they are non-degenerate and α± are stable and α0 is unstable,
that is,

d

dα
P (α±) < 1 <

d

dα
P (α0). (1.3)

H3) J(x) ∈ C1(R) is nonnegative,
∫
R
J(x) dx = 1, and

∫
R
|J ′(x)| dx <∞.

In the case D = 0, we need the following additional condition,

H4)

sup{fu(u, t) : u ∈ [W
−(t),W+(t)], t ∈ [0, T ]} < d, (1.4)

where W±(t) = w(α±, t).

We are concerned with the periodic traveling wave solutions of (1.1) con-
necting the two periodic stable solutions W±(t), that is, the solutions of the
form u(x, t) = U(x − ct, t), with U(x, t + T ) = U(x, t), for all x, t ∈ R, and
limx→∞ U(±x, t) =W±(t) uniformly, where c is some real constant (called the
wave speed). We claim that the long time behavior of the solutions of (1.1)
coupled with the initial condition

u(x, 0) = g(x), (1.5)

is governed by the periodic traveling wave solutions u(x, t) = U(x − ct, t) of
(1.1). If we work in the traveling wave frame and let ξ = x − ct, we are led to
study the following problem

Ut − cUξ −DUξξ − d(J ∗ U − U)− f(U, t) = 0, (1.6)

U(±∞, t) = lim
ξ→±∞

U(ξ, t) = w(α±, t), uniformly in t ∈ R, (1.7)

U(·, T ) = U(·, 0), U(0, 0) = α0. (1.8)

The following theorems are our main results concerning the existence, unique-
ness and stability of the periodic traveling solutions.

Theorem 1.1. Assume (H1), (H2) and (H3) hold. In the case D = 0, we also
assume (H4). Then there exist a unique smooth function U(ξ, t) : R × R → R
and a unique constant c ∈ R such that (1.6) - (1.8) hold. Moreover U(·, t) is
strictly increasing.
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Theorem 1.2. The periodic traveling wave solution u(x, t) = U(x−ct, t), where
U(ξ, t) and c are as in Theorem 1.1, is uniformly and asymptotically stable.

Remark 1.1. (1) If u(x, t) = U(x− ct, t) is a periodic traveling wave solution
of (1.1), so is U(x − ξ − ct, t), for any ξ ∈ R. Therefore, the stability men-
tioned above is that of the family of spatial translation. Periodic traveling wave
solutions are unique modulo a spatial shift.
(2) In the autonomous case, there are discontinuous traveling wave solutions

if (H4) fails and the traveling wave solutions are not asymptotically stable. For
the periodic case the existence, uniqueness and stability remain open in general,
that is, without (H4).

The paper is organized as follows. In Section 2 we study the uniqueness and
monotonicity of the wave. In Section 3, we use a homotopy method to prove
the existence of the solution to (1.6)-(1.8). And finally in Section 4 we study
the uniform and asymptotic stability of the periodic traveling wave solution.

2 Uniqueness of Periodic Traveling Waves

In this section, we will establish the uniqueness of smooth periodic traveling
wave solutions of (1.6)-(1.8) and prove that the wave is strictly monotone in the
spatial direction.
For a metric space X , denote

Cunif (X) = {u : X → R, u is bounded and uniformly continuous on X},
(2.1)

and denote ‖u‖ = supx∈X |u(x)|. First we need the following comparison prin-
ciple.

Lemma 2.1. (Comparison Principle). Suppose that R1 is a union of open
intervals, R2 = R\R1, and that, for some τ < t0, u(x, t) ∈ Cunif (R× [τ, t0]) has
the required derivatives. Assume that u(x, t) ≥ 0 for all x ∈ R2 and t ∈ (τ, t0],
and u(x, t) satisfies

ut −Duxx − d(J ∗ u− u)− bux − cu ≥ 0 (2.2)

on R1 × (τ, t0], where D and d are nonnegative constants with D + d 6= 0,
b = b(x, t), c = c(x, t) are bounded continuous functions on R1 × (τ, t0]. If
u(x, τ) ≥ 0 for all x ∈ R, then u(x, t) ≥ 0 for all x ∈ R and t ∈ (τ, t0].
Moreover, if u(x, t) is not identically 0 on R1 × (τ, t0], then u(x, t) > 0, for all
x ∈ R1 and t ∈ (τ, t0].

Proof. We may assume τ = 0. We take d > 0 since the result is standard for d =
0. By the assumption that u(x, t) ∈ Cunif (R×[0, t0]), infx∈R u(x, t) is continuous
on [0, t0]. If the conclusion of the lemma is not true, there exist constants ε > 0
and T0 > 0 such that u(x, t) > −εe2Kt, for all x ∈ R and 0 < t < T0, and
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infx∈R{u(x, T0)} = −εe2KT0 , where K = 2(D+4d+b0+4c0), b0 = sup{|b(x, t)| :
x ∈ R1, t ∈ [τ, t0]}, and c0 = sup{|c(x, t)| : x ∈ R1, t ∈ [τ, t0]}. Let z(x) be a
smooth function such that 1 ≤ z(x) ≤ 3, z(0) = 1, z(±∞) = limx→∞ z(±x) = 3,
and |z′(x)| ≤ 1, |z′′(x)| ≤ 1. Define wσ(x, t) = −ε(

3
4 + σz(x))e

2Kt for σ ∈ [0, 1].
Notice that w1(x, t) < u(x, t) and w0(x, t) = −

3
4εe
2Kt for (x, t) ∈ R1 × (0, t0] .

There is a minimum σ∗ ∈ [18 , 1) such that wσ∗(x, t) ≤ u(x, t), for x ∈ R and t ∈
[0, T0] and there exists (x1, t1) ∈ R1 × (0, T0] such that u(x1, t1) = wσ∗(x1, t1).
Therefore, at (x1, t1),

0 ≥ (u− wσ∗)t −D(u− wσ∗)xx − d(J ∗ (u− wσ∗)− (u − wσ∗))

−b(u− wσ∗)x − c(u− wσ∗)

≥ εe2Kt1 [
7

8
K −D − 4d− b0 − 4c0] > 0,

by the choice of K, which is a contradiction. Therefore u(x, t) ≥ 0 for all x ∈ R
and t ∈ (0, t0]. Suppose u(x, t) is not identically zero on R1 × (0, t0] and there
is a point (x2, t2) ∈ R1 × (0, t0] such that u(x, t) achieves the minimum 0. By a
similar argument to the above we deduce that (J ∗u−u)(x2, t2) = 0. Therefore
u ≡ 0, which is a contradiction. That completes the proof.

Now we are ready to state the uniqueness theorem.

Theorem 2.2. Suppose (H1), (H2) and (H3) hold. Then problem (1.6)- (1.8)
admits at most one smooth solution.

Proof. The proof is similar to that in [2]. Let (U, c) and (U, c) be any two
solutions of (1.6)-(1.8) with c ≥ c. We prove U = U and c = c, we divide the
proof into six steps.
1. By periodicity of U(ξ, t) and the comparison principle, we have

w(−M−, kT + t) ≤ U(ξ, kT + t) = U(ξ, t) ≤ w(M+, kT + t),

where M± = supξ∈R±U(ξ, 0). Letting k →∞ gives W
−(t) ≤ U(ξ, t) ≤W+(t).

By Lemma 2.1, we have

W−(t) < U(ξ, t) < W+(t). (2.3)

2. Define ν± = − 1T
∫ T
0 fu(W

±(t), t)dt. Without loss of generality, we
may assume ν+ ≥ ν−. The other case can be proved similarly. Let ν =

(ν+−ν−)/ 2 and a±(t) = exp(ν
±t
2 +

∫ t
0
fu(W

±(τ), τ)dτ). Notice that P ′(α±) =

exp(
∫ T
0
fu(W

±(τ), τ)dτ) < 1. We have ν± > 0 and a±(T ) < 1. Moreover, there
exist two constants C1 and C2 such that

C2a
−(t) ≤ a+(t)eνt ≤ C1a

−(t). (2.4)

For η > 0 and t ∈ [0, T ], let I±η (t) := [W
±(t)− η,W±(t) + η] and define

δ0 =
sup{η : |fu(u, t)− fu(W±(t), t)| ≤ ν±/ 4, for t ∈ [0, T ], u ∈ I±η (t)}

2‖a+(·)‖C0([0,T ]) + 2‖a−(·)‖C0([0,T ])
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and let ζ(ξ) be a smooth function such that 0 ≤ ζ(ξ) ≤ 1, ζ(ξ) = 0 for ξ ≤ −2,
and ζ(ξ) = 1 for ξ ≥ 2. Let a(ξ, t) = eνta+(t)ζ(ξ) + a−(t)(1− ζ(ξ)). Define

ξ0 = inf
{
ξ̂ ≥ 2: |d(J∗ζ−ζ)(±ξ)(a+(t)eνt−a−(t))| ≤

ν±

4
min{a+(t)eνt, a−(t)},

and |U(±ξ, t)−W±(t)| < δ0/ 2, ∀ ξ ≥ ξ̂, t ∈ [0, T ]
}
.

This ξ0 is well defined since limξ→∞ U(±ξ, t) =W±(t) uniformly in t and
limx→∞(J ∗ ζ − ζ)(±x) = 0.
For each δ ∈ (0, δ0/2], define Uδ(ξ, t) = U(ξ, t)+δa(ξ, t). Then, on (ξ0,+∞),

LcUδ(ξ, t) := Uδt − cUδξ −DUδξξ − d(J ∗ Uδ − Uδ)− f(Uδ, t)

= f(U, t)− f(U + δa+(t), t) + [ν+/ 2 + fu(W
+(t), t) + ν]δa+(t)eνt

−δd[a+(t)eνt − a−(t)](J ∗ ζ − ζ)

= δa+eνt[ν+/2 + ν + fu(W
+(t), t)−

∫ 1
0

fu(U + δθa
+(t), t)dθ]

−δd[a+(t)eνt − a−(t)](J ∗ ζ − ζ)

≥ (ν+/ 4 + ν)δa+(t)eνt − dδ[a+(t)eνt − a−(t)](J ∗ ζ − ζ)

≥ 0. (2.5)

where we have used the fact that a(ξ, t) = a+(t)eνt on (ξ0,+∞) and the defini-
tions of ξ0 and δ0. Similarly, we have L

cUδ(ξ, t) ≥ 0, on (−∞,−ξ0). That is,
Uδ(ξ, t) is a super solution on ((−∞,−ξ0)

⋃
(ξ0,+∞))× R+.

3. Since limξ→∞ U(±ξ, t) = W±(t) uniformly in t, by (2.3), there exists a
large constant ẑ0 such that

U(ξ − z + (c− c)t, t) ≤

{
U(ξ, t), if ξ ∈ [−ξ0, ξ0];

U(ξ, t) + δ0, if ξ /∈ [−ξ0, ξ0];

for all t ∈ [0, T ] and z ≥ ẑ0. Define δ̂ := inf{δ > 0 : U(ξ − z, 0) ≤ U(ξ, 0) +
δ, for all z ≥ ẑ0, ξ ∈ R}. Obviously, δ̂ ≤ δ0. We claim that δ̂ = 0. In fact, for
z > z0, L

cU(ξ − z + (c− c)t, t) = 0. And on [−ξ0, ξ0]× (0, T ],

Uδ̂(ξ, t) = U(ξ, t) + δ̂a(ξ, t) ≥ U(ξ, t) ≥ U(ξ − z + (c− c)t, t), (2.6)

and

Uδ̂(ξ, 0) = U(ξ, 0) + δ̂a(ξ, 0) = U(ξ, 0) + δ̂ ≥ U(ξ − z, 0) (2.7)

for all ξ ∈ R. By Lemma 2.1, we have

U(ξ − z + (c− c)t, t) ≤ Uδ̂(ξ, t)

for all z ≥ ẑ0, (ξ, t) ∈ R× (0, T ]. Since z ≥ ẑ0 is arbitrary, we have

U(ξ − z, T ) ≤ Uδ̂(ξ, T )
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for all z ≥ ẑ0. By the periodicity of U(ξ, ·), we have

U(ξ − z, T ) ≤ U(ξ, 0) + δ̂a(ξ, T )

for all z ≥ ẑ0, ξ ∈ R. Therefore,

U(ξ − z, 0) ≤ U(ξ, 0) + δ̂max{a+(T )eνT , a−(T )}

for all z ≥ ẑ0, and ξ ∈ R. This contradicts the definition of δ̂ since a±(T ) < 1.
Therefore,

U(ξ − z, 0) ≤ U(ξ, 0)

for all ξ ∈ R and z ≥ ẑ0.
4. By the comparison principle (Lemma 2.1), U(ξ− z+(c− c)t, t) ≤ U(ξ, t),

for all ξ ∈ R, t ≥ 0, and z ≥ ẑ0. Therefore by periodicity, U((c− c)kT − z, 0) ≤
U(0, kT ) = α0. Letting k →∞, we deduce that c = c since U((c−c)kT−z, 0)→
α+ if c > c.
5. Define z0 = inf{ẑ0 : U(ξ− z, 0) ≤ U(ξ, 0), for all ξ ∈ R, z ≥ ẑ0}. Similar

to the proof in step 3, we can show that U(ξ − z0, 0) = U(ξ, 0) for ξ ∈ R.
6. We prove that z0 = 0. If not, U(ξ − z, 0) < U(ξ, 0) for all ξ ∈ R, z > z0.

By the comparison principle and periodicity,

U(ξ − z + z0, 0) = U(ξ − z0 − z + z0, 0) = U(ξ − z) < U(ξ, 0),

since U(ξ − z0, 0) = U(ξ, 0). Therefore U(ξ, 0) is strictly increasing. Since
U(z0, 0) = U(0, 0) = α0 = U(0, 0), we deduce that z0 = 0. That completes the
proof.

Corollary 2.3. Under the conditions of Theorem 2.2, any smooth solution to
(1.6)-(1.8) is strictly increasing.

3 Existence of Periodic Traveling Waves

In this section, we are going to establish the existence of the periodic traveling
wave solution to (1.6)-(1.8) by a homotopy argument.
Assume (U0, c0) is the unique solution of the following problem, correspond-

ing to the parameter θ = θ0 ≤ 1,

Ut − cUξ − [1− θ(1−D)]Uξξ − θd(J ∗ U − U)− f(U, t) = 0, (3.1)

U(±∞, t) = lim
ξ→±∞

U(ξ, t) = w(α±, t), uniformly in t ∈ R, (3.2)

U(·, T ) = U(·, 0), U(0, 0) = α0, (3.3)

satisfying U0ξ > 0, U0ξ(ξ, t)→ 0 uniformly in t as ξ → ±∞.
Let

X0 = {v : v ∈ Cunif (R×R), v(·, t+T ) = v(·, t) and lim
x→∞

v(±x, t) = 0, ∀ t ∈ R}.
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and L = L(U0, c0, θ0) be the linearization of the operator in (3.1)-(3.3) defined
by

D(L) = X2 := {v ∈ X0 : vξξ, vξ, vt ∈ X0},

Lv = vt − [1− θ0(1 −D)]vξξ − θ0d(J ∗ v − v)− c0vξ − fu(U0, t)v (3.4)

for v ∈ D(L). We first establish some lemmas.

Lemma 3.1. L has 0 as a simple eigenvalue.

Proof. Clearly, p = U0ξ is an eigenfunction corresponding to the eigenvalue
0. We only need to prove the simplicity. Suppose φ(ξ, t) ∈ X0 is another
eigenfunction with eigenvalue 0. We prove that φ = zp, for some constant
z ∈ R.
Let ν± be defined as in Section 2. Without loss of generality we assume

ν+ ≥ ν−. Let ν = (ν+ − ν−)/ 2 be as in Section 2. Suppose ζ(ξ) is a smooth
function such that ζ(ξ) ≡ 0, for ξ < 0; ζ(ξ) ≡ 1, for ξ > 4; and 0 ≤ ζ(ξ) ≤ 1,
0 ≤ ζ′(ξ) ≤ 1, and |ζ′′(ξ)| ≤ 1, for all ξ ∈ R. Define

A(ξ, t) = ζ(ξ)a+(t)eνt + (1 − ζ(ξ))a−(t), (3.5)

B(t) =
∫ t
0 max{a

+(τ)eντ , a−(τ)} dτ, (3.6)

K = ν+−ν−/2+1+(D+d)+2c0+2‖fu‖
min(ξ,t)∈[−ξ0,ξ0]×[0,T ] U0ξ(ξ,t)

, (3.7)

where ‖fu‖ = sup{|fu(u, t)| : u ∈ [W−(t),W+(t)], t ∈ [0, T ]} and ξ0 is a
large constant to be chosen later. Let Ψ(ξ, t) = KB(t)U0ξ(ξ, t) + A(ξ, t), then
Ψ(ξ, 0) = 1. We claim that

LΨ(ξ, t) = KBtU0ξ(ξ, t) + LA(ξ, t) ≥ 0. (3.8)

We divide the proof by considering three intervals (−∞,−ξ0), [−ξ0, ξ0], and
(ξ0,∞). We assume ξ0 > 4.
On (ξ0,∞), A(ξ, t) = a+(t)eνt, therefore

LA(ξ, t) = [ν+/ 2 + fu(W
+(t), t) + ν − fu(U0(ξ, t), t)]a

+(t)eνt

− θ0d(J ∗ ζ − ζ)[a
+(t)eνt − a−(t)].

Notice that (J ∗ ζ − ζ)(ξ) → 0, and U0(ξ, t) → W+(t) as ξ → ∞. We deduce,
by (2.4), that we can choose ξ0 large enough such that

LA(ξ, t) ≥ 0, on (ξ0,∞)× R
+.

Similarly we have

LA(ξ, t) = [ν−/ 2 + fu(W
−(t), t)− fu(U0(ξ, t), t)]a

−(t)

−θ0d[J ∗ ζ − ζ][a
+(t)eνt − a−(t)] on (−∞,−ξ0).
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Therefore there exists ξ0 >> 1 such that

LA(ξ, t) ≥ 0, on (−∞,−ξ0)× R
+.

We fix ξ0 large enough such that LA(ξ, t) ≥ 0, on ((−∞,−ξ0)
⋃
(ξ0,∞)) ×

R
+. On [−ξ0, ξ0],

|LA(ξ, t)|

= |At − [1− θ0(1−D)]Aξξ − θ0d(J ∗A−A)− c0Aξ − fu(U0(ξ, t), t)A(ξ, t)|

≤ max{a+(t)eνt, a−(t)}{ν+ − ν−/2 + [1− θ0(1−D)] + θ0d+ 2c0 + 2‖fu‖}

Therefore LΨ(ξ, t) ≥ 0, on [−ξ0, ξ0] by (3.8) and the choice of K in (3.7).
By the comparison principle, we have

φ(ξ, t) ≤ Ψ(ξ, t)‖φ(ξ, 0)‖∞.

Letting t = kT and letting k →∞, we have

|φ(ξ, 0)| ≤ KB(∞)‖φ(ξ, 0)‖∞U0ξ(ξ, 0),

where B(∞) = limt→∞B(t). The limit exists since a±(t) → 0 exponentially
and (2.4) holds.
Let z∗ := sup{z : φ(ξ, 0) ≥ zU0ξ(ξ, 0), for all ξ ∈ R}. We claim that

φ(ξ, 0) = z∗U0ξ(ξ, 0), for all ξ ∈ R. If not, there exists a point ξ0 such
that φ(ξ0, 0) > z∗U0ξ(ξ0, 0). Then by the comparison principle, φ(ξ, T ) >
z∗U0ξ(ξ, T ). Replacing φ by φ− z∗U0ξ, we can assume z∗ = 0. So, φ(ξ, 0) > 0,
for all ξ ∈ R. Choose ξ such that KB(∞) sup|ξ|≥ξ U0ξ(ξ, 0) < 1/ 4 and choose ε

such that φ(ξ, 0) > εU0ξ(ξ, 0), on [−ξ, ξ]. Then

φ(ξ, 0)− εU0ξ(ξ, 0) ≥ −ε sup
|ξ|≥ξ

U0ξ(ξ, 0),

and therefore,

φ(ξ, t)− εU0ξ(ξ, t) ≥ −εΨ(ξ, t) sup
|ξ|≥ξ

U0ξ(ξ, 0).

Letting t = kT and letting k →∞, we have

φ(ξ, 0)− εU0ξ(ξ, 0) ≥ −
1

4
εU0ξ(ξ, 0),

which contradicts the definition of z∗, and completes the proof.

Since J ∗u−u is a bounded operator on X0, we know that 0 is an isolated eigen-
value of L for θ0 < 1. Now consider the adjoint operator L

∗ = L∗(U0, c0, θ0)
of L. Since the comparison principle holds for L, we know that 0 is an isolated
eigenvalue for L∗ with a positive eigenfunction (see Section 11.4 and theorem
9.11 in [17]). We denote by φ∗(x, t) the positive eigenfunction of L∗ correspond-
ing to the eigenvalue 0.
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Lemma 3.2. With θ0, U0, and c0 as above with θ0 < 1, there exists η > 0 such
that for each θ ∈ [θ0, θ0 + η), (3.1)- (3.3) has a solution (U(θ, ξ, t), c(θ)).

Proof. Consider the operator G : (X2 × R)× R→ X0 × R defined by

G(w, θ) =((U0 + v)t − [1− θ(1−D)](U0 + v)ξξ − θd(J ∗ (U0 + v)− (U0 + v))

− (c0 + c)(U0 + v)ξ − f(U0 + v, t), v(0, 0))

for w = (v, c) ∈ X2 × R. Then G is of class C1, G(0, θ0) = (0, 0) and

∂G

∂w
(0, θ0) =

[
L U0ξ
δ 0

]
.

where δ is the δ-function. We show that ∂G
∂w
(0, θ0) is invertible. Consider the

equation on X0 × R:

∂G

∂w
(0, θ0)

[
v
c

]
=

[
h
b

]
, for

[
h
b

]
∈ X0 × R,

i.e.,

Lv + cU0ξ = h, (3.9)

v(0, 0) = b. (3.10)

By the Fredholm Alternative, (3.9) is solvable if and only if h− cU0ξ ⊥ φ∗, i.e.,∫ T
0

∫
R

[hφ∗ − cU0ξφ
∗] dxdt = 0. (3.11)

Since U0ξ > 0 and φ
∗ > 0, c is uniquely determined by (3.11). After we

determine c, the solution v of (3.9) is determined up to a term kU0ξ, where k is
a constant. Then (3.10) determines k uniquely. Therefore ∂G

∂w
(0, θ0) is invertible.

The lemma now follows from the Implicit Function Theorem.

Lemma 3.3. Suppose that for θ ∈ [0, θ), where θ ≤ 1, there exists a solution
(U(θ, ξ, t), c(θ)) of (3.1)- (3.3). Then ‖U(θ, ·, ·)‖L∞(R×[0,T ]), ‖Uξ(θ, ·, ·)‖L∞(R×[0,T ])
and ‖Ut(θ, ·, ·)‖L∞(R×[0,T ]) are uniformly bounded for θ ∈ [0, θ).

Proof. For the case θ < 1, the conclusion of the lemma follows from classical
parabolic estimates. Therefore we take θ = 1, and prove the lemma for θ near 1.
We only prove the uniform boundedness of Uξ(θ, ξ, t); all others are similar. Let
v(θ, ξ, t) := Uξ(θ, ξ, t) and M = supξ,t∈R |J

′ ∗ U(ξ, t)|. Then v(θ, ξ, t) satisfies

vt − [1− θ(1−D)]vξξ + θdv − c(θ)vξ − fu(U(θ, ξ, t), t)v = θdJ
′ ∗ U.

Define l(θ) := θd−sup{fu(u, t) : u ∈ [W−(t),W+(t)], t ∈ [0, T ]}. For θ ∈ [0, 1)
such that l(θ) > 0, we have, by the comparison principle for parabolic equations,

v(θ, ξ, t) ≤ e−l(θ)t sup
ξ∈R
|v(θ, ξ, 0)|+ (1 − e−l(θ)t)M/ l(θ).

By periodicity, we deduce that v(θ, ξ, t) is uniformly bounded for θ ∈ [0, 1) with
l(θ) > 0.
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Lemma 3.4. Suppose that there is a sequence θj such that limθj→θ U(θj , ξ, t) =

U(θ, ξ, t) uniformly with respect to (ξ, t) ∈ R× [0, T ] for some function U(θ, ξ, t).
Then {c(θj)} is bounded.

Proof. First we prove the following statement. Suppose (V ,C) satisfies, for
some ξ > 0,

Vt − [1− θ(1 −D)]V ξξ − θd(J ∗ V − V )− C Vξ − f(V , t) ≤ 0,

in (−∞, ξ)× (0, T ], (3.12)

V (−∞, t) < W−(t), for t ∈ [0, T ], V (ξ, 0) ≤ V (ξ, T ), on (−∞, ξ), (3.13)

V (0, 0) ≥ α0, V (ξ, t) < U(θ, ξ, t), in [ξ,∞)× [0, T ], (3.14)

and V (ξ, 0) is monotonically increasing. Then c(θ) ≤ C.
In fact, if c(θ) > C, then U(θ, ξ, t) satisfies

LCU(θ, ξ, t) := Ut − (1− θ)Uξξ − θ(J ∗ U − U)− CUξ − f(U, t)

= (c(θ) − C)Uξ > 0.

Let m0 = inf{m : U(θ, ξ, 0) > V (ξ −m, 0), for ξ ∈ R}. Then by assumption,
m0 is well defined and m0 ≥ 0. Moreover, there exists a point ξ0 ∈ (−∞, ξ) such
that U(θ, ξ0, 0) = V (ξ0 −m0, 0). Applying the strong comparison principle on
(−∞, ξ)× [0, T ], we get U(θ, ξ, t) > V (ξ−m0, t), for all ξ ∈ R, t ∈ [0, T ]. This is
a contradiction since U(θ, ξ0, T ) = U(θ, ξ0, 0) = V (ξ0 −m0, 0) ≤ V (ξ0 −m0, T ),
and the claim is proved.
We denote θj by θ. Let ζ(s) = [1 + tanh(s/ 2)]/ 2, W1(t) = w(α

+ − ε, t)
and W2(t) = w(α

− − ε, t), where ε is a small constant to be chosen. Let
V (ξ, t) =W1(t)ζ(ξ+ ξ0)+W2(t)(1− ζ(ξ+ ξ0)), where ξ0 is a constant such that

ζ(ξ0) =
α0−α−+ε
α+−α− . Since Wi(T ) > Wi(0), for i = 1, 2, we have V (·, T ) ≥ V (·, 0).

Moreover, V ξ > 0, V (∞, 0) = α+ − ε, and V (−∞, 0) = α− − ε. Since
limθ→θ U(θ, ξ, t) = U(θ, ξ, t) uniformly and U(θ,+∞, t) =W

+(t), we can choose

ξ sufficiently large such that U(θ, ξ, t) > V (ξ, t), for (ξ, t) ∈ [ξ,∞)× [0, T ]. For
ξ < ξ,

LC(V ) =V t − [1− θ(1 −D)]V ξξ − θd(J ∗ V − V )− f(V , t)− CVξ

=− ζ(1 − ζ)(W1 −W2)[C + (1− θ(1−D))(1− 2ζ)]

− θd(W1 −W2)(J ∗ ζ − ζ) + [ζf(W1, t) + (1 − ζ)f(W2, t)

− f(W1ζ +W2(1− ζ), t)]

=− ζ(1 − ζ)(W1 −W2)[C + (1− θ(1−D))(1− 2ζ)

− (W1 −W2)fuu(σ, t)/ 2− θd/ (1− ζ)] − θd(W1 −W2)(J ∗ ζ − ζ),

where we use the Taylor’s expansion

ζf(W1, t)+(1−ζ)f(W2, t)−f(W1ζ+W2(1−ζ), t) = ζ(1−ζ)(W1−W2)
2fuu(σ, t)
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for some σ ∈ [W2,W1]. If we choose C = 1 + D +
1
2 sup{(W

+(t) −W−(t) +
2)|fuu(u, t)| : u ∈ [W−(t) − 1,W+(t) + 1], t ∈ [0, T ]} + supξ≤ξ d/ (1 − ζ(ξ)),

then LC(V ) < 0 for ξ < ξ.
Therefore c(θ) ≤ C by our earlier observation. We can get a lower bound

estimate similarly.

We are ready to obtain a solution to (3.1)-(3.3).

Theorem 3.5. Under the conditions of Theorem 1.1, there exists a solution
(U(θ, ξ, t), c(θ)) to (3.1)-(3.3) for all θ ∈ [0, 1].

Proof. By the result in [2], there exists a solution (U0, c0) to (3.1)-(3.3) cor-
responding to θ = 0, such that U0ξ > 0 and limξ→∞ U0ξ = 0 uniformly with
respect to t. By Lemma 3.2, there exists an interval [0, η) such that for all
θ ∈ [0, η) system (3.1) - (3.3) has a solution (U(θ, ξ, t), c(θ)) with the required
properties. Suppose [0, η) is the maximal interval such that (3.1)-(3.3) admits a
solution for each θ ∈ [0, η). Then we claim that η = 1 and (3.1)-(3.3) admits a
solution for each θ ∈ [0, 1]. By Lemma 3.3 and Helly’s theorem, we can choose
a subsequence θj such that limj→∞ θj = η, and limj→∞ U(θj , ξ, t) exists uni-
formly for all ξ ∈ R and each rational t. By Lemma 3.3 again, ‖Ut(θ, ξ, t)‖ is
uniformly bounded for all θ ∈ [0, η). Therefore there exists a uniformly contin-
uous function U(η, ξ, t) such that limj→∞ U(θj , ξ, t) = U(η, ξ, t) uniformly for
all (ξ, t) ∈ R × [0, T ]. Moreover, by choosing a subsequence if necessary, the
derivatives of U(θj , ξ, t) converge to the corresponding derivatives of U(η, ξ, t)
uniformly on any compact set of R × [0, T ]. Therefore by Lemma 3.4, we can
choose a subsequence of {θj} (we label it the same) such that c(θj) → c(η).
Therefore (U(η, ξ, t), c(η)) is a solution to (3.1)-(3.3) corresponding to parame-
ter η, with the same properties as (U0, c0). Therefore, either η = 1 , or we can
extend the existence interval to [0, η+ ε) for some ε > 0, which would contradict
the maximality of η. Therefore, for all θ ∈ [0, 1], (3.1)-(3.3) has a solution.

4 Stability of the Periodic Traveling Waves

In this section, we study the stability and asymptotic stability of the periodic
traveling wave solutions U(x− ct, t) obtained in Section 3.
We denote by u(x,t;g) the solution to the initial value problem

ut −Duxx − d(J ∗ u− u)− f(u, t) = 0, in R× (0,∞), (4.1)

u(x, 0) = g(x), on R, (4.2)

where g(·) ∈ L∞(R). For the existence and uniqueness of (4.1) and (4.2), we
have

Lemma 4.1. For any g(·) ∈ L∞(R) , there exists a unique solution u(x, t; g) ∈
C1([0,∞), L∞(R)) of (4.1) and (4.2). Moreover, u(·, t; g) is continuous from
[0,∞)× Cunif(R) to Cunif(R).
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Proof. The case D 6= 0 follows from standard parabolic theory. We only need
to consider the case where D = 0. Write (4.1) and (4.2) as

u(x, t) = g(x) +

∫ t
0

(d(J ∗ u− u) + f(u, t)) dt. (4.3)

Then the local existence and uniqueness follow from the contraction mapping
theorem in the usual way. Let M = supx∈R |g(x)|. Then w(±M, t) are super-
and sub-solutions of (4.1) respectively. By the comparison principle,

w(−M, t) ≤ u(x, t; g) ≤ w(M, t)

for t > 0. Global existence follows since w(±M, t) are bounded. The continuous
dependence can be easily proved using (4.3).

We claim that the asymptotic behavior of the solutions to (4.1) and (4.2)
is governed by the periodic traveling wave solution U(x − ct, t). We have the
following result:

Theorem 4.2. (1) (Uniform Stability) For any ε > 0, there is a δ > 0 such
that for any g ∈ Cunif(R) with ‖g(·)− U(·, 0)‖ < δ, one has

‖u(·, t; g)− U(· − ct, t)‖ < ε (4.4)

for all t > 0.
(2). (Asymptotic Stability) For any g ∈ Cunif(R) satisfying

lim inf
x→∞

g(x) > W 0(0), lim sup
x→−∞

g(x) < W 0(0), (4.5)

where W 0(t) = w(α0, t) and w(α0, t) is the solution of (1.2). Then there is
ξ0 ∈ R such that

‖u(·, t; g)− U(· − ct+ ξ0, t)‖ → 0 (4.6)

exponentially as t→∞.

In order to prove the theorem we need the following lemmas. The first lemma
use the monotonicity of U(·, t) to construct super- and sub- solutions.

Lemma 4.3. There exist β1 > 0, δ1 > 0 and σ1 > 0 such that, for any δ ∈
(0, δ1), τ ∈ R+ and ξ0 ∈ R, v±(x, t) are super- and sub- solutions of (4.1),
respectively, on [τ,∞], where

v±(x, t) = U(x− c(t− τ) + ξ0 ± σ1δ(1− e
−β1(t−τ)), t)± δe−β1(t−τ) (4.7)

for x ∈ R and t ∈ [τ,∞).

Proof. The proof of the lemma is similar to that of Lemma 2.2 in [9]. We omit
it.
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The next lemma is an analog of the strong comparison principle of parabolic
equations. This is the key lemma to apply the “squeezing” technique employed
in [9] to prove the stability.

Lemma 4.4. There is a positive function η(·, t) satisfying 0 ≤ η(·, t) ≤ 1 for
t ∈ [0, T ] such that η(·, t) is non-increasing and for any super-solution u1(x, t)
and sub-solution u2(x, t) of (4.1) on R

+ satisfying u1(x, τ) ≥ u2(x, τ) for all x ∈
R and for some τ ∈ R, and |ui(x, t)| ≤ K0 = supt∈R{|W

−(t)|+ 1, |W+(t)|+ 1}
for all x ∈ R and t ≥ τ , the following holds

u1(x, t) − u2(x, t) ≥ η(M, t− τ)

∫ z+1
z

[u1(y, τ)− u2(y, τ)]dy (4.8)

for all x ∈ R with |x− z| ≤M and t ≥ τ .

For the proof of this lemma, we refer the reader to a similar result in [9].

To prove the stability, we first need to show that, for given initial data as in
(4.5), the solution with this initial data first forms a vague front of periodic
traveling waves as the system evolves. In order to prove that, we need to
construct various super- and sub- solutions.

Lemma 4.5. Let ζ(s) = 1
2 (1 + tanh

s
2 ). For any given T0 > 0 and m± ∈ R

with m− < m+, there exist positive constants K, C, ε0, and a positive function
ρ(·) satisfying lim

ε→0
ρ(ε) = 0, such that, for all 0 < ε ≤ ε0 and h ∈ R,

(1) v±1 (x, t) =w(m±, t)ζ(ε(x − h) + Ct)

+ w(m∓, t)(1− ζ(ε(x − h) + Ct)± ρ(ε)e
Kt (4.9)

are super- and sub-solutions of (4.1) on [0, T0], respectively, where w(m±, t) are
solutions of (1.2) with w(m±, 0) = m±, and

(2) v±2 (x, t) =w(m∓, t)ζ(ε(x − h)− Ct)

+ w(m±, t)(1− ζ(ε(x − h)− Ct)± ρ(ε)e
Kt (4.10)

are super- and sub-solutions of (4.1) on [0, T0], respectively.

Proof. We only prove that v+1 (x, t) is a super-solution. The other claims can
be proved similarly. Denote v(x, t) = w(m+, t)ζ(ε(x − h) + Ct) + w(m−, t)(1−
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ζ(ε(x − h) + Ct). Then

v+1t−Dv
+
1xx − d(J ∗ v

+
1 − v

+
1 )− f(v

+
1 , t)

=f(w(m+, t), t)ζ(ε(x − h) + Ct) + f(w(m−, t), t)(1 − ζ(ε(x− h) + Ct))

− f(v+1 , t) + C(w(m+, t)− w(m−, t))ζ(ε(x − h) + Ct)

(1− ζ(ε(x − h) + Ct)) + ρ(ε)KeKt

+ (w(m+, t)− w(m−, t))[Dε
2ζ(ε(x− h) + Ct)(1 − ζ(ε(x− h) + Ct))

(1− 2ζ(ε(x− h) + Ct))− d(J ∗ ζ(ε(x − h) + Ct)− ζ(ε(x − h) + Ct))]

=[f(w(m+, t), t)ζ(ε(x − h) + Ct) + f(w(m−, t), t)(1 − ζ(ε(x− h) + Ct))

− f(v(x, t), t)] + [f(v(x, t), t) − f(v+1 (x, t), t)] + ρ(ε)Ke
Kt

+ C(w(m+, t)− w(m−, t))ζ(ε(x − h) + Ct)(1 − ζ(ε(x − h) + Ct))

−Dε2(w(m+, t)− w(m−, t))ζ(ε(x − h) + Ct)(1 − ζ(ε(x− h) + Ct))

(1− 2ζ(ε(x− h) + Ct))− d(w(m+, t)− w(m−, t))(J ∗ ζ(ε(x − h) + Ct)

− ζ(ε(x − h) + Ct))

=I + II + III + IV + V + V I (4.11)

By Taylor’s expansion,

I =fuu(u
∗(x, t), t)(u∗∗(x, t)− w(m−, t))

(w(m+, t)− w(m−, t))ζ(ε(x − h) + Ct)(1 − ζ(ε(x − h) + Ct)),

where u∗(x, t), u∗∗(x, t) are between w(m−, t) and w(m+, t)). Therefore there
exists a constant M1, independent of ε such that

|I| ≤M1(w(m+, t)− w(m−, t))ζ(ε(x − h) + Ct)(1− ζ(ε(x − h) + Ct)). (4.12)

Let

ρ(ε) = sup{|V I| : x, t, h, C ∈ R}. (4.13)

Since w(m±, t) is bounded and ζ(·) is uniformly continuous, it is easy to see
that limε→0 ρ(ε) = 0. For II , let M2 = sup{|fu(u, t)| : u ∈ [w(m−, t) −
1, w(m+, t) + 1], t ∈ R}, and K = 1 +M2. Choose ε0 such that ρ(ε0)eKT0 ≤ 1.
Then, for 0 < ε ≤ ε0,

|II| ≤

∫ 1
0

|fu(v + ρ(ε)θe
Kt, t)| dθρ(ε)eKt ≤M2ρ(ε)e

Kt. (4.14)

Now choose C =M1 +D. Then, by (4.11) - (4.14),

v+1t − Dv+1xx − d(J ∗ v
+
1 − v

+
1 )− f(v

+
1 , t) ≥ 0.
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Lemma 4.6. Suppose that g ∈ Cunif(R) satisfies

lim inf
x→∞

g(x) > W 0(0) and lim sup
x→−∞

g(x) < W 0(0). (4.15)

Then, for any δ > 0, there are constants H > 0 and T0 > 0 such that

U(x−H,T0)− δ ≤ u(x, T0; g) ≤ U(x+H,T0) + δ. (4.16)

Proof. Without loss of generality, we assume, for some 0 < δ0 < 1, that

W−(0)− δ0 ≤ g(x) ≤W
+(0) + δ0.

By assumption (H2), for δ << 1, there is a T0 > 0 such that

W+(T0)− δ/ 4 < w(m+, T0) < W
+(T0) + δ/ 4 (4.17)

for m+ =W
0(0) + δ0 or m+ =W

+(0) + 2δ0, and that

W−(T0)− δ/ 4 < w(m−, T0) < W
−(T0) + δ/ 4 (4.18)

for m− =W
0(0)− δ0 or m− =W−(0)− 2δ0, where w(m±, t) are as in Lemma

4.6.
For T0 fixed as above, by Lemma 4.5, there are K > 0, C > 0 and ε0 > 0

such that, for all 0 < ε ≤ ε0,

v+(x, t) =w(W+(0) + 2δ0, t)ζ(ε(x + h) + Ct)

+ w(W 0(0)− δ0, t)(1 − ζ(ε(x+ h) + Ct)) + ρ(ε)e
Kt

and

v−(x, t) =w(W 0(0) + δ0, t)ζ(ε(x − h)− Ct)

+ w(W−(0)− 2δ0, t)(1− ζ(ε(x − h)− Ct))− ρ(ε)e
Kt

are super- and sub-solutions on R× [0, T0], respectively.
Fix ε < ε0 small enough such that

ρ(ε)eKT0 < δ/ 4. (4.19)

By (4.15), there is an h large enough such that

v−(x, 0) ≤ g(x) ≤ v+(x, 0). (4.20)

Hence, by the comparison principle,

v−(x, t) ≤ u(x, t; g) ≤ v+(x, t) (4.21)

for all x ∈ R and t ∈ [0, T0]. Since limx→∞ U(x−CT0, T0) =W±(T0), by (4.16)-
(4.21), there exists H large enough such that

U(x−H,T0)− δ ≤ v
−(x, T0) ≤ u(x, T0; g) ≤ v

+(x, T0) ≤ U(x+H,T0) + δ
(4.22)

for all x ∈ R. This completes the proof.
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The following lemma is the “squeezing technique” employed in [9].

Lemma 4.7. There exists ε∗ > 0 such that if u(x, t) is a solution of (4.1), and
if for some τ ∈ R+, ξ ∈ R, δ ∈ (0, δ12 ), and h > 0, one has

U(x− cτ + ξ, τ)− δ ≤ u(x, τ) ≤ U(x− cτ + ξ + h, τ) + δ (4.23)

for all x ∈ R, then for every t ≥ τ + 1, there exist ξ̂(t), δ̂(t) ≥ 0 and ĥ(t) ≥ 0
satisfying

ξ̂(t) ∈ [ξ − σ1δ, ξ + h+ σ1δ], (4.24)

0 ≤ δ̂(t) ≤ e−β1(t−τ−1)[δ + ε∗min{h, 1}], (4.25)

0 ≤ ĥ(t) ≤ [h− σ1ε
∗min{h, 1}] + 2σ1δ, (4.26)

such that (4.23) holds with τ , ξ, δ and h being replaced by t (≥ τ +1), ξ̂(t), δ̂(t)
and ĥ(t) respectively, where β1, δ1, and σ1 are as in Lemma 4.3.

Proof. The proof is similar to that of Lemma 3.3 in [9]. In the proof of that
lemma, the only properties used are given by Lemma 4.3 and Lemma 4.4. For
details, see [9] and [23].

Proof of Theorem 4.2. (1). Let ε > 0 be given. Since U(·, ·) is uniformly
continuous on R× [0, T ], there is a constant k0 > 0 such that

|U(x+ k, t)− U(x, t)| < ε/2, (4.27)

for all x ∈ R, t ∈ [0, T ] and all k with |k| ≤ k0.
Let β1, δ1 and σ1 be given as in Lemma 4.3. Choose δ > 0 such that δ <

min{δ1, ε/ 2, k0/ σ1}. Then for any g ∈ Cunif (R) satisfying ‖g(·)−U(·, 0)‖ < δ,
by Lemma 4.3, we have

U(x− ct− σ1δ(1 − e
−β1t), t)− δe−β1t ≤u(x, t; g)

≤U(x− ct+ σ1δ(1− e
−β1t), t) + δe−β1t

for x ∈ R and t ∈ [0,∞). By (4.27) and the choice of δ, we have

‖u(·, t; g)− U(· − ct, t)‖ < ε,

for all t > 0.

(2). Let ε∗ be given as in Lemma 4.7 and β1, δ1 and σ1 be given as in Lemma
4.3. Let δ = min{δ1/ 2, ε∗/ 4}, and γ = σ1ε∗− 2σ1δ. Let t0 be chosen such that
e−β1(t0−1)(δ + ε∗) ≤ (1 − γ)δ. By Lemma 4.6, there are ξ0 ∈ R , h > 0 and
T0 > 0 such that

U(x− cT0 + ξ0, T0)− δ ≤ u(x, T0; g) ≤ U(x− cT0 + ξ0 + h, T0) + δ (4.28)
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for all x ∈ R. First, we may assume 0 < h ≤ 1. In fact, if h > 1, we can choose
integer N > 0 such that 0 ≤ h−Nγ ≤ 1. Applying Lemma 4.7 repeatedly, we
conclude that

U(x− c(kt0 + T0) + ξk,kt0 + T0)− δk ≤ u(x, kt0 + T0; g)

≤U(x− c(kt0 + T0) + ξk + hk, kt0 + T0) + δk (4.29)

for all x ∈ R, where ξk ∈ [ξk−1 − σk−1δk−1, ξk−1 + σk−1δk−1 + hk−1], δk ≤
(1− γ)kδ, hk ≤ hk−1 − γ, and δ0 = δ. Therefore (4.28) holds with ξ0, δ, h, and
T0 being replaced by ξN , δN , hN , and TN = Nt0 + T0, respectively.
Now we assume h ≤ 1 and (4.28) holds. Define Tk = kt0, δk = (1−γ)kδ, and

hk = hk−1 − γ. Then we can show by induction that (4.29) still holds. Define
δ(t) = δk, ξ(t) = ξk − σ1δk, and h(t) = hk + 2σ1δk, for t ∈ [Tk + T0, Tk+1 + T0]
and k = 0, 1, . . . . Then, by Lemma 4.3,

U(x− ct+ ξ(t), t)− δ(t) ≤ u(x, t; g) ≤ U(x− ct+ ξ(t) + h(t), t) + δ(t) (4.30)

for x ∈ R and t ≥ T0. Note that δ(t) → 0, h(t) → 0 and ξ(t) → ξ(∞)
exponentially as t→∞. Therefore,

u(x, t; g)→ U(x− ct+ ξ(∞), t)

exponentially as t→∞.
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