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Multiplicity results for positive solutions to

non-autonomous elliptic problems ∗

Ning Qiao & Zhi-Qiang Wang

Abstract

We are concerned with the multiplicity of positive solutions for non-
autonomous elliptic equations with Dirichlet and Neumann boundary con-
ditions. Using Ljusternik-Schnirelmann theory, we show that the number
of solutions is affected by the shape of the potential functions.

1 Introduction

This paper is devoted to the study of multiplicity results for positive solutions to
non-autonomous semilinear elliptic equations with a small diffusion coefficient.
Consider the boundary value problem

−d∆u+ u = K(x)|u|p−2u, u > 0 in Ω, (1.1)

Bu = 0 on ∂Ω ,

where Ω is a bounded domain; d is a small positive parameter; K(x) > 0 in Ω̄
and is a Cα function with 0 < α < 1; 2 < p < 2N

N−2 if N ≥ 3, p > 2 if N = 1, 2;
and Bu is the boundary operator which is either Dirichlet, i.e., Bu = u|∂Ω, or
Neumann, i.e., Bu = ∂u

∂ν
|∂Ω.

In recent years, singularly perturbed elliptic problems have been studied
extensively, [13, 14, 7, 9]. Aiming at applications of mathematical models in
biological pattern formations, Lin, Ni and Tagaki discovered the single peaked-
ness of the least-energy solutions for nonlinear autonomous Neumann problems
when a small parameter tends to zero. After that, similar phenomena have been
revealed in singularly perturbed settings for nonlinear Dirichlet problems and
nonlinear Schrödinger equations ([16, 19]). Motivated by the work in [14], Ren
[18] studied least-energy solutions for the non-autonomous Problem (1.1) and
showed that the least-energy solution of (1.1) will develop single peak as d ap-
proaches zero. The location of the peaks is determined by the non-autonomous
term of the equation. Therefore, in most situations the effect of K(x) over-
rides the effect of the geometry of Ω. The goal of this note is to establish some
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multiplicity results on the existence of non-constant positive solutions of (1.1)
and to show how the number of positive solutions is affected by the topology
of the preimage of K(x), i.e., by the shape of the graph of K(x). Our work is
motivated by the above mentioned papers, especially by [18]. Define

K1 = max
x∈Ω̄

K(x), K2 = max
x∈∂Ω

K(x),

and

KΩ = {x ∈ Ω̄ : K(x) = K1}, K∂Ω = {x ∈ ∂Ω : K(x) = K2},

closed subsets of Ω̄ and ∂Ω respectively.
In the following, we denote by catNr(KΩ)(KΩ) (resp. catNr(K∂Ω)(K∂Ω)) the

Ljusternik-Schnirelmann category of KΩ in Nr(KΩ) (resp. K∂Ω in Nr(K∂Ω)),
where Nr(·) denotes the closed r-neighborhood of a set. r > 0 will be chosen
and fixed. Our main results are the following theorems.

Theorem 1.1 Let r > 0 be such that 2r < dist(KΩ, ∂Ω) and assume KΩ∩∂Ω =
∅. Then for d sufficiently small, (1.1) with Dirichlet boundary condition has at
least catNr(KΩ)(KΩ) distinct solutions. Furthermore, each solution ud has at
most one local maximum point Pd on Ω̄ satisfying

lim sup
d→0

dist(Pd,KΩ) = 0 .

Theorem 1.2 Let r > 0 be fixed and assume K1 > 2
p−2
2 K2. Then for d suffi-

ciently small, (1.1) with Neumann boundary condition has at least catNr(KΩ)(KΩ)
distinct non-constant solutions. Furthermore, each solution ud has at most one
local maximum point Pd on Ω̄ which satisfies

lim sup
d→0

dist(Pd,KΩ) = 0.

Theorem 1.3 Let r > 0 be fixed and assume K1 < 2
p−2
2 K2. Then for d suffi-

ciently small, (1.1) with Neumann boundary condition has at least catNr(K∂Ω)(K∂Ω)
distinct nonconstant solutions. Furthermore, each solution ud has at most one
local maximum point Pd on Ω̄ which lies on the boundary of Ω and satisfies

lim sup
d→0

dist(Pd,K∂Ω) = 0.

Theorem 1.4 Let r > 0 be fixed and assume K1 = 2
p−2
2 K2. Then for d suffi-

ciently small, (1.1) with Neumann boundary condition has at least
catNr(K∂Ω)(K∂Ω) + catNr(KΩ)(KΩ) distinct non-constant solutions. Further-
more, each solution ud has at most one local maximum point Pd on Ω̄ which
satisfies

lim sup
d→0

dist(Pd,K∂Ω ∪KΩ) = 0.
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Remark If KΩ and Nr(KΩ) are homotopically equivalent, then one has
catNr(KΩ)(KΩ) = catKΩ(KΩ). This would be the case when the level sets of
K are regular. On the other hand, it is easy to construct examples in which
catNr(KΩ)(KΩ) may depend on r and may tend to ∞ as r → 0. In these cases,
the number of solutions for (1.1) tends to ∞ as d→ 0. These features also hold
for the Neumann problems.

2 Preliminaries

Throughout this discussion, let Ω ⊂ RN be a bounded domain with a smooth
boundary. We seek for positive non-constant solutions of (1.1). To this end,
let H be the Hilbert space H10 (Ω) if Bu = u|∂Ω or H1(Ω) if Bu =

∂u
∂ν
|∂Ω. It is

well known that the solutions of (1.1) correspond to the critical points of the
following functional defined on H ,

Jd(u) =
1

2

∫
Ω

(d|∇u|2 + u2) dx−
1

p

∫
Ω

K(x)|u|p dx . (2.1)

By using the Mountain Pass Theorem ([17]), the authors of [14] and [18]
proved the existence of a positive non-constant solution ud of (1.1). Here, in
order to establish multiplicity results, we consider a constraint problem for Jd(u)
on the Nehari manifold (e.g. [23]),

Vd = {u ∈ H\{0} :< J ′d(u), u >= 0}

= {u ∈ H\{0} :

∫
Ω

(d|∇u|2 + u2 −K(x)|u|p)dx = 0}.

Clearly, the critical points of Jd are in Vd. We define

cd = inf
u∈Vd

Jd(u). (2.2)

By standard methods (e.g. [23]), cd is achieved and therefore gives rise to a
solution of (1.1). Solutions corresponding to cd are called least-energy solutions
whose behaviors are studied in [18]. We shall prove the existence of multiple
critical points of Jd (therefore multiple solutions of (1.1)) with critical values
close to cd. Our strategy is to estimate the topology of a certain level set of Jd,
say

Jcd+εd = {u ∈ Vd : Jd(u) ≤ cd + ε} (2.3)

for some appropriate ε > 0 depending on d. To outline our strategy more pre-
cisely, let us consider the Dirichlet problem. We shall prove that for d sufficiently
small

cat
J
cd+ε

d

(Jcd+εd ) ≥ 2 cat
Nr(KΩ)

(KΩ). (2.4)

Then standard critical point theory yields the existence of at least 2 catNr(KΩ)(KΩ)
critical points in [cd, cd+ε]. An energy estimate shows that none of these critical
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points changes sign in Ω. By the maximum principle, these solutions are strictly
positive or negative on Ω̄. It follows that there exist at least catNr(KΩ)(KΩ) pos-
itive solutions of (1.1). More precise information will be given in §3.
Now, we give some preliminary results. The ground state solution to the

following problem plays an important role in the proof of our main results. First,
we summarize known facts about positive solutions to the equation ([6, 10, 11])

−∆ω + ω = ωp−1 in RN . (2.5)

Proposition 2.1 Equation (2.5) has a solution ω satisfying

i) ω ∈ C2(RN ) ∩H1(RN ) and ω > 0 in RN .

ii) ω is spherically symmetric: ω(z) = ω(r) with r = |z| and dω/dr < 0 for
r > 0.

iii) ω and its first derivatives decay exponentially at infinity.

iv)

m :=

∫
RN
(|∇ω|2 + ω2)dx

(
∫
RN
|ω|p)

2
p

= inf
u∈H1(RN )

∫
RN
(|∇u|2 + u2)dx

(
∫
RN
|u|p)

2
p

,

and

I(ω) =
1

2

∫
RN

(|∇ω|2 + ω2)dx −
1

p

∫
RN

ωpdx =
p− 2

2p
(m)

p
p−2 . (2.6)

Frequently we rescale the problem (1.1). So that there is a one to one
correspondence between the solutions of (1.1) and solutions of

−∆u+ u = K(
√
dx)|u|p−2u in Ωd (2.7)

Bu = 0 on ∂Ωd,

where
Ωd = {x ∈ R

N :
√
dx ∈ Ω} . (2.8)

Then (2.7) is associated with the functional defined by

Id(u) =
1

2

∫
Ωd

(|∇u|2 + u2)dx −
1

p

∫
Ωd

K(
√
dx)|u|pdx for u ∈ Ud, (2.9)

where

Ud =

{
u ∈ H1(Ωd)\{0} :

∫
Ωd

(|∇u|2 + u2)dx =

∫
Ωd

K(
√
dx)|u|pdx

}
. (2.10)

For u ∈ Vd, define σ(u)(x) = u(
√
dx). Then σ(u)(x) ∈ Ud. Moreover, the proof

of the following lemma is a simple computation.

Lemma 2.2 For each u ∈ Vd, Id(σ(u)(x)) = d−N/2Jd(u), and therefore

inf
Ud
Id = d

−N/2 inf
Vd
Jd.
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3 Asymptotic Estimates

This section is divided into three subsections.

3.A. Dirichlet case

We first consider Dirichlet problems in this subsection so that H = H10 (Ω) and
we give some asymptotic estimates as d → 0. Assume KΩ ∩ ∂Ω = ∅, i.e.,
maxx∈Ω̄K(x) is attained in the interior of Ω. Let η be a smooth non-increasing
function on [0,∞] such that η(t) = 1, 0 ≤ t ≤ 1; η(t) = 0, t ≥ 2 and |η′| ≤ 2.
Also, let ηr(·) = η( ·

r
) for r > 0 such that 2r < dist(KΩ, ∂Ω) and let ψd(y) be

the function on Ω defined by

ψd(y)(x) = αyηr(|x − y|) · ω(
x− y
√
d
) ∈ Vd (3.1)

with y ∈ KΩ fixed, where

αy =

[∫
Ω
(d|∇(ηr(|x− y|)ω(

x−y√
d
))|2 + |ηr(|x− y|)ω(

x−y√
d
)|2)dx∫

ΩK(x)|ηr(|x− y|)ω(
x−y√
d
)|pdx

] 1
p−2

. (3.2)

Proposition 3.1 ψd ∈ C(KΩ, Vd) and

Jd(ψd(y)(x)) = d
N/2[K(y)−

2
p−2 I(ω) + o(1)] (3.3)

as d→ 0 uniformly for y ∈ KΩ. Here ω and I(ω) are given in Proposition 2.1.

Proposition 3.2 (a) limd→0 d
−N/2cd = K

− 2
p−2

1 I(ω), where cd is defined in
(2.2).
(b) Let dn → 0 and un ∈ Un := Udn be such that

lim
n→∞

p− 2

2p

∫
Ωn

(
|∇un|

2 + u2n
)
dx = K

− 2
p−2

1 I(ω) := A. (3.4)

Then, there exists yn ∈ RN with the property that for any ε > 0, ∃R > 0 such
that

lim
n→∞

p− 2

2p

∫
BR(yn)

[
|∇un|

2 + u2n
]
dx ≥ A− ε. (3.5)

Moreover, for every positive and small δ, there exists Cδ > 0 such that

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(KΩ))

)
≤ Cδ. (3.6)

Notice that the center of mass of u ∈ Vd(Ω) in terms of the Lp norm is

β(u) =

∫
Ω
|u|pxdx∫
Ω |u|

pdx
∀u ∈ Vd.

Also notice that β is continuous in u and β(u) belongs to the the convex closure
of Ω.
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Proposition 3.3 For r > 0 fixed, there exist ε1 > 0 and d1 > 0 such that for
any 0 < d ≤ d1 and 0 < ε ≤ ε1 we have

β(u) ∈ Nr(KΩ) ∀u ∈ J
cd+εd

N/2

d .

Proof of Proposition 3.1 Proving that ψd ∈ C(KΩ, Vd) is straightforward.
To prove (3.3), we proceed as follows. First, let us note that

Jd(ψd(y)(x)) =
1

2

∫
Ω

(d|∇ψd|
2 + ψ2d)dx−

1

p

∫
Ω

K(x)|ψd|
pdx (3.7)

=
p− 2

2p
α2y

∫
Ω

(d|∇(ηr(|x− y|)ω(
x− y
√
d
))|2 + |ηr(|x − y|)ω(

x− y
√
d
)|2)dx.

By (3.2), we have

αp−2y =

∫
Ω(d|∇(ηr(|x− y|)ω(

x−y√
d
))|2 + |ηr(|x− y|)ω(

x−y√
d
)|2)dx∫

ΩK(x)|ηr(|x − y|)ω(
x−y√
d
)|pdx

.

Next, we find some estimates for αp−2y . Consider the numerator of αp−2y ,

N =

∫
Ω

(d|∇(ηr(|x − y|)ω(
x− y
√
d
))|2 + |ηr(|x − y|)ω(

x− y
√
d
)|2)dx.

By definition,

|∇(ηrω)|
2 = |∇ηr|

2 · ω2 + 2ηr · ω · ∇ηr · ∇ω ·
1
√
d
+
1

d
η2r · |∇ω|

2.

Therefore,

N =

∫
Ω

η2r(|∇ω|
2 + ω2)dx +

∫
Ω

(d|∇ηr |
2 · ω2 + 2ηr · ω · ∇ηr · ∇ω ·

√
d)dx

= I1 + I2.

Let z = x− y, h = z√
d
and Ωd,y =

Ω−{y}√
d
. Then

I1 = d
N/2

∫
Ωd,y

η2(
|h
√
d|

r
)
(
|∇ω(h)|2 + ω2(h)

)
dh.

By a property of the ground state solution ω, ∀ε > 0, ∃R1 > 0 such that∫
Ωd,y∩{h:|h|≥R1}

η2(
|h
√
d|

r
)
(
|∇ω(h)|2(|∇ω(h)|2 + ω2(h)

)
dh <

ε

2
.

For such R1, there exists d1 > 0 such that for each d ≤ d1,∣∣∣ ∫
Ωd,y∩{h:|h|≥R1}

η2(
|h
√
d|

r
)
(
|∇ω(h)|2(|∇ω(h)|2 + ω2(h)

)
dh

−

∫
RN

(
|∇ω(h)|2 + ω2(h))

)
dh
∣∣∣ < ε

2
,
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provided
√
d1 ≤

r
R1
, i.e. R1

√
d1 ≤ r and so η2(|h

√
d|/r) = 1. Therefore,

I1 = d
N/2(

∫
RN

(|∇ω(h)|2 + ω2(h))dh+ o(1)).

Notice that

I2 =

∫
Ω

(
d|∇ηr |

2 · ω2 + 2ηr · ω · ∇ηr · ∇ω ·
√
d
)
dx

= dN/2
∫
Ωd,y∩{h:

r√
d
≤|h|≤ 2r√

d
}

(
d|∇η(

|h
√
d|

r
)|2 · ω2(h)

+ 2
√
dη(
|h
√
d|

r
) · ω(h) · ∇η · ∇ω

)
dh

≤ dN/2
∫
Ωd,y∩{h:

r√
d
≤|h|≤ 2r√

d
}

(
d
4ω2(h)

r2
+ 2
√
dω(h) ·

2

r
· |∇ω|

)
dh

≤ dN/2
∫
Ωd,y∩{h:

r√
d
≤|h|≤ 2r√

d
}
C ·
√
d
(
|∇ω(h)|2 + ω2(h)

)
dh

≤ dN/2 · o(1),

where C = max{ 4
r2
(
√
d+ 1), 1}. For the denominator of αp−2y , we have

D =

∫
Ω

K(x)|ηr(|x − y|)ω(
x− y
√
d
)|pdx

= dN/2
∫
Ωd,y

K(
√
dh+ y) · |η(

√
dh

r
)|p · |ω(h)|pdh.

Now, ∀ε > 0, ∃R2 > 0 such that∫
Ωd,y∩{h:|h|≥R2}

K(
√
dh+ y) · |η(

√
dh

r
)|p · |ω(h)|pdh

≤ max
x∈Ω̄

K(x)

∫
Ωd,y∩{h:|h|≥R2}

|ω(h)|pdh ≤
ε

2
.

On the other hand, by the continuity ofK(x), for the above ε andR2, there exists
δ > 0 such that |K(z)−K(y)| < ε

2
∫
RN
|ω|pdh

whenever |z − y| < δ; also, there

exists d2 > 0 with
√
d2 ≤

r
R2
such that if d ≤ d2 then |

√
dh| ≤ min(δ,

√
d1R2).

Hence, for d ≤ d2∣∣∣∣∣
∫
Ωd,y∩{h:|h|≤R2}

(
K(
√
dh+ y)−K(y)

)
|ω(h)|pdh

∣∣∣∣∣
≤

∫
Ωd,y∩{h:|h|≤R2}

∣∣∣K(√dh+ y)−K(y)∣∣∣ |ω(h)|pdh
≤

ε

2
∫
RN
|ω|pdh

∫
RN

|ω|pdh

=
ε

2
.
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Therefore,

∫
Ωd,y∩{h:|h|≤R2}

∣∣∣K(√dh+ y)∣∣∣ · |η(
√
dh

r
)|p · |ω(h)|p dh

≤

∫
Ωd,y∩{h:|h|≤R2}

∣∣∣K(√dh+ y)−K(y)∣∣∣ · |η(
√
dh

r
)|p · |ω(h)|p dh

+

∫
Ωd,y∩{h:|h|≤R2}

K(y)|η(

√
dh

r
)|p · |ω(h)|pdh

≤

∫
Ωd,y∩{h:|h|≤R2}

|K(
√
dh+ y)−K(y)||ω(h)|pdh

+

∫
Ωd,y∩{h:|h|≤R2}

K(y)|ω(h)|pdh

<
ε

2
+

∫
Ωd,y∩{h:|h|≤R2}

K(y)|ω(h)|p dh .

It follows that

D = dN/2
[
K(y)

∫
RN

|ω(h)|pdh+ o(1)

]
.

Hence, using (2.5) we obtain

αy =

[ ∫
RN
(|∇ω(h)|2 + ω2(h))dh

K(y)
∫
RN
|ω(h)|pdh+ o(1)

] 1
p−2

= K(y)−
1
p−2 [1 + o(1)] ( o(1)→ 0 as d→ 0).

Finally, using (3.7) we get

Jd(ψd(y)(x))

=
[
K(y)−

2
p−2 (1 + o(1))

] [p− 2
2p

dN/2
∫
RN

(|∇ω(x)|2 + ω2(x))dx + o(1)

]

= dN/2
(
K(y)−

2
p−2 I(ω) + o(1)

)
,

where the last equality follows from (iv) of Proposition 2.1 ♦

To prove Proposition 3.2, we need the following results of P.L. Lions([12]).

Lemma 3.4 ([12]) Suppose {µn} is a sequence of measures on RN such that
µn ≥ 0, limn→∞

∫
RN

µndx = A. Then there is a subsequence {µn} (still denoted
by {µn}) such that one of the following three mutually exclusive conditions holds.
(1◦) (Compactness) There exists a sequence {yn} ⊆ RN such that for any ε > 0
there is R > 0 with the property that

lim
n→∞

∫
BR(yn)

µndx ≥ A− ε.
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(2◦) (Vanishing) For all R > 0

lim
n→∞

( sup
y∈RN

∫
BR(y)

µndx) = 0.

(3◦) (Dichotomy) There exist a number Ã, 0 < Ã < A, a sequence {Rn} going
to infinity, {yn} ⊂ RN and two non-negative measures {µ1n}, {µ

2
n} such that

0 ≤ µ1n + µ
2
n ≤ µn, supp(µ

1
n) ⊂ BRn(yn), supp(µ

2
n) ⊂ R

N\Bc2Rn(xn), and as
n→∞

µ1n(R
N )→ Ã, µ2n(R

N )→ A− Ã.

Lemma 3.5 ([12]) Let R > 0 and 2 ≤ q ≤ 2N/N − 2. If {un} is bounded in
H1(RN ) and if

sup
y∈RN

∫
BR(y)∩Ω

|un|
qdx→ 0 as n→∞,

then un → 0 in Lp(RN ) for 2 < p < 2N/N − 2 .

Proof of Proposition 3.2 Part (a) is proved in [18][Prop. 3.1] though a
different variational formulation was used in there. To prove part (b), we define
a family of measures on RN by µn =

p−2
2p (|∇un|

2 + u2n) (with zero extensions

outside Ωn) and apply (1
◦) of Lemma 3.1.

Claim 1 For µn, vanishing (2
◦) in Lemma 3.4 cannot happen. Otherwise, by

Lemma 3.5 there exists a subsequence still denoted by {un} going to zero in Lp

for 2 < p < 2N/N − 2. Then, using (3.4) we obtain

0 = lim
n→∞

p− 2

2p
K1

∫
RN

|un|
pdx

≥ lim sup
n→∞

p− 2

2p

∫
RN

K(
√
dnx)|un|

pdx

= A > 0.

This contradiction proves Claim 1.

Claim 2 For µn, Dichotomy (3
◦) in Lemma 3.4 will not occur. Otherwise,

let φn ∈ C10 (R
N ) such that φn ≡ 1 in BRn(yn), φn ≡ 0 in B

c
2Rn
(yn) and

0 ≤ φn ≤ 1, |∇φn| ≤
2
Rn
. Let un = φnun + (1− φn)un =: u1n + u

2
n. Then, using

(3◦) of Lemma 3.4 we have

Idn(u
1
n) ≥ µn(BRn(yn))

≥ µ1n(BRn(yn))

= µ1n(R
N )→ Ã,

and

Idn(u
2
n) ≥ µn(B

c
2Rn(yn))

≥ µ2n(B
c
2Rn(yn))

= µ2n(R
N )→ A− Ã,
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where Idn is defined in (2.9).
Let An = B2Rn(yn)\BRn(yn). Then,

p− 2

2p

∫
An

(|∇un|
2 + u2n)dx

= µn(R
N )− µn(BRn(yn))− µn(B

c
2Rn(yn)) (3.8)

≤ µn(R
N )− µ1n(R

N )− µ2n(R
N )→ 0 as n→∞ .

Thus, by Sobolev embedding theorem, we have
∫
An
|un|pdx → 0 as dn → 0.

Consequently,∫
RN

K(
√
dnx)|un|

pdx

=

∫
RN

K(
√
dnx)|u

1
n + u

2
n|
pdx

=

∫
BRn (yn)

K(
√
dnx)|u

1
n|
pdx+

∫
Bc2Rn (yn)

K(
√
dnx)|u

2
n|
pdx

+

∫
An

K(
√
dnx)|un|

pdx (3.9)

=

∫
RN

χ1n ·K(
√
dnx)|u

1
n|
pdx+

∫
RN

χ2n ·K(
√
dnx)|u

2
n|
pdx+ o(1) ,

where χ1n and χ
2
n are the characteristic functions on BRn(yn) and B

c
2Rn
(yn)

respectively. Next, observe that∫
RN

(|∇un|
2 + u2n)dx =

∫
RN

(|∇u1n|
2 + (u1n)

2)dx+

∫
RN

(|∇u2n|
2 + (u2n)

2)dx+Mn,

where Mn := 2
∫
RN
(∇u1n · ∇u

2
n + u

1
n · u

2
n)dx→ 0 as dn → 0 because of (3.8).

Now,

A = lim inf
n→∞

Idn(un)

≥ lim inf
n→∞

Idn(u
1
n) + lim inf

n→∞
Idn(u

2
n) + o(1)

≥ Ã+A− Ã = A,

(here u1n, u
2
n may not be on the manifold Un). Hence,

Ã = lim
n→∞

Idn(u
1
n), A− Ã = lim

n→∞
Idn(u

2
n). (3.10)

Let

γ1n =

∫
RN

(
|∇u1n|

2 + (u1n)
2
)
dx−

∫
RN

K(
√
dnx)|u

1
n|
pdx,

and

γ2n =

∫
RN

(
|∇u2n|

2 + (u2n)
2
)
dx−

∫
RN

K(
√
dnx)|u

2
n|
pdx.
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By the fact that un ∈ Un, (3.8) and (3.9) we have

γ1n = −γ
2
n + o(1). (3.11)

Now, we conclude our proof of Claim 2 by showing that (3.11) leads to a con-
tradiction. Let αn > 0 be such that αnu

1
n ∈ Un. That is,

αpn

∫
RN

K(
√
dnx)|u

1
n|
pdx = α2n

∫
RN

(
|∇u1n|

2 + (u1n)
2
)
dx.

Case 1: After passing to a subsequence if necessary, assume γ1n ≤ 0. In this
case,

αp−2n

∫
RN

K(
√
dnx)|u

1
n|
pdx =

∫
RN

(
|∇u1n|

2 + (u1n)
2
)
dx

≤

∫
RN

K(
√
dnx)|u

1
n|
pdx .

It follows that αn ≤ 1. Hence, by the monotonicity of Idn on Un, (3.10), and by
Lemma 2.2, we have

d−N/2n cdn ≤ Idn(αnu
1
n) ≤ Idn(u

1
n)→ Ã < A,

where cdn is defined in (2.2). This is a contradiction because

d−N/2n cdn → A > Ã.

Case 2: A similar argument holds for γ2n ≤ 0.
Case 3: If both γ1n and γ

2
n are positive after passing to a subsequence then,

from (3.11) it follows that γ1n = o(1) and γ2n = o(1). If αn ≤ 1 + o(1), we
apply similar arguments to those used in Cases 1 and 2. Now, suppose that
limn→∞ αn = α0 > 1. We claim that along a subsequence if necessary, we have

lim
n→∞

∫
RN

K(
√
dnx)|u

1
n|
pdx > 0.

Otherwise,

lim
n→∞

γ1n = lim
n→∞

∫
RN

(
|∇u1n|

2 + (u1n)
2
)
dx = 0,

which implies that
Ã = lim

n→∞
γ1n = 0,

that is impossible. Now, since γ1n = o(1) and αnu
1
n ∈ Un we have

0 = lim
n→∞

[ ∫
RN

(
|∇(u1n)|

2 + (u1n)
2
)
dx−

∫
RN

K(
√
dnx)|u

1
n|
pdx
]

= lim
n→∞

(αp−2n

∫
RN

K(
√
dnx)|u

1
n|
pdx−

∫
RN

K(
√
dnx)|u

1
n|
pdx)

= (αp−20 − 1) lim
n→∞

∫
RN

K(
√
dnx)|u

1
n|
pdx > 0,
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again a contradiction. Thus, we have proved that dichotomy cannot happen
and therefore (3.5) holds.
Next, we turn to proving (3.6). If the conclusion were not true, without loss

of generality, we may assume that there is a > 0 with { x√
dn
| x ∈ Ω, K(x) ≥

K1 − a} ⊂
1√
dn
(Nδ(KΩ)) ⊂ Ωn such that

lim
n→∞

dist

(
yn, {

x
√
dn
| x ∈ Ω, K(x) ≥ K1 − a}

)
=∞.

By the first part of the Proposition, there exists yn ∈ RN such that for any
ε > 0, ∃R > 0 with

lim
n→∞

p− 2

2p

∫
BR(yn)

[
|∇un|

2 + u2n
]
dx ≥ A− ε.

Taking εm → 0 we can find subsequences dnm , unm and Rm →∞ such that

dist

(
ynm , {

x√
dnm

| x ∈ Ω, K(x) ≥ K1 − a}

)
≥ 2Rm

and
p− 2

2p

∫
BRm (ynm)

[
|∇unm |

2 + u2nm
]
dx ≥ A− εm, for m large.

For simplicity, we denote these subsequences by dn and un. Let wn(x) =
αnηR(|x− yn|)un(x), where αn is to be chosen such that wn(x) ∈ Un. Then, it
is easy to see that αn → 1 as n→∞ and

lim
n→∞

Idn(un) = lim
n→∞

Idn(wn).

We shall show that

lim
n→∞

Idn(wn(x)) ≥ (K1 − a)
− 2
p−2 I(ω).

In fact,

Idn(wn) =
1

2

∫
Ωn

(
|∇wn|

2 + w2n
)
dx−

1

p

∫
Ωn

K(
√
dnx)|wn|

pdx (3.12)

=
p− 2

2p
α2n

∫
Ωn

(
|∇(ηR · un)|

2 + |ηR · un|
2
)
dx

=
p− 2

2p

(∫
Ωn
(|∇(ηR · un)|2 + |ηR · un|2)dx∫
Ωn
K(
√
dnx)|ηR · un|pdx

) 2
p−2

×

∫
Ωn

(|∇(ηR · un)|
2 + |ηR · un|

2)dx

≥
p− 2

2p
(K1 − a)

− 2
p−2

(∫
Ωn
(|∇(ηR · un)|2 + |ηR · un|2)dx∫

Ωn
|ηR · un|pdx

) 2
p−2
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·

∫
Ωn

(|∇(ηR · un)|
2 + |ηR · un|

2)dx

=
p− 2

2p
(K1 − a)

− 2
p−2

(∫
RN
(|∇(ηR · un)|2 + |ηR · un|2)dx

(
∫
RN
|ηR · un|pdx)

2
p

) p
p−2

≥
p− 2

2p
(K1 − a)

− 2
p−2

(
inf

u∈H1(RN )

∫
RN
(|∇u|2 + u2)dx

(
∫
RN
|u|pdx)

2
p

) p
p−2

=
p− 2

2p
(K1 − a)

− 2
p−2 ·m

p
p−2

= (K1 − a)
− 2
p−2 · I(ω),

where m is defined in Proposition 2.1. Now we a contradiction follows from

K
− 2
p−2

1 I(ω) = lim
n→∞

Idn(un) = lim
n→∞

Idn(wn) ≥ (K1 − a)
− 2
p−2 I(ω).

This completes the proof of Proposition 3.2. ♦

Proof of Proposition 3.3 If this proposition were not true, there would exist

dn → 0, εn → 0 and un ∈ Vn such that Jdn(un) ≤ cdn + εnd
N/2
n , cn = β(un) 6∈

Nr(KΩ). By Lemma 2.2, vn = un(
√
dnx) ∈ Un and

lim
n→∞

∫
Ωn

K(
√
dnx)|vn|

pdx = K
− 2
p−2

1 I(ω).

Choose a > 0 such that {x ∈ Ω̄ : K(x) ≥ K1−a} ⊂ Ω. By Proposition 3.2, there
exist a subsequence, still denoted by vn, a sequence yn ∈ RN , and a constant
Ca > 0, such that for each ε > 0, there is R > 0 with

lim
n→∞

∫
BR(yn)∩Ωn

K(
√
dnx)|vn|

pdx ≥ K
− 2
p−2

1 I(ω)− ε

and

lim
n→∞

dist(yn, {
x
√
dn
: x ∈ Ω, K(x) ≥ K1 − a}) ≤ Ca .

Therefore, there exists tn ∈ {x ∈ Ω̄ | K(x) ≥ K1 − a} such that

lim
n→∞

dist(yn,
tn√
dn
) ≤ Ca.

By passing to a subsequence, we may assume that tn → t ∈ Ω with K(t) ≥
K1 − a. Without loss of generality, we assume that cn = β(un) satisfies cn → 0
in RN . By a direct computation we have∫

Ωn

|vn|
pxdx =

cn√
dn

∫
Ωn

|vn|
pdx.
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By the assumption cn = β(un) 6∈ Nr(KΩ), we have t 6= 0. From (3), we have

K1 lim
n→∞

∫
BR(yn)∩Ωn

|vn|
pdx ≥ lim

n→∞

∫
BR(yn)∩Ωn

K(
√
dnx)|vn|

pdx(3.13)

≥ K
− 2
p−2

1 I(ω)− ε.

It follows that

lim
n→∞

∫
BR(yn)∩Ωn

|vn|
pdx ≥

K
− 2
p−2

1 I(ω)

K1
− ε′ = Ā− ε′

where ε′ = ε
K1
, Ā =

K
− 2
p−2

1 I(ω)

K1
. For simplicity, we assume that t = (t1, t2, . . . , tN )

with t1 > 0. Without loss of generality, assume

lim
n→∞

∫
Ωn

|vn|
pdx = B ≥ Ā.

From (3.13), ∀ε > 0, ∃R1 > 0 such that

lim
n→∞

∫
BR1(

tn√
dn
)∩Ωn

|vn|
pdx ≥ Ā− ε.

Let s = min{y1 | (y1, y2, . . . , yN) ∈ KΩ}. Then, for n large we have

c1n√
dn

∫
Ωn

|vn|
pdx =

∫
Ωn

x1|vn|
pdx

=

∫
BR1(

tn√
dn
)∩Ωn

|vn|
px1dx+

∫
Ωn\BR1(

tn√
dn
)

|vn|
px1dx

≥

(
t1
√
dn
−R1

)
(Ā− ε)−

|s|
√
dn
ε

where we use (3) so that

∫
Ωn\BR1 (

tn√
dn
)

|vn|
pdx < ε.

Hence, we get

c1n

∫
Ωn

|vn|
pdx ≥ (t1n −R1

√
dn)(Ā− ε)− |s|ε.

Letting n→∞ and ε→ 0, we obtain 0 ≥ t1 > 0, a contradiction. ♦
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3.B. Neumann case with K1 > 2
(p−2)/2K2

We shall state three propositions which are analogous to Propositions 3.1-3.3.
The proofs of these results require minor changes from the ones of Section 3.A.
Thus, we will do only sketches in this and the next subsection. We assume that
H = H1(Ω), r > 0 such that 2r < dist(KΩ, ∂Ω) and

max
x∈Ω̄

K(x) > 2
p−2
2 max

∂Ω
K(x).

Proposition 3.6 Let ψd be given in (3.1). Then ψd ∈ C(KΩ, Vd(Ω)) and

Jd(ψd(y)(x)) = d
N/2[K(y)−

2
p−2 I(ω) + o(1)].

Proof. By (3), KΩ ∩ ∂Ω = ∅. Then, the same proof as that of Proposition3.1
works here since 2r < dist(KΩ, ∂Ω). We omit the details. ♦

Proposition 3.7 (a) limd→0 d
−N/2cd = K

− 2
p−2

1 I(ω), where cd is defined in (2.2).
(b) Let dn → 0 and un ∈ Un be such that

lim
n→∞

p− 2

2p

∫
Ωn

(
|∇un|

2 + u2n
)
dx = K

− 2
p−2

1 I(ω) := B.

Then, there exists yn ∈ RN such that for any ε > 0, ∃R > 0 with

lim
n→∞

p− 2

2p

∫
BR(yn)

[
|∇un|

2 + u2n
]
dx ≥ B − ε

and such that for any δ > 0 small there exists Cδ > 0 with

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(KΩ))

)
≤ Cδ.

For the proof of of this proposition we modify the proof of Proposition 3.2
and use the lemma from [21], which is analogous to Lemma 3.5.

Lemma 3.8 Let Ω ⊂ RN be a bounded domain with smooth boundary. Let
dn → 0 and un ∈ H1(Ωn) such that ‖un‖H1 ≤ C for some C > 0 and for all n.
If for some 2 ≤ q ≤ 2N

N−2 and for some R > 0,

lim
n→∞

(
sup
y∈RN

∫
BR(y)∩Ωn

|un|
qdx

)
= 0 ,

then

lim
n→∞

∫
Ωn

|un|
pdx = 0,

for all 2 < p < 2N
N−2 .
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Proof of Proposition 3.7 By Lemma 3.8, we can easily rule out the possibil-
ity of vanishing. Very much similar arguments to that of the proof of Proposition
3.2 show that dichotomy can not happen. Therefore, we get compactness of the
sequence un of (3.7). To prove (3.7), we first prove that
limn→∞ dist(yn,

1√
dn
(∂Ω))→∞. If limn→∞ dist(yn,

1√
dn
(∂Ω)) is finite, with-

out loss of generality, we may assume yn ∈ ∂Ω. By compactness, there exists
yn ∈ RN such that for any ε > 0, ∃R > 0 with

lim
n→∞

p− 2

2p

∫
BR(yn)∩Ωn

[
|∇un|

2 + u2n
]
dx ≥ B − ε.

Taking εm → 0 we find subsequences dnm , unm and Rm →∞ such that

p− 2

2p

∫
BRm (ynm)∩Ωnm

[
|∇unm |

2 + u2nm
]
dx ≥ B − εm

for m sufficiently large. For simplicity, we still denote those sequences by dn,
un , Rn and Ωn. Because

BRn(yn) ∩ Ωn → RN+ = {x ∈ R
N : x = (x1, x2, . . . , xN ), xN > 0}

in measures as n→∞ we have

p− 2

2p

∫
BR(yn)∩Ωn

[
|∇un|

2 + u2n
]
dx→

1

2
K
− 2
p−2

1 I(ω) =
1

2
B

which contradicts (3). Thus, limn→∞ dist(yn,
1√
dn
(∂Ω))→∞ as n → ∞. Now

the proof of (3.7) is similar to the proof of (3.6). ♦

Proposition 3.9 For r > 0, there exist ε1 > 0 and d1 > 0 such that for any
0 < d ≤ d1 and 0 < ε ≤ ε1 we have

β(u) ∈ Nr(KΩ), ∀u ∈ Jcd+εd
N/2

d .

The proof uses the arguments used in proving Proposition 3.3 with minor
changes. We omit it.

3.C Neumann case with K1 < 2
p−2
2 K2

We assume that H = H1(Ω) and

max
x∈Ω̄

K(x) < 2
p−2
2 max

∂Ω
K(x).

Since ∂Ω is smooth, there is r > 0 such that for any y ∈ ∂Ω, Br(y) ∩ Ω is
diffeomorphic to B+1 (0) := {x ∈ B1(0) | x

N > 0}. Let r > 0 be fixed. Then for
y ∈ K∂Ω, we define ψd(y) ∈ Vd similarly as in (3.1).

Proposition 3.10 ψd ∈ C(K∂Ω, Vd(Ω)) and

Jd (ψd(y)(x)) = d
N/2

[
1

2
K(y)−

2
p−2 I(ω) + o(1)

]
,

as d→ 0 uniformly for y ∈ K∂Ω.
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Proof. We need some modifications to the proof of Proposition 3.1. Note that
y ∈ ∂Ω implies ψ(y) ∈ H1(Ω) instead of belonging to H10 (Ω) as in Proposition
3.1; and that, for any fixed R > 0, 1√

d
(Ω− {y}) ∩ {h : |h| ≤ R} → B+R (0) in

measures as d → 0 uniformly for y ∈ ∂Ω. Then, similar argument used in
proving Proposition 3.1 can show that

Jd(ψd(y)) = (K(y))
− 2
p−2 (1 + o(1))

(
p− 2

2p
dN/2

∫
RN+

(|∇ω|2 + ω2)dx + o(1)

)

= dN/2
(
1

2
(K(y))−

2
p−2 I(ω) + o(1)

)

where RN+ = {x ∈ R
N | x = (x1, x2, . . . , xN ), xN > 0}. ♦

Proposition 3.11 (a) limd→0 d
−N/2cd =

1
2K

− 2
p−2

2 I(ω), where cd is defined in
(2.2).
(b) Let dn → 0 and un ∈ Un be such that

lim
n→∞

p− 2

2p

∫
Ωn

(
|∇un|

2 + u2n
)
dx =

1

2
K
− 2
p−2

2 I(ω) := C.

Then, there exists yn ∈ RN such that for any ε > 0, ∃R > 0 with

lim
n→∞

∫
BR(yn)

[
|∇un|

2 + u2n
]
dx ≥ C − ε, (3.14)

and such that for any δ > 0 small there exists Cδ > 0 with

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(K∂Ω))

)
≤ Cδ.

Proof. The same argument as in the proof of Proposition 3.7 gives the com-
pactness of the sequence un, i.e., there exists yn ∈ Ωn such that for any ε > 0,
there exists R > 0, and

lim
n→∞

∫
BR(yn)∩Ωn

[
|∇un|

2 + u2n
]
dx ≥ C − ε.

This proves (3.14). Now, if limn→∞ dist(yn,
1√
dn
(∂Ω)) =∞, then let wn(x) =

αnηR(|x− yn|)un(x), where αn is to be chosen such that wn(x) ∈ Un. Then

1

2
K
− 2
p−2

2 I(ω) = lim
n→∞

Idn(un) = lim
n→∞

Idn(wn).

A calculation similar to (3.12) yields

Idn(wn) ≥ K
− 2
p−2

1 · I(ω).
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Therefore,
1

2
K
− 2
p−2

2 I(ω) ≥ K
− 2
p−2

1 · I(ω)

which contradicts K1 < 2
p−2
2 K2. Thus, we have limn→∞ dist(yn,

1√
dn
(∂Ω))is

finite so we may assume yn ∈
1√
dn
(∂Ω). Now if

lim
n→∞

dist(yn,
1
√
dn
(Nδ(K∂Ω)) =∞

for some δ > 0, then there is a > 0 such that for a fixed R > 0, BR(yn)
belongs to the region where K(

√
dnx) ≥ K2 − a, for n large. Then, following

the arguments used in proving Proposition 3.2 we get

1

2
K
− 2
p−2

2 I(ω) = lim
n→∞

Idn(un) ≥
1

2
(K2 − a)

− 2
p−2 I(ω),

a contradiction. Thus, (3.11) is proved. ♦

Proposition 3.12 For r > 0 fixed, there exist ε1 > 0 and d1 > 0 such that for
any 0 < d ≤ d1 and 0 < ε ≤ ε1 we have

β(u) ∈ Nr(K∂Ω) ∀u ∈ J
cd+εd

N/2

d .

The proof is similar to the one of Proposition 3.3 and therefore omitted.

3.D Neumann case with K1 = 2
p−2
2 K2

We assume that H = H1(Ω) and

max
x∈Ω̄

K(x) = 2
p−2
2 max

∂Ω
K(x).

Then for y ∈ K∂Ω ∪KΩ we may still define ψd(y) ∈ Vd similarly as in section
3.A.

Proposition 3.13 ψd ∈ C(K∂Ω ∪KΩ, Vd(Ω)) with

(i) Jd (ψd(y)(x)) = d
N/2

[
K
− 2
p−2

1 I(ω) + o(1)

]
, as d→ 0 uniformly for y ∈ KΩ,

or

(ii) Jd (ψd(y)(x)) = dN/2
[
1
2K

− 2
p−2

2 I(ω) + o(1)

]
, as d → 0 uniformly for y ∈

K∂Ω.

Proof. First, note that K∂Ω and KΩ are both closed and K∂Ω ∩ KΩ = ∅.
Therefore, K∂Ω and KΩ can be completely separated by two distinct open sets.
If y ∈ K∂Ω ∪ KΩ, then either y ∈ K∂Ω or y ∈ KΩ. Choose r > 0 such that
2r < dist(K∂Ω,KΩ) and define ηr(·) as in (3.1) with y ∈ K∂Ω ∪ KΩ fixed. If
y ∈ KΩ we can repeat the proof of Proposition 3.A.1, and for y ∈ K∂Ω the proof
is identical with that of Proposition 3.10. ♦
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Proposition 3.14 (a) limd→0 d
−N/2cd =

1
2K

− 2
p−2

2 I(ω), where cd is defined in
(2.2).
(b) Let dn → 0 and un ∈ Un be such that

lim
n→∞

p− 2

2p

∫
Ωn

(
|∇un|

2 + u2n
)
dx = K

− 2
p−2

1 I(ω) =
1

2
K
− 2
p−2

2 I(ω) := D.

Then, there exists yn ∈ RN such that for any ε > 0, ∃R > 0 with

lim
n→∞

∫
BR(yn)∩Ωn

[
|∇un|

2 + u2n
]
dx ≥ D − ε,

and such that for any δ > 0 small there exists Cδ > 0 where either

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(KΩ))

)
≤ Cδ, (3.15)

or

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(K∂Ω))

)
≤ Cδ. (3.16)

Proof. (a) This is [18][Prop. 3.2, part (1)] which is true forK1 = 2
p−2
2 K2. (b)

The same arguments as in propositions 3.B.2 and 3.C.2 give the compactness of
the sequence un, i.e. there exists yn ∈ Ωn such that for any ε > 0, ∃R > 0 with

lim
n→∞

2

p− 2

∫
BR(yn)∩Ωn

[
|∇un|

2 + u2n
]
dx ≥ D − ε.

If (3.15)-(3.16) were not true, that is, both

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(KΩ))

)
=∞,

and

lim sup
n→∞

dist

(
yn,

1
√
dn
(Nδ(K∂Ω))

)
=∞,

then following the arguments of Propositions 3.7 and 3.11, we get either

K
− 2
p−2

1 I(ω) = lim
n→∞

Idn(un) = lim
n→∞

Idn(wn) ≥ (K1 − a)
− 2
p−2 I(ω),

or
1

2
K
− 2
p−2

2 I(ω) = lim
n→∞

Idn(un) ≥
1

2
(K2 − a)

− 2
p−2 I(ω),

and both lead to a contradiction. ♦

Proposition 3.15 For r > 0 fixed, there exist ε1 > 0 and d1 > 0 such that for
any 0 < d ≤ d1 and 0 < ε ≤ ε1 we have

β(u) ∈ Nr(KΩ ∪K∂Ω) ∀u ∈ J
cd+εd

N/2

d .
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Proof. Suppose the conclusion is not true, then there would exist dn → 0,

εn → 0 and un ∈ Vn such that Jdn(un) ≤ cdn + εnd
N/2
n , cn = β(un) 6∈ Nr(KΩ ∪

K∂Ω) or equivalently cn = β(un) 6∈ Nr(KΩ) and cn = β(un) 6∈ Nr(K∂Ω).
Then repeating the argument used in Proposition 3.A.3 with the aid of Propo-
sition 3.14, we will have a contradiction. ♦

4 Proof of theorems

The proofs of these results are quite similar in spirit, and we shall give details for
Theorem 1.1 and the sketch for the other results. The basic idea for the existence
of multiplicity results has been used in [1, 2, 3, 21, 22], and the basic idea for
proving the shape of solutions has been used in [18, 14, 15, 16, 19, 20, 21, 22].

The proof of Theorem 1.1 is carried out in 3 steps. The first step is to obtain
the estimate

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(KΩ)

(KΩ)

for d small and for some εd > 0 depending on d. Once we have (4), we may use
standard variational techniques on the level set Jcd+εdd and obtain the existence
of at least 2 catNr(KΩ)(KΩ) critical points of Jd on J

cd+εd
d . Finally, an energy

estimate shows that none of these solutions changes sign, and consequently, we
find at least catNr(KΩ)(KΩ) positive solutions of (1.1).

Lemma 4.1 Let ε1 > 0 be given as in Proposition 3.3. For any ε ∈ (0, ε1),
there exists dε > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(KΩ)

(KΩ)

for εd = d
N/2ε, 0 < d ≤ dε.

Proof. By Proposition 3.3, for some r fixed, there exist ε1 > 0 and d1 > 0
such that for any 0 < d ≤ d1 and 0 < ε ≤ ε1 we have

β : Jcd+εdd → Nr(KΩ),

where εd = εdN/2. By Proposition 3.1, for each 0 < ε < ε1 there exists dε > 0
such that for 0 < d ≤ dε

ψd : KΩ → Jcd+εdd ∩ {u ∈ Vd| u ≥ 0 a.e. in Ω}

is well defined. Both ψd and β are well-defined and continuous maps. By the
construction of ψd, for any y ∈ KΩ,

β ◦ ψd(y) ∈ Nr(KΩ).

Set A+ = Jcd+εdd ∩ {u ∈ Vd(Ω) : u ≥ 0a.e. in Ω} and assume catA+ A
+ = k.

Then, there exist k closed and contractible subsets of A+, say, A1, A2, . . . , Ak,
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such that A+ ⊂
⋃k
i=1 Ai. Let Yi = ψ−1d (Ai) ⊂ KΩ, i = 1, 2, . . . , k. Then⋃k

i=1 Yi = KΩ, and therefore

cat
Nr
(KΩ)(KΩ) ≤

k∑
i=1

cat
Nr
(KΩ)(Yi).

We shall show that if Yi 6= ∅, then Yi is contractible inNr(KΩ) and catNr(KΩ)(Yi) =
1. Since Ai is contractible in A+, there exists Hi ∈ C([0, 1]×Ai, A+) such that

Hi(0, a) = a ∀a ∈ Ai,

Hi(1, a) = ai ∈ A+ ∀a ∈ Ai .

Define a mapM : [0, 2]× Yi → Nr(KΩ) by

M(t, y) =

{
y − t(y − β ◦ Hi(0, ·) ◦ ψd(y)) for 0 ≤ t ≤ 1, y ∈ Yi,
β ◦ Hi(t− 1, ·) ◦ ψd(y) for 1 ≤ t ≤ 2, y ∈ Yi.

Then, we verify thatM(0, y) = y for all y ∈ Yi andM(2, y) = β(ai) ∈ Nr(KΩ)
for all y ∈ Yi. By (4), M is well defined and consequently Yi is contractible
in Nr(KΩ). So by (4), catNr(KΩ)(KΩ) ≤ k. Using −ψd and the same argument
one can show that

cat
Nr(KΩ)

(KΩ) ≥ cat
A−
(A−)

where A− = Jcd+εdd ∩ {u ∈ Vd(Ω) : u ≤ 0 a.e. in Ω}. Since A+ and A− are
disjoint in Jcd+εdd , we get

cat
J
cd+εd
d

(Jcd+εdd ) ≥ cat
A+∪A−

(A+ ∪A−)

= cat
A+
(A+) + cat

A−
(A−)

≥ 2 cat
Nr(KΩ)

(KΩ).

Lemma 4.2 Let u be a critical point of Jd with

Jd(u) < 2cd. (4.1)

Then u does not change sign.

Proof. If the conclusion was not true, we should have u = u+ + u− with
u+ 6≡ 0 and u− 6≡ 0. By the definition of Vd and cd, let u = u+, then u+ ∈ Vd.
Similarly, u− ∈ Vd. It follows that

cd ≤
2p

p− 2

∫
Ωd

(
d|∇u±|

2 + u2±
)
dx ≤ Jd(u).

In addition, ∫
Ωd

(
d|∇u±|

2 + u2±
)
dx =

∫
Ωd

K(x)|u±|
pdx.
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But, ∫
Ωd

K(x)|u+|
pdx+

∫
Ωd

K(x)|u−|
pdx =

∫
Ωd

K(x)|u±|
pdx.

It follows that∫
Ωd

(
d|∇u+|

2 + u2+
)
dx+

∫
Ωd

(
d|∇u−|

2 + u2−
)
dx =

∫
Ωd

(
d|∇u|2 + u2

)
dx

i.e.
Jd(u) = Jd(u+) + Jd(u−)

for u, u+ and u− ∈ Vd. Therefore, we reach a contradiction from

2cd ≤ Jd(u+) + Jd(u−) = Jd(u) < 2cd.

Proof of Theorem 1.1 By Proposition 3.2, cd = d
N/2(K

− 2
p−2

1 I(ω) + o(1)).
For ε1 > 0 given in Proposition 3.3, we choose 0 < ε0 ≤ ε1. Then there exists
d0 > 0 such that for all d ∈ (0, d0)

cd + d
N/2 · ε0 < 2cd.

For this ε0, by Lemma 4.1, there exists d
′
0 > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(KΩ)

(KΩ)

∀d ∈ (0, d′0) with εd = d
N/2 · ε0.

Applying the minimax method ([17]) here we get at least 2 catNr(KΩ)(KΩ)

critical points of Jd on J
cd+εd
d . By Lemma 4.2, none of these critical points

changes sign, and therefore there exist at least catNr(KΩ)(KΩ) positive critical
points and hence catNr(KΩ)(KΩ) solutions of (1.1) with Dirichlet boundary con-
dition. ♦

To prove the single peakedness of these solutions, we shall prove the following
lemma which states that all low energy solutions are single-peaked solutions.

Lemma 4.3 There exist d0 > 0 and ε0 > 0 such that any solution vd of (1.1),
with d < d0 and Jd(vd) ≤ cd + d

N/2ε0, has only one local maximum point over
Ω̄ (denoted by Pd) which satisfies

lim
d→0
dist(Pd,KΩ) = 0.

Proof. By an indirect argument, we only need to consider sequences dn → 0,

εn → 0 and a sequence of solutions vdn which satisfies Jdn(vdn) ≤ cdn + d
N/2
n εn.

It suffices to consider un(x) = vdn(
√
dnx) and to show that un has only one

local maximum point over Ω̄n at some xn satisfying

lim
n→∞

dist(xn,
1
√
dn
KΩ) ≤ C
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for some constant C.

By assumption and Proposition 3.2(1) we have Idn(un)→ K
− 2
p−2

1 I(ω).
By Proposition 3.2 again there exists yn ∈ Ωn such that for any ε > 0 there

is R > 0 with

lim
n→∞

p− 2

2p

∫
BR(yn)

[
|∇un|

2 + u2n
]
dx ≥ A− ε,

and for any δ > 0 small there exists Cδ > 0 such that

lim
n→∞

dist(yn,
1
√
dn
(Nδ(KΩ)) ≤ Cδ.

Taking εm → 0 we have Rm →∞ such that (4) holds with ε and R replaced by
εm and Rm. Therefore, we have

minK lim
m→∞

∫
Ωn\BRm (ynm)

|unm |
pdx ≤ lim

m→∞

∫
Ωn\BRm (ynm )

K(
√
dnx)|unm |

p = 0.

It follows that

lim
m→∞

∫
Ωn\BRm (ynm)

|unm |
pdx = 0,

since un satisfies (I)dn and thus is in the manifold Un.

Let xn be a local maximum point of un. Then un(xn) ≥ K
− 1
p−2

1 > 0 by
the maximum principle. Based on the ideas in [14][Lemma 4.1], by Harnack’s
inequality, there exists a positive constant C∗ independent of dn such that for
any x ∈ Ω̄ one has

sup
B√

dn
(Pdn )∩Ω

vdn(x) ≤ C∗ inf
B√

dn
(Pdn )∩Ω

vdn(x).

Therefore, there is λ0 > 0 such that vdn(x) ≥ λ0 for x ∈ B√dn(Pdn) ∩Ω, where
Pdn is the maximum point of vdn . Now, using this and (4), (4) we conclude that
there is a R0 > 0 such that unm must achieve any maximum value in BR0(ynm).
This implies that (4) must hold, because if not, let Rm →∞, then unm achieves

maximum value at xnm =
Pdnm√
dnm

in Ωn\BRm(ynm) and thus unm(x) ≥
λ0√
dnm

for all x ∈ B1(
Pdnm√
dnm
) ∩Ωn. This contradicts (4).

Assume that vn has two local maximum points P
1
n and P

2
n for the sequence

dn → 0. Passing to a subsequence if necessary, we first claim that there is a
constant C independent of n such that

lim
n→0

d
− 12
n dist(P

1
n , P

2
n) ≤ C.

If not, we have

d
− 12
n dist(P

1
n , P

2
n)→∞ as dn → 0,
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or equivalently
dist(x1n, x

2
n)→∞ as dn → 0,

where x1n and x
2
n are two local maximum points of un for the sequence dn → 0.

Let rn =
1
2 dist(x

1
n, x

2
n). Then, using rn →∞ and Proposition 3.2(b) we have

K
− 2
p−2

1 I(ω)← Idn(un) =
p− 2

2p

∫
Ωn

(
|∇un|

2 + u2n
)
dx

≥
p− 2

2p

∫
Brn (x

1
n)

(
|∇un|

2 + u2n
)
dx+

p− 2

2p

∫
Brn (x

2
n)

(
|∇un|

2 + u2n
)
dx

≥ 2K
− 2
p−2

1 I(ω)− ε.

This is a contradiction and thus (4) holds. Consider un(
√
dnx+ P

i
n) and Ω

′
n =

{x ∈ RN |
√
dnx + P in ∈ Ω} for i = 1, 2. Then using similar arguments to

[18][Prop. 3.1] together with the fact that limn→0 dist(P
i
n,KΩ) = 0 we have

un(
√
dnx+ P

i
n)→ K

− 1
p−2

1 ω i = 1, 2

in C2,αloc (R
N ). Without loss of generality, we assume that the only critical point

of ω is 0 which is non-degenerate. Since K
− 1
p−2

1 ω has only one critical point
at 0 which is non-degenerate, un can not have any other critical point around
BR(0) for some R > 0. This again contradicts (4). This finishes the proof of
Lemma 4.3. ♦

With Lemma 4.3, the single peakedness of solutions follows immediately.
Hence we complete the proof of Theorem 1.1.

Proof of Theorem 1.2 The proof of this theorem is nearly identical to the

proof of Theorem 1.1 since the assumption of K1 > 2
p−2
2 K2 implies that the

maximum of K(x) is achieved in the interior of Ω. ♦

To prove Theorem 1.3, we first give the following lemma which can be re-
garded as analogous to Lemma 4.1.

Lemma 4.4 Let ε1 > 0 be given as in Proposition 3.12. For any ε ∈ (0, ε1),
there exists dε > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(K∂Ω)

(K∂Ω)

for εd = d
N/2ε, 0 < d ≤ dε.

Proof. The proof is almost identical with that of Lemma 4.1 by replacing
Nr(KΩ) with Nr(K∂Ω) and using Propositions 3.12 and 3.11.



EJDE–1999/28 Ning Qiao & Zhi-Qiang Wang 25

Proof of Theorem 1.3 The proof of this theorem is similar to the proof of
Theorem 1.1, so we do only a sketch. By Proposition 3.11(a) we have

lim
d→0

d−N/2cd =
1

2
K
− 2
p−2

2 I(ω)

as d → 0. For ε1 given in Proposition 3.12, we choose 0 < ε0 ≤ ε1 with the

property that ε0 <
1
2d
− 12K

− 2
p−2

2 I(ω). Then for this ε0 > 0, by Lemma 4.2, there
is dε0 > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(K∂Ω)

(K∂Ω) ∀d ∈ (0, d0)

with εd = d
2
N ε0. Then, the classical minimax method together with Lemmas 4.4

and 4.2 we can deduce that there exist at least catNr(K∂Ω)(K∂Ω) positive solu-
tions for (1.1) with Neumann boundary condition.
To prove single peakedness of these solutions, we consider un(x) = vdn(

√
dnx).

We need to show that un has only one local maximum point over Ω̄n at some
xn satisfying

lim
n→∞

dist(xn,
1
√
dn
K∂Ω) ≤ C

for some finite constant C. But the same argument used in proving Lemma 4.4
can be applied here to conclude that

lim
d→0
dist(Pd,K∂Ω) = 0..

The above result also implies that, passing to subsequence if necessary, for
dn → 0

d
− 12
n dist(Pdn ,K∂Ω) ≤ C

for some constant C independent of dn. Using this and repeating the argument
used in [14][Theorem 1.3] and [18][Thorem 2.1], we get that any local maximum
point Pdn must be on the boundary of Ω, provided dn is small enough.
Next, assume vn has two local maximum points P

1
n and P

2
n . Similar to what

we did to prove Theorem 1.1, we first rule out the case d
−1/2
n dist(P 1n , P

2
n)→∞

as dn → 0 by concentration-compactness argument. Using the local convergence
of the rescaled solutions un(

√
dnx+P

i
n), i = 1, 2, and a property of the ground

state solution, we conclude that P 1n = P
2
n . ♦

Before proving Theorem 1.4, we give the following lemma which can be
proved in a way similar to Lemma 4.1 by making use of Propositions 3.15 and
3.14.

Lemma 4.5 Let ε1 > 0 be given as in Proposition 3.15. For any ε ∈ (0, ε1),
there exists dε > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(KΩ∪K∂Ω)

(KΩ ∪K∂Ω)

for εd = d
N/2ε, 0 < d ≤ dε.
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Proof of Theorem 1.4 By Proposition 3.13

lim
d→0

d−N/2cd =
1

2
K
− 2
p−2

2 I(ω) = K
− 2
p−2

1 I(ω).

For ε1 > 0 given in Proposition 3.15, we choose 0 < ε0 ≤ ε1. Then, there exists
d0 > 0 such that for all d ∈ (0, d0)

cd + d
N/2 · ε0 < 2cd.

For this ε0, by Lemma 4.5, there exists d
′
0 > 0 such that

cat
J
cd+εd
d

(Jcd+εdd ) ≥ 2 cat
Nr(KΩ∪K∂Ω)

(KΩ ∪K∂Ω)

∀d ∈ (0, d′0) with εd = dN/2 · ε0. Then a minimax method gives that there
exist at least 2 catNr(KΩ∪K∂Ω)(KΩ ∪ K∂Ω) critical points of Jd in J

cd+εd
d for

d ∈ (0, d′0). Lemma 4.2 plus the maximum principle imply that there ex-
ist catNr(KΩ∪K∂Ω)(KΩ ∪ K∂Ω) positive critical points. On the other hand,
because KΩ ∩ K∂Ω = ∅ and they are both closed, let r ≤

1
2 dist(KΩ,K∂Ω).

Then, catNr(KΩ∪K∂Ω)(KΩ ∪K∂Ω) = catNr(KΩ)(KΩ) + catNr(K∂Ω)(K∂Ω), which
can be easily proved by the definition of category. Hence, there exist at least
catNr(KΩ)(KΩ)+catNr(K∂Ω)(K∂Ω) positive critical points and thus catNr(KΩ)(KΩ)+
catNr(K∂Ω)(K∂Ω) solutions of (1.1) with Neumann condition under the condition

K1 = 2
p−2
2 K2.

The single peakedness of these solutions can be obtained by combining the
corresponding parts of the proofs in Theorems 1.1 and 1.3. Therefore, we omit
it here. ♦
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