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ASYMPTOTIC EXPANSIONS FOR LINEAR SYMMETRIC

HYPERBOLIC SYSTEMS WITH SMALL PARAMETER

O. Hawamdeh & A. Perjan

Abstract. The boundary layer functions method of Lyusternik-Vishik is used to

obtain asymptotic expansions of the solutions to the Cauchy problem for linear sym-

metric hyperbolic systems with constant coefficients as the small parameter ε tends

to zero.

1. Introduction

We consider the following Cauchy problem, which will be called (Pε),

(P0 + εP1)U = F (x, t), x ∈ R
d, t > 0, (1.1)

U(ε, x, 0) = U0(x), x ∈ R
d (1.2)

where Pi = Ai∂t + Bi(∂x) + Gi, Bi(∂x) =
∑d
j=1 Bij ∂xj , i = 0, 1, Bi, Gi are real

constant n×n matrices, d ≥ 1, ε > 0 is a small parameter, U,F : Rd× [0,∞)→ Rn,

A0 =

(
Im 0
0 0

)
, A1 =

(
0 0
0 In−m

)
, 0 ≤ m ≤ n,

and Ik is a identity matrix.
We shall investigate the behavior of the solution U(ε, x, t) to the perturbed

system (Pε) as ε → 0. The main question of perturbation theory is if the solution
U(ε, x, t) to the perturbed system tends to the solution U(0, x, t) of the unperturbed
system as ε→ 0. The answer depends on the structure of the operator P = P0+εP1
and also on the norm which determines the convergence. If the smooth solution
U(ε, x, t)→ U(0, x, t) uniformly on its domain of definition D, then (P0) is called a
regularly perturbed system. In the opposite case, the system (P0) is called singularly
perturbed. In this case, there arises a subset of D in which the solution U(ε, x, t)
has a singular behavior relative to ε. This subset is called the boundary layer. The
function which defines the singular behavior of U(ε, x, t) relative to ε within the
boundary layer is called the boundary layer function. At present the investigations
of the singularly perturbed problems are very much advanced. We refer the reader
to sources [1] - [8], which contain a very large bibliography and also a survey of the
results in the perturbation theory connected with the partial differential equations.
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Here we develop the results of the paper [9] in the d-dimensional case. We obtain
the asymptotic expansions for the solutions U(ε, x, t) on the positive power of the
small parameter ε when the matrices Bi are symmetric, i.e. the operator Pε is the
hyperbolic one.

Below we use the following notations. For s ∈ R we denote by Hs the usual
Sobolev spaces with the scalar product (u, v)s =

∫
Rn
(1 + ξ2)sû(ξ)¯̂v(ξ) dξ, where

û = F [u] and F−1[u] are the direct and the inverse Fourier transforms of u in S′.
Hsn = (H

s)n is the Hilbert space equipped with the scalar product (f1, f2)s,n =∑n
j=1(f1j , f2j)s, fi = (fi1, ..., fin), i = 1, 2 and with the norm ‖ · ‖s,n generated

by this scalar product. Let D′((a, b),X) be the space of vectorial distributions on
(a, b) with values in Banach space X. Then for k ∈ N∗ and 1 ≤ p ≤ ∞ we set
W k,p(a, b;X) = {u ∈ D′((a, b);X); u(j) ∈ Lp(a, b;X), j = 0, 1, . . . , k}, where u(j) is
the distributional derivative of order j. If k = 0 we set W 0,p(a, b;X) = Lp(a, b;X).
Let us denote A = A0 + εA1, B = B0 + εB1, G = G0 + εG1, Lj = Bj(∂x) + Gj ,
j = 0, 1, where ∂x = (∂/∂x1 , . . . , ∂/∂xd). The special forms of matrices A0 and A1
involve the natural representations of matrices Bi, Gi by blocks

Bj =

(
Bj1 Bj2
B∗j2 Bj3

)
, Gj =

(
Gj1 Gj2
G∗j2 Gj3

)
, j = 0, 1,

and Bj1(ξ), Gj1 ∈Mm(R), Bj2(ξ), Gj2 ∈Mm×(n−m)(R), Bj3(ξ), Gj3 ∈Mn−m(R),
and “*” means transposition. Denote Lij(∂x) = Bij(∂x) +Gij , i = 0, 1, j = 1, 2, 3,

and F = col(f, g), U0 = col(u0, u1), where f, u0 ∈Mm×1(R), g, u1 ∈M (n−m)×1(R).
Let us formulate the main assumptions to be used in the sequel.

(H1) Bi(ξ), Gi, i = 0, 1, are real symmetric matrices for ξ ∈ Rn;
(H2) (Gξ, ξ)Rn ≥ (G03η, η)Rn−m ≥ q0|η|

2, with q0 > 0,
for all ξ = (ξ′, η) ∈ Rn and η ∈ Rn−m.

Under the hypothesis (H1), the system (Pε) is symmetric of the hyperbolic type.
According to [7], the analysis of systems (P0) and (Pε) shows that:

a) If m = n, then the system (P0) is of the hyperbolic type, regularly perturbed
because in this case the boundary layer function is zero;

b) If m = 0, then the system (P0) is of the elliptic type, singularly perturbed;

c) If 0 < m < n, then the system (P0) is well-posed in the sense of Petrovskii,
singularly perturbed. In particular, if det B03 6= 0 and B02 = 0, then the system
(P0) is of the elliptic- parabolic type.

In the following section we shall give the formal asymptotic expansions of the
solutions to the problem (Pε) on the positive powers of the small parameter ε. The
last two sections contain the validity of these formal expansions which lead to the
main result theorem 3.5.

2. Formal asymptotic expansions

According to the method of Lyusternik-Vishik [2], for the solution U(ε, x, t) to
the problem (Pε) we postulate the following asymptotic expansion

U(ε, x, t) =

N∑
k=0

εk(Vk(x, t) + Zk(x, τ)) +RN (ε, x, t), τ =
t

ε
, (2.1)
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where Z(x, τ) = Z0(x, τ) + · · · + εNZN (x, τ) is the boundary layer function. It
describes the singular behavior of solution U(ε, x, t) relative to ε within a neigh-
borhood of the set {(x, 0), x ∈ Rd} which is the boundary layer. The function
V (x, t) = V0(x, t) + · · ·+ εNVN (x, t) is the regular part of expansion (2.1). Usually
function Z(x, τ) is considered small in some sense for large τ , i.e. Z → 0 as τ →∞.
On the other hand, because U(ε, x, t) 6→ U(0, x, t) as ε → 0 within the boundary
layer, then the function Z(x, τ) has to reduce the discrepancy between U(ε, x, 0)
and U(0, x, 0).
Now, we formally substitute expansion (2.1) into (1.1) and identify the coeffi-

cients of the same powers of ε which contain the same variables. Then we get the
following equations:

P0Vk = Fk(x, t), x ∈ R
d, t > 0, (2.2)

where F0 = F , Fk = −P1Vk−1, k = 1, . . . ,N ,

A0∂τZk = Fk(x, τ), k = 0, 1, . . . ,N,

A1(L0ZN + L1ZN−1 + ∂τZN ) = 0, x ∈ R
d, τ > 0,

(2.3)

where F0 = 0, F1 = −L0Z0 − A1∂τZ0, Fk = −L0Zk−1 − L1Zk−2 − A1∂τZk−1,
k = 2, . . . ,N , and

(P0 + εP1)RN = F(x, t, ε), x ∈ R
d, t > 0, (2.4)

where F = −εN+1(P1VN + L1ZN )− εNA0(L0ZN + L1ZN−1).
Similarly, substituting (2.1) into initial condition (1.2) we obtain

RN (ε, x, 0) = 0, x ∈ R
d, (2.5)

V0(x, 0) + Z0(x, 0) = U0(x), x ∈ R
d, (2.6)

Vk(x, 0) + Zk(x, 0) = 0, x ∈ R
d, k = 1, . . . ,N. (2.7)

Let

Zk =

(
Xk
Yk

)
, Vk =

(
vk
wk

)
, Fk =

(
fk
gk

)
, Fk =

(
Fk1
Fk2

)
,

where Xk, vk, fk,Fk1 ∈ Mm×1(R), Yk, wk, gk,Fk2 ∈ M (n−m)×1(R). Then from
(2.3), (2.6), and (2.7) for Xk and Yk, we get

∂τXk = Fk1, Xk → 0, τ → +∞, (2.8)

and
∂τYk + L03Yk = Fk2(x, τ), x ∈ R

d, τ > 0

Yk(x, 0) =

{
u1(x)− w0(x, 0), for k = 0,

−wk(x, 0) for k = 1, . . . ,N , x ∈ Rd,

(2.9)

where

F01 = 0, F11 = −L01X0 − L02Y0, Fk1 = −L01Xk−1 − L02Yk−1

−L11Xk−2 − L12Yk−2, k = 2, . . . ,N,

F02 = −L
∗
02X0, Fk2 = −L

∗
02Xk − L13Yk−1 − L

∗
12Xk−1,

L∗ij(ξ) = B
∗
ij(ξ) +G

∗
ij , k = 1, . . . ,N.
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Similarly, from (2.2) and (2.6), (2.7) we obtain the problems for vk and wk,

∂tvk + L01vk + L02wk = fk(x, t),

L∗02vk + L03wk = gk(x, t), x ∈ R
d, t > 0,

vk(x, 0) =

{
u0(x)−X0(x, 0), for k = 0,

−Xk(x, 0), for k = 1, . . . ,N, x ∈ Rd,

(2.10)

Thus, we have obtained the problems for the functions Xk, Yk, vk, wk and RN . In
the following sections we shall present the validity of the expansion (2.1).

3. Justification of expansion (2.1)

To study the problem (2.10) we examine the problem

∂tv + L01v + L02w = f(x, t),

L∗02v + L03w = g(x, t), x ∈ R
d, t > 0,

v(x, 0) = h(x), x ∈ Rd,

(PV)

which is of the same type. To obtain the solvability of this problem and the regu-
larity of their solutions we pass to the following problem for v̂ and ŵ

∂tv̂ + (G01 + i|ξ|b01(ξ))v̂ + (G02 + i|ξ|b02(ξ))ŵ = f̂(ξ, t),

(G∗02 + i|ξ|b
∗
02(ξ))v̂ + (G03 + i|ξ|b03(ξ))ŵ = ĝ(ξ, t),

v̂(ξ, 0) = ĥ(ξ).

(PV̂ )

where bij(ξ) = Bij(ξ/|ξ|).
The following two lemmas will be proved in the following section.

Lemma 3.1. Under the hypotheses (H1), (H2) the matrix G03 + i|ξ|b03(ξ) is in-
vertible for ξ ∈ Rd and the function ξ → (G03 + i|ξ|b03(ξ))−1 is bounded on Rd.

From Lemma 3.1 the problem (PV̂ ) receives the form

d

dt
v̂(ξ, t) +K(ξ)v̂(ξ, t) = H(ξ, t),

v̂(ξ, 0) = ĥ(ξ),

(3.1)

ŵ(ξ, t) = (G03 + i|ξ|b03(ξ))
−1(ĝ(ξ, t)− (G∗02 + i|ξ|b

∗
02(ξ))v̂(ξ, t)), (3.2)

where

K(ξ) =G01 + i|ξ|b01(ξ)

− (G02 + i|ξ|b02(ξ))(G03 + i|ξ|b03(ξ))
−1(G∗02 + i|ξ|b

∗
02(ξ))

H(ξ, t) =f̂(ξ, t)− (G02 + i|ξ|b02(ξ))(G03 + i|ξ|b03(ξ))
−1ĝ(ξ, t).

(3.3)

Lemma 3.2. Under the hypotheses (H1), (H2) the matrix K(ξ) can be represented
in the form

K(ξ) = K0(ξ) + i|ξ|K1(ξ) + |ξ|
2K2(ξ), ξ ∈ R

d, (3.4)

where the functions ξ → Kj(ξ), j = 0, 1, 2 are bounded on Rd, K1,K2 are real
symmetric and K2 ≥ 0.

These lemmas permit us to prove the following proposition.
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Proposition 3.3. Let the hypotheses (H1), (H2) be fulfilled and l ∈ N∗. If
h ∈ Hs+2l+1m , F = col(f, g) ∈ W l,1(0, T ;Hs+2n ), then there exists a unique strong
solution V = col(v,w) ∈W l,∞(0, T ;Hsn) of the problem (PV) and

‖V ‖W l,∞(0,T ;Hsn)
≤ C(T )(‖h‖s+2l+1,m + ‖F‖W l,1(0,T ;Hs+2n )). (3.5)

Proof. Consider the Cauchy problem

d

dt
v̂(t) +K(ξ)v̂(t) = 0, v̂(0) = ĥ, 0 < t < T, (3.6)

in the Hilbert space H = {f = (f1, . . . , fm); (1 + |ξ|2)
s
2 fk(ξ) ∈ L2(Rd), k =

1, . . . ,m}, equipped with the scalar product (f, g)H =
∫
Rd
(1 + |ξ|2)s(f, ḡ)Rm dξ.

The representation (3.4) shows that the operator −K(ξ) : H → H satisfies the
conditions

Re(−Kf, f)H ≤ ω(f, f)H , Re(−K̄
∗f, f)H ≤ ω(f, f)H , f ∈ H,

where ω =supξ∈Rd‖K0(ξ)‖Rm→Rm + δ with some δ > 0. This means that the
operator −(K + ωI) is maximal dissipative on H. According to [10] the Cauchy
problem (3.6) generates a C0 semigroup of operators {T̂ (t), t ≥ 0} on H. Since

d

dt
‖v̂(·, t)‖2H ≤ −(K0v̂(·, t), v̂(·, t))H − (v̂(·, t),K0 v̂(·, t))H ≤ 2ω‖v̂(·, t)‖

2
H ,

we have ‖v̂(·, t)‖H ≤ eωt‖h‖H for any h ∈ H, i.e. ‖T̂ (t)‖ ≤ eωt. Due to Parseval’s
equality we get that the Cauchy problem

d

dt
v(t) + Ǩv(t) = 0, v(0) = v0, 0 < t < T, (F [Ǩv] = K(ξ)v̂)

generates a C0 semigroup of operators {T (t), t ≥ 0} on Hsm, such that v(·, t) =
T (t)v0 and ‖T (t)‖ ≤ eωt. Then the semigroup T0(t) = T (t)e−ωt solves the Cauchy
problem

d

dt
z(t) + (Ǩ + ωI)z(t) = f(t)eωt, z(0) = y0, 0 < t < T. (3.7)

According to [11] for every y0 ∈ Hsm and f ∈ L
1(0, T ;Hsm) there exists a unique

mild solution of this problem z ∈ C([0, T ];Hsm), such that

z(t) = T0(t)y0 +

∫ t
0

T0(t− s)f(s)e
ωs ds

and hence
‖z‖C([0,T ];Hsm) ≤ ‖y0‖s,m + ‖f‖L1(0,T ;Hsm)e

ωT

Moreover, if y0 ∈ Hs+2lm , f ∈W l,1(0, T ;Hsm) and l ∈ N
∗, then z is a strong solution

of the problem (3.7), z ∈W l,∞(0, T ;Hsm) and

‖z‖W l,∞(0,T ;Hsm)
≤ C(T )(‖y0‖s+2l,m + ‖f‖W l,1(0,T ;Hsm)

).
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Note that the solution y to the Cauchy problem

d

dt
y(t) + Ǩy(t) = f, y(0) = y0, 0 < t < T,

and the solution z to the problem (3.7) are connected by means of the equality
y(t) = e−ωtz(t). Consequently, for the same y0, f and l ∈ N∗ we have

‖y‖W l,∞(0,T ;Hsm)
≤ C(T )(‖y0‖s+2l,m + ‖f‖W l,1(0,T ;Hsm)

).

In view of (3.1), using the last estimate and boundedness of the matrix (G03 +
i|ξ|b(ξ))−1 we obtain the estimate

‖v‖W l,∞(0,T ;Hsm)
≤ C(T )(‖h‖s+2l,m + ‖f‖W l,1(0,T ;Hsm)

+ ‖g‖W l,1(0,T ;Hs+1n−m)
). (3.8)

From (3.2) and (3.8) we get the estimate

‖w‖W l,∞(0,T ;Hsm)
≤ C(T )(‖h‖s+2l+1,m + ‖f‖W l,1(0,T ;Hs+1m ) + ‖g‖W l,1(0,T ;Hs+2n−m)

).

(3.9)
Now, the estimates (3.8) and (3.9) imply the estimate (3.5). Proposition 3.3 is
proved.
Consider the Cauchy problem

∂τY + L03Y = F(x, τ), x ∈ R
d, τ > 0,

Y (x, 0) = y0(x), x ∈ R
d.

(PY)

Proposition 3.4. Let hypotheses (H1), (H2) be fulfilled and l ∈ N∗. If y0 ∈

Hs+ln−m, F ∈ W
l,1
loc(0,∞;H

s
n−m), then there exists a unique strong solution Y ∈

W l,∞loc (0,∞;H
s
n−m) of the problem (PY ). For this solution

‖∂lτY (·, τ)‖s,n−m ≤Ce
−q0τ (‖y0‖s+l,n−m +

l−1∑
ν=0

‖∂ντF(·, 0)‖s+l−ν−1,n−m

+

∫ τ
0

eq0θ‖∂lτF(·, θ)‖s,n−m dθ)

(3.10)

Proof. Under the hypotheses (H1), (H2) the operator −L03(∂x) is dissipative and
generates the C0 semigroup of contractions S(τ) on H

s
n−m. Then there exists a

unique mild solution Y ∈ C([0,∞);Hsn−m) of Cauchy problem (PY). In the usual
way it is not difficult to obtain the estimate ‖S(τ)‖ ≤ e−q0τ , τ ≥ 0. This estimate
and formula

Y (·, τ) = S(τ)y0 +

∫ τ
0

S(θ)F(·, τ − θ) dθ

involve the estimate (3.10) in the case l = 0. In the cases l ≥ 1 the estimate (3.10)
will be obtained by differentiating relative to τ the equation from (PY). Proposition
3.4 is proved.
Due to these propositions, we can determine the functions Vk and Zk. Indeed, if

k = 0, then from (2.8) it follows that X0 = 0. Then from (2.10), due to Proposition
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3.3, we find the main regular term V0 = col(v0, w0) of expansion (2.1). Instantly,
we have

w0(x, 0) = F
−1[(G03 + i|ξ|b03(ξ))

−1(ĝ(ξ, 0) − (G∗02 + i|ξ|b
∗
02(ξ))û0(ξ))].

Moreover, Lemma 3.1 and the Parseval equality permit us to obtain the estimate

‖w0(·, 0)‖s,n−m ≤ C(‖g(·, 0)‖s,n−m + ‖u0‖s+1,m) ≤ C(‖U0‖s+1,n + ‖F (·, 0)‖s,n).
(3.11)

Due to proposition 3.4, this fact permits us to define the function Y0 as a solution
of Cauchy problem (2.9). Moreover, from (3.10) and (3.11) we have

‖∂lτY0(·, τ)‖s,n−m ≤ Ce
−q0τ (‖U0‖s+l+1,n + ‖F (·, 0)‖s+l,n). (3.12)

Thus, we have defined the main singular term Z0 = col(0, Y0) of expansion (2.1).
Let us define the next terms of this expansion. Suppose that the terms V0, . . . ,

Vk−1 and Z0, . . . , Zk−1 are already found. We shall find the terms Vk and Zk and
show that the estimates

‖Vk‖W l,∞(0,T ;Hsn)
≤C(T )(‖U0‖s+2l+3k+1,n

+ ‖F (·, 0)‖s+2l+3k−2,n + ‖F‖W l,1(0,T ;Hs+3k+2n )),
(3.13)

and

‖∂lτZk(·, τ)‖s,n ≤ Ce
−q0τ (1 + τk)(‖U0‖s+l+k+1,n + ‖F (·, 0)‖s+l+k,n) (3.14)

hold, supposing that such estimates are true for previous terms. Note, that the
estimates (3.13), (3.14) for V0 and Z0 follow from (3.5) and (3.12).
At first, solving the problem (2.8), we get Xk(·, τ) = −

∫∞
τ
Fk1(·, θ) dθ, where

the integral exists due to the estimate (3.14) for Zk−1. From this formula using
(3.14) for Zk−1 and for Zk−2 we obtain

‖∂lτXk(·, τ)‖s,m =‖∂
l−1
τ Fk1(·, τ)‖s,m

≤C(‖∂l−1τ Zk−1(·, τ)‖s+1,n + ‖∂
l−1
τ Zk−2(·, τ)‖s+1,n)

≤Ce−q0τ (1 + τk−1)(‖U0‖s+l+k,n + ‖F (·, 0)‖s+l+k−1,n)

(3.15)

for l ≥ 1. Similarly we get the estimate (3.15) in the case l = 0.
Because vk(·, 0) = −Xk(·, 0), due to Proposition 3.3 we solve the problem (2.10)

and find Vk. Moreover, using (3.5), (3.13) for Vk−1, (3.15) for Xk and the estimate

‖Vk‖W l,∞(0,T ;Hsn)
≤ C(T )(‖Xk(·, 0)‖s+2l+1,m + ‖Vk−1‖W l,∞(0,T ;Hs+3n )),

we obtain the estimate (3.13) for Vk.
Instantly, we find

wk(x, 0) = F
−1[(G03 + i|ξ|b03(ξ))

−1(ĝk(ξ, 0) − (G
∗
02 + i|ξ|b

∗
02(ξ))X̂k(ξ, 0))]

and establish the estimate

‖wk(·, 0)‖s,n−m ≤C(‖gk(·, 0)‖s,n−m + ‖Xk(·, 0)‖s+1,m)

≤C(‖Xk−1(·, 0)‖s+1,m + ‖Xk(·, 0)‖s+1,m

+ ‖wk−1(·, 0)‖s+1,n−m)

≤C(‖U0‖s+k+1,n + ‖F (·, 0)‖s+k,n).

(3.16)
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Also, using (3.14) for Zk−1 and (3.15) for Xk we have

‖∂lτFk2(·, τ)‖s,n−m ≤C(‖∂
l
τXk(·, τ)‖s+1,m + ‖∂

l
τZk−1(·, τ)‖s+1,n)

≤Ce−q0τ (1 + τk−1)(‖U0‖s+l+k+1,n + ‖F (·, 0)‖s+l+k,n).
(3.17)

From (3.10), (3.16) and (3.17) follows the estimate

‖∂lτYk(·, τ)‖s,n−m ≤Ce
−q0τ (‖wk(·, 0)‖s+l,n−m +

l−1∑
ν=0

‖∂ντFk2(·, 0)‖s+l−ν−1,n−m

+

∫ τ
0

eq0θ‖∂lτFk2(·, θ)‖s,n−m dθ)

≤Ce−q0τ (1 + τk)(‖U0‖s+l+k+1,n + ‖F (·, 0)‖s+l+k,n).
(3.18)

The estimates (3.15) and (3.18) imply the estimate (3.14) for Zk.
Now we are ready to prove the main result.

Theorem 3.5. Suppose that B and G satisfy conditions (H1), (H2) and 0 ≤ l <

N + 1. If U0 ∈ H
s+2l+3(N+1)
n , F ∈ W l+1,1(0, T ;Hs+2l+3(N+1)n ), then there exists

a unique strong solution U ∈ W l,∞(0, T ;Hsn) of the problem (Pε). For this solu-
tion expansion (2.1) is true, where Vk and Zk are determined by problems (2.10)
and (2.8), (2.9) respectively and they satisfy the estimates (3.13), (3.14). For the
remainder term RN = col(RN1, RN2) the estimate

‖RN1‖
2
W l,∞(0,T ;Hsm)

+ ε1/2‖RN2‖
2
W l,∞(0,T ;Hsn−m)

≤ C(T )εN+1−l (3.19)

is true with C(T ) depending on T , ‖U0‖s+2l+3(N+1),n, ‖F‖W l+1,1(0,T ;H
s+2l+3(N+1)
n )

and q0. In particular, if N = 0, then

‖U − V0 − Z0‖C([0,T ];Hsn) ≤ C(T )ε
1/4.

Proof. The solvability of the problem (Pε) can be obtained using the theory of C0
semigroup of operators [11]. Indeed, operator −(B(∂x)+G) is closed and dissipative
on Hsn. This operator generates the C0 semigroup of contractions on H

s
n, which

solves the problem (Pε). Moreover the conditions U0 ∈ Hs+ln , F ∈ W
l,1(0, T ;Hsn),

∂νt F (·, 0) ∈ H
s+l−ν−1
n , ν = 0, . . . , l − 1, l ≥ 1 imply the regularity of solution

U ∈ W l,∞(0, T ;Hsn). It remains to prove the estimate (3.19). We shall prove this
estimate using the method from [12]. Further all constants depending on the norms
indicated in the Theorem 3.5 will be denoted by C(T ). Let us denote byRl = ∂ltRN ,
Rli = ∂ltRNi, i = 1, 2. From condition (H1) it follows that (BRl,Rl)s,n is a pure
imaginary value. Consequently,

d

dt
(ARl(·, t),Rl(·, t))s,n + 2(GRl(·, t),Rl(·, t))s,n = 2Re(∂

l
tF(·, t),Rl(·, t))s,n

Then using (H2), it is not difficult to get the inequality

d

dt
(ARl(·, t),Rl(·, t))s,n + 2q0(Rl2(·, t),Rl2(·, t))s,n−m ≤ 2|(∂

l
tF(·, t),Rl(·, t))s,n|.

(3.20)
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The estimates (3.13) and (3.14) yield

|(∂ltF(·, t),Rl(·, t))s,n|

≤εN+1|(P1(∂
l
tVN (·, t)) + ε

−lL1(∂
l
τZN (·, τ)),Rl(·, t))s,n|

+ εN−l|(L0(∂
l
τZN (·, τ)) + L1(∂

l
τZN−1(·, τ)), A0Rl(·, t))s,n|

≤C(T )(εN−lκ(t)‖Rl1(·, t)‖s,m + (ε
N+1 + κ(t)εN+1−l)‖Rl(·, t))‖s,n),

(3.21)

where 0 ≤ t ≤ T, τ = t/ε and κ(t) = e−q0t/ε(1 + (t/ε)N ). Integrating (3.20) by t
and using (3.21) we get

‖Rl1(·, t))‖
2
s,m + ε‖Rl2(·, t))‖

2
s,n−m + 2q0

∫ t
0

‖Rl2(·, θ)‖
2
s,n−m dθ

≤‖Rl1(·, 0)‖
2
s,m + ε‖Rl2(·, 0))‖

2
s,n−m + C(T )(ε

N−l

∫ t
0

κ(θ)‖Rl1(·, θ)‖s,m dθ

+

∫ t
0

(εN+1 + κ(θ)εN−l+1)‖Rl(·, θ)‖s,n dθ), 0 ≤ t ≤ T,

(3.22)
Note that

Rl(·, 0) =
l−1∑
ν=0

(−A−1(B(∂x) +G))
l−ν−1A−1∂νt F(·, 0), l ≥ 1,

and according to (2.5) R0(·, 0) = 0. Therefore, using (3.14), (3.15) and the equality
A−1A0 = A0, we have

‖A−1∂νt F(·, 0)‖s,n ≤ε
N+1‖(A−1P1∂

ν
t VN )(·, 0)‖s,n + ε

N+1−ν‖(A−1L1∂
ν
τZN )(·, 0)‖s,n

+ εN−ν‖A0(L0∂
ν
τZN + L1∂

ν
τZN−1)(·, 0)‖s,n

≤C(T )(εN + εN−ν) ≤ C(T )εN−ν, 0 < ε < 1, 0 ≤ ν ≤ N,

from which it follows that

‖Rl(·, 0)‖s,n ≤
l−1∑
ν=0

‖A−1(B(∂x) +G))
l−ν−1A−1∂νt F(·, 0)‖s,n

≤C(T )
l−1∑
ν=0

ε−(l−ν−1) · εN−ν

≤C(T )εN−l+1.

(3.23)

Further, if l < N + 1 and ε is small, then for 0 ≤ t ≤ T we have the estimates

∫ t
0

κ(θ)‖Rl1(·, θ)‖s,m dθ ≤

∫ t
0

κ(θ) dθ +

∫ t
0

κ(θ)‖Rl1(·, θ)‖
2
s,m dθ

≤C(T )ε+

∫ t
0

κ(θ)‖Rl1(·, θ)‖
2
s,m dθ,

(3.24)
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and

C(T )

∫ t
0

(εN+1 + κ(θ)εN−l+1)‖Rl(·, θ)‖s,n dθ

≤C(T )εN−l+1 + q0

∫ t
0

‖Rl2(·, θ)‖
2
s,n−m dθ

+ C(T )

∫ t
0

(εN+1 + κ(θ)εN−l+1)‖Rl1(·, θ)‖
2
s,m dθ.

(3.25)

Then due to estimates (3.23), (3.24) and (3.25) the inequality (3.22) receives the
form

‖Rl1(·, t))‖
2
s,m + ε‖Rl2(·, t))‖

2
s,n−m + q0

∫ t
0

‖Rl2(·, θ)‖
2
s,n−m dθ

≤C(T )(εN−l+1 +

∫ t
0

(εN+1 + κ(θ)εN−l)‖Rl1(·, θ)‖
2
s,m dθ), 0 ≤ t ≤ T.

Thanks to Gronwall’s lemma, from the last inequality we get the estimates

‖Rl1(·, t)‖
2
s,m ≤ C(T )ε

N−l+1, 0 ≤ t ≤ T, (3.26)

and

ε‖Rl2(·, t)‖
2
s,n−m + q0

∫ t
0

‖Rl2(·, θ)‖
2
s,n−m dθ ≤ C(T )ε

N−l+1, 0 ≤ t ≤ T. (3.27)

From (3.27) and (3.23) follows the estimate

‖Rl2(·, t)‖
2
s,n−m ≤‖Rl2(·, 0)‖

2
s,n−m + 2

∫ t
0

‖Rl2(·, θ)‖s,n−m‖R(l+1)2(·, θ)‖s,n−m dθ

≤C(T )ε2(N−l+1) + 2

(∫ t
0

‖Rl2(·, θ)‖
2
s,n−m dθ

)1/2
×

(∫ t
0

‖R(l+1)2(·, θ)‖
2
s,n−m dθ

)1/2
(3.28)

≤C(T )εN−l+1/2, 0 ≤ t ≤ T.

The estimates (3.26) and (3.28) imply the estimate (3.19). Therefore, Theorem 3.5
is proved.

4. Proof of Lemmas

Proof of Lemma 3.1. To prove this lemma we shall use the method of simul-
taneous reduction of two matrices to the diagonal form [13]. As G∗03 = G03 and
G03 > 0, then there exists an orthogonal matrix T1 ∈ Mm(R), T ∗1 T1 = Im, such
that T ∗1G03T1 = Λ

2
0 = diag(λ1, . . . , λm), where λk > 0, k = 1, . . . ,m, are the

eigenvalues of matrix G03. Let C(ξ) = Λ
−1
0 T

∗
1 b03(ξ)T1Λ

−1
0 . As the matrix C(ξ)

is real symmetric, then there exists an orthogonal matrix T2(ξ) ∈ M(Rm), such
that T ∗2C(ξ)T2 = Λ(ξ) = diag(µ1(ξ), . . . , µm(ξ)), where µ1(ξ), . . . , µm(ξ) are real
eigenvalues of matrix C(ξ). Thus we have

T ∗(ξ)G03T (ξ) = Im, T ∗(ξ)b03(ξ)T (ξ) = Λ(ξ), (4.1)



EJDE–1999/31 asymptotic expansions 11

where T (ξ) = T1Λ
−1
0 T2(ξ). From (4.1) it follows

G03 + i|ξ|b03(ξ) = T
∗−1(ξ)(Im + i|ξ|Λ(ξ))T

−1(ξ).

It means that the matrix G03 + i|ξ|b03(ξ) is invertible and

(G03 + i|ξ|b03(ξ))
−1 = T (ξ)Λ1(ξ)(Im − i|ξ|Λ(ξ))T

∗(ξ), (4.2)

where Λ1(ξ) = diag((1 + |ξ|2µ21)
−1, . . . , (1 + |ξ|2µ2m)

−1). The orthogonality of the
matrix T2(ξ) implies the boundedness of the function ξ → T (ξ) on Rd. Then the
boundedness of matrix (G03+i|ξ|b03(ξ))−1 follows from (4.2). Lemma 3.1 is proved.

Proof of Lemma 3.2. Let us substitute (4.2) into (3.3). Then we obtain the
representation (3.4), where

K0(ξ) =G01 −G02T
∗Λ1T

∗G∗02 − |ξ|
2(G02TΛ1ΛT

∗b∗02 + b02TΛ1ΛT
∗G∗02),

K1(ξ) =b01 +G02TΛ1ΛT
∗G∗02 −G02TΛ1T

∗b∗02

− b02TΛ1T
∗G∗02 − |ξ|

2b02TΛ1ΛT
∗b∗02,

K2(ξ) =b02TΛ1T
∗b∗02.

It is easy to see that Kj(ξ), j = 0, 1, 2 are bounded on R
d, and K∗1 = K1, K

∗
2 = K2.

It remains to prove that K2 ≥ 0. According to Ostrowski’s theorem [14, p.270],
denoting by λj(A), j = 1, . . . ,m the eigenvalues of real symmetric matrix A, λ1 ≤
λ2 ≤ · · · ≤ λm, we have λj(K2(ξ)) = λj(b02TΛ1T ∗b∗02) = θjλj(Λ1) ≥ 0, where
0 ≤ λ1(b02TT ∗b∗02) ≤ θj ≤ λm(b02TT

∗b∗02). It means that K2 ≥ 0. Therefore,
Lemma 3.2 is proved.
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