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UNIQUENESS FOR A SEMILINEAR ELLIPTIC EQUATION

IN NON-CONTRACTIBLE DOMAINS

UNDER SUPERCRITICAL GROWTH CONDITIONS

Kewei Zhang

Abstract. We apply the Pohozaev identity to sub-domains of a tubular neighbour-

hood of a closed or broken curve in Rn and establish uniqueness results for the smooth

solutions of the Dirichlet problem for −∆u+ |u|p−1u = 0. We require the domain to
be in Rn with n ≥ 4 and with p > (n+ 1)/(n− 3).

1. Introduction

In this note, we consider the uniqueness of smooth solutions for the Dirichlet
problem

−∆u = |u|p−1u in Ω ⊂ Rn,

u = 0 on ∂Ω.
(1)

in some non-starshaped and non-contractible domains. Since Pohozaev’s work [P],
there have been many uniqueness results for (1) and its generalizations (see, for
example [PS, V, M]). These results are based on Pohozaev’s identity [P] and are
established on star-shaped domains. Under the critical growth condition p = (n +
2)/(n− 2), it is known [BC] that (1) has nontrivial solutions when the topology of
the domain is nontrivial. For some simply connected domains, there are examples
[Da, Di] that (1) can have nontrivial solutions when p = (n + 2)/(n − 2) is the
critical Sobolev exponent.
Recently, possible generalizations have been considered for ‘nearly star-shaped’

domains [DZ] and for carefully designed non-starshaped rotation domains [CZ] on
which (1) does not have nontrivial smooth solutions.
In [CZ] a special class of non-star shaped domains was constructed by rotating a

two-dimensional graph designed by using inversions in Euclidean spaces. The first
result of the present note is to generalize this result to domains including all rotation
domains. Since there is much less restriction on the graph, we have a weaker result,
that is, when n > 3 and p ≥ (n+1)/(n− 3), the only smooth solution is u ≡ 0. We
also show that when p > (n+1)/(n− 3) the same result holds for sufficiently small
tubular neighbourhood of a given closed, smooth embedded curve in Rn. A simple
example of such a non-contractible domain is the solid torus in R4. In general,
our non-contractible domains have the same homotopic type as the unit circle S1.
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When p > (n + 2)/(n − 2), there are examples of non-starshaped domains [CZ,
DZ] on which (1) has only trivial solutions. However, for domains with nontrivial
topology, examples I can find such that the same uniqueness result holds are in Rn

with n > 3 and with the growth condition p > (n + 1)/(n − 3).
The method we use is to apply the Pohozaev identity [P, PS] to certain sub-

domains. We carefully divide a tubular neighbourhood of a closed curve into sub-
domains by using the normal planes of the central curve, such that each sub-domain
is star-shaped. We apply the Pohozaev identity on each of these sub-domains.
Then we collect the resulting terms and pass to the limit by using the definition
of Riemann integral. In the limit, we obtain quantities which are comparable. By
adjusting the thickness of the tubular domain, we can show that, at least for n > 3
and p > (n + 1)/(n − 3), the uniqueness result remains true.
In this note all domains are open, bounded, and connected. Recall that a domain

Ω is star-shaped if there is a point x0 ∈ Ω such that any line segment x0x is
contained in Ω when x ∈ Ω. For convenience, we call x0 a central point.
We need the following Pohozaev identity [P, PS].
For the Dirichlet problem (1), the equation is the Euler-Lagrange equation for

the energy density

F (u,Du) =
1

2
|Du|2 −

|u|p+1

p+ 1
. (2)

Let Ω ⊂ Rn be a piecewise smooth domain. Let u ∈ C2(Ω) ∩ C1(Ω̄) be a smooth
solution of the Euler-Lagrange equation of the variational integral

I(u) =

∫
Ω

F (u(x),Du(x))dx, (3)

Then the identity∫
∂Ω

[(
1

2
|Du|2 −

|u|p+1

p+ 1

) n∑
α=1

(x− x0)ανα

−

( n∑
α, β=1

hβνα
∂u

∂xβ

∂u

∂xα

)
− au

n∑
α=1

να
∂u

∂xα

]
dS

=

∫
Ω

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx

(4)

holds, where a is any fixed constant and h(x) = x − x0 with x0 ∈ Rn is a fixed
vector. We use 〈·, ·〉 to denote the inner product in Rn. Then we can write (4) as∫

∂Ω

[F (u,Du)〈h, ν〉 − 〈Du, h〉〈Du, ν〉 − au〈Du, ν〉] dS

=

∫
Ω

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx.

(4’)

If we further assume that Ω is star-shaped with x0 ∈ Ω̄ a central point, and
u = 0 on a portion Γ of ∂Ω, then on Γ we have ∂u

∂xα
= ∂u
∂ν
να, so that∫

Γ

[F (u,Du)〈h, ν〉 − 〈Du, h〉〈Du, ν〉 − au〈Du, ν〉] dS = −
1

2

∫
Γ

∣∣∣∣∂u∂ν
∣∣∣∣
2

〈h, ν〉dS ≤ 0,

(5)
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because Ω is star-shaped and x0 ∈ Ω̄ is a central point.

The following are the main results of this paper. Theorem 1 deals with general
rotation-like domains while Theorem 2 treats tubular neighbourhoods of a closed
or broken curve.

Theorem 1. Suppose Ω ⊂ Rn is a smooth domain with n ≥ 4, and suppose the
orthogonal projection of the closure of the domain onto the first component is an
interval [a, b]. We assume that there is a δ > 0, such that for all a ≤ t1 < t2 ≤ b,
|t2 − t1| ≤ δ, the set

Ωt1,t2 = {x = (x1, x2, . . . , xn) ∈ Ω, t1 ≤ x1 ≤ t2}

is star-shaped and there is some t0 ∈ [t1, t2] such that x0 = (t0, 0, . . . , 0) is a central
point. Let u ∈ C2(Ω)∩C1(Ω̄) be a smooth solution of (1) with p ≥ (n+1)/(n− 3).
Then u ≡ 0 in Ω̄.

Remark. A rotation domain is a special case of those treated in Theorem 1. More
precisely, suppose x2 = f(x1) > 0 is a smooth function defined in [a, b]. Then the
rotation in Rn−1 around the x1-axis of the two-dimensional region bounded by f
and the x1-axis satisfies the hypotheses of Theorem 1. In particular, the domains
we treat are much more general than those in [CZ].

Theorem 2 below deals with the uniqueness problem in general tubular neigh-
bourhoods of embedded curves under a technical condition. We assume that there
is a smooth orthogonal moving frame along the curve [S, Ch 1]. Suppose that
γ : [0, l]→ Rn is a smooth curve parameterized by its arc-length s ∈ [0, l]. Suppose
that there is a smooth orthogonal basis e2(s), . . . , en(s) on the normal hyperplane
of γ(s). Let γ̇(s) = e1(s). Then

ė1(s) = −k1(s)e2,

ėj(s) = kj−1(s)ej−1 − kj(s)ej+1, 2 ≤ j ≤ n− 1,

ėn(s) = kn−1en−1.

We call k1(s) ≥ 0 [S] the first curvature of γ and E(s) := {e1(s), e2(s), . . . , en(s)},
0 ≤ s ≤ l a moving orthogonal frame along γ.
Notice that if γ ⊂ R2 is a planar curve, such a moving frame always exists. Let

γ(s) = (x1(s), x2(s)), α(s) = γ̇(s), β(s) = (−ẋ2(s), ẋ1(s)), and let e3, . . . en be the
standard Euclidean basis for Rn−2. Then α(s), β(s), e3, . . . , en form an orthogonal
moving frame along γ.
Let γ : [0, l] → Rn be a simple, smooth and closed curve with bounded curva-

tures. Then it is easy to see that the r-neighbourhood

Ωr = {x ∈ R
n, dist(x, γ) < r}

is a tubular neighbourhood of γ for r > 0 small, with (n − 1)-dimensional open
balls of radius r as its fibres. If γ is a broken curve, Ωr is the union of a tubular
neighbourhood ∪0<s<lBs and two half-balls at each end of the curve, where Bs is an
(n− 1)-dimensional open ball lying in the normal hyperplane of γ(s) and centered
at γ(s).
We have
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Theorem 2. Let n ≥ 4, and let γ be an embedded smooth (C2) curve (closed
or broken) in Rn with an associated smooth moving frame as defined above. Let
p > (n+1)/(n−3). Let Ωr be the r-neighbourhood of γ. Then for sufficiently small
r > 0, the only smooth solution of (1) on Ωr is u ≡ 0.

Corollary 1. Let γ be an embedded smooth (C2)-planar curve (closed or broken) in
R
2. Let Ωr be its r-neighbourhood in R

2×Rn−2 with n ≥ 4 and p > (n+1)/(n−3).
Then for sufficiently small r > 0 the only smooth solution of (1) on Ωr is u ≡ 0.

Proof of Theorem 1. We divide [a, b] evenly as a = t0 < t1 < · · · < tN = b, with
ti+1 − ti = (b− a)/N , i = 0, 1, 2, . . . ,N such that (b− a)/N < δ. Let

Ωi = {x ∈ Ω, ti ≤ x1 ≤ ti+1}

for i = 0, 1, . . . ,N − 1. From the property of Ω, we see that Ωi is star-shaped and
there is some t′i ∈ [ti, ti+1] such that x

i = (t′i, 0, . . . , 0) is a central point of Ωi. We
divide the boundary of Ωi into three parts:

∂Ωi = Γi ∪ Γi+1 ∪ Si,

where Γi = {x ∈ Ω̄, x1 = ti}, and Si = ∂Ω ∪ Ω̄i. Notice that both Γ0 and ΓN are
contained in ∂Ω.
Now we apply (4’) to u over the sub-domain Ωi for each fixed i with h

i = x−xi

to obtain ∫
∂Ωi

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

=

∫
Ωi

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx.

(6)

Now, let Ii and Ji be the left hand side and right hand side of (6), respectively. If
0 < i < N − 1, we have ∂Ωi = Γi ∪ Γi+1 ∪ Si, and on Si, u = 0 so that (5) implies∫

Si

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

= −
1

2

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

〈hi, ν〉dS ≤ 0.

Therefore

Ii ≤

∫
Γi+1

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

−

∫
Γi

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS,

(7)

where we have chosen the normal vector of Γi as towards the positive direction of
the x1-axis.
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If i = 0, we have

I0 ≤

∫
Γ1

[
F (u,Du)〈h0, ν〉 − 〈Du, h0〉〈Du, ν〉 − au〈Du, ν〉

]
dS. (8)

This is because that on Γ0 ∪ S0, u = 0. Similarly, When i = N − 1, we have,

IN−1 ≤ −

∫
ΓN−1

[
F (u,Du)〈hN−1, ν〉 − 〈Du, hN−1〉〈Du, ν〉 − au〈Du, ν〉

]
dS. (9)

Now we sum (7), (8) and (9) for i = 0, 1, . . . ,N − 1 to obtain

N−1∑
i=0

Ji ≤
N−2∑
i=0

{∫
Γi+1

(
F (u,Du)〈xi+1 − xi, ν〉 − 〈Du, xi+1 − xi〉〈Du, ν〉

)
dS

}
.

(10)
Since xi+1 − xi = (t′i+1 − t

′
i, 0, . . . , 0) and the normal vector ν on every Γi is

ν = (1, 0, . . . , 0), we have in (10),

N−2∑
i=0

∫
Γi+1

[
F (u,Du)〈xi+1 − xi, ν〉 − 〈Du, xi+1 − xi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

=
N−2∑
i=0

∫
Γi+1

[
F (u,Du)−

∣∣∣∣ ∂u∂x1
∣∣∣∣
2
]
dS(t′i+1 − t

′
i). (11)

We also see that

N−1∑
i=0

Ji =

∫
Ω

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx.

Therefore we obtain∫
Ω

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx

≤
N−2∑
i=0

[∫
Γi+1

(
F (u,Du)−

∣∣∣∣ ∂u∂x1
∣∣∣∣
2
)
dS

]
(t′i+1 − t

′
i).

(12)

Now we let N →∞ so that maxi{t′i+1− t
′
i} → 0 in (12). We have, by the definition

of Riemann integral,∫
Ω

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx

≤

∫
Ω

[(
1

2
|Du|2 −

|u|p+1

p+ 1

)
−

∣∣∣∣ ∂u∂x1
∣∣∣∣
2
]
dx.

(13)

Therefore,

∫
Ω

[(
n− 3

2
− a

)
|Du|2 +

(
a−
n− 1

p+ 1

)
|u|p+1

]
dx ≤ −

∫
Ω

∣∣∣∣ ∂u∂x1
∣∣∣∣
2

dx. (14)
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If
n− 3

2
>
n− 1

p + 1
, hence p >

n+ 1

n− 3

we may find a constant a such that

n− 3

2
> a >

n− 1

p + 1

and conclude from (14) that u ≡ 0.
If

n− 3

2
=
n− 1

p+ 1
, which implies p =

n+ 1

n− 3
,

we can only choose a = (n− 3)/2 and (14) is reduced to

∫
Ω

∣∣∣∣ ∂u∂x1
∣∣∣∣
2

dx = 0,

which gives that ∂u
∂x1
= 0 in Ω. The zero boundary condition implies that u ≡ 0.

Proof of Theorem 2. Let γ : [0, l] → Rn be a C2 closed embedded curve parame-
terized by its arc-length, so that γ(0) = γ(l). Define k0 = max0≤s≤l k1(s). Let Ω̄r
be the closed r-neighbourhood in Rn = R2 ×Rn−2 with n ≥ 4, where 0 < rk0 < 1.
We first choose r > 0 small enough so that the periodic mapping (in s with

period l)

F : (s, x2, x3, x4, . . . , xn)→ γ(s) + x2e2(s) + x3e3(s) + · · ·+ xnen(s)

is one-to-one from [0, l]× B̄r(0) to Ω̄r except at 0 and l where F (0, ·) = F (l, ·), with

B̄r(0) = {(x2, x3, . . . , xn) ∈ R
n−1, x22 + x

2
3 + · · · x

2
n ≤ r

2}

the closed ball in Rn−1. The Jacobian of this mapping is ±(1 + x2k1(s)), where
k1(s) is the first curvature of γ.
Now we divide [0, l] evenly as

0 = s0 < s1 < · · · < sN−1 < sN = l, si+1 − si =
l

N
, i = 0, 1, . . . N − 1

and let s′i be the midpoint of [si, si+1]. We let Γi be the intersection of the normal
hyperplane of γ at s = si and Ωr and define Ω̄i to be the closed sub-domain of
Ωr bounded by Γi and Γi+1. Notice that γ is a closed curve so that ΓN = Γ0 and
ΩN = Ω0.
As in the proof of Theorem 1, we apply (4’) to each Ωi with h

i(x) = x− γ(s′i).
We have ∫

∂Ωi

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

=

∫
Ωi

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx.

(15)
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As in the proof of Theorem 1, we let Ii and Ji be the left and right hand sides of
(15), respectively, and let ∂Ωi = Γi ∪ Γi+1 ∪ Si, where Si = ∂Ωi ∩ ∂Ωr.
Let us first consider the surface integral over Si ⊂ ∂Ωr. Notice that u = 0 on

Si, so that (5) gives∫
Si

[
F (u,Du)〈hi, ν〉 − 〈Du, hi〉〈Du, ν〉 − au〈Du, ν〉

]
dS

= −
1

2

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

〈hi, ν〉dS.

(16)

We claim that for sufficiently large N > 0, 〈hi, ν〉 ≥ 0 on Si. A general point x ∈ Si
can be written as

x = γ(s) + x2e2(s) + x3e3(s) + · · · + xnen(s)

with x22+x
2
3+ · · ·+x

2
n = r

2, for some s ∈ [si, si+1], and the outward normal vector
at x is

ν = [x2e2(s) + x3e3(s) + · · ·+ xnen(s)]/r.

We have

r〈hi, ν〉 = r〈x− γ(s′i), ν〉

= 〈γ(s) + x2e2(s) + x3e3(s) + · · · xnen(s)− γ(s
′
i), x2e2(s) + x3e3(s) + · · · xnen(s)〉

= 〈γ(s)− γ(s′i), x2e2(s) + x3e3(s) + · · ·+ xnen(s)〉+ r
2

≥ r2 − |γ(s)− γ(s′i)|r ≥ r
2 − r|s− s′i| > 0,

when |s− s′i| ≤ l/N is sufficiently small.
Now we sum up Ii’s as in the proof of Theorem 1 to obtain

N−1∑
i=0

Ii ≤

N−1∑
i=0

∫
Γi+1

[
F (u,Du)〈γ(s′i+1)− γ(s

′
i), ν〉 − 〈Du, γ(s

′
i+1)− γ(s

′
i)〉〈Du, ν〉

]
dS

=

N−1∑
i=0

[∫
Γi+1

(
1

2
|Du|2 −

|u|p+1

p+ 1

)
〈γ(s′i+1)− γ(s

′
i), ν〉dS

−

∫
Γi+1

〈Du, γ(s′i+1)− γ(s
′
i)〉〈Du, ν〉dS

]

= AN .

(17)

Notice that ΓN = Γ0, ν = γ̇(si+1),

〈γ(s′i+1)− γ(s
′
i), ν〉

= 〈γ̇(si+1)(s
′
i+1 − s

′
i), γ̇(si+1)〉

+ 〈
1

2
γ̈(ξi+1)(s

′
i+1 − si+1)

2 −
1

2
γ̈(ηi+1)(si+1 − s

′
i)
2, γ̇(si+1)〉,
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where ξi+1 and ηi+1 are two points in (si+1, s
′
i+1) and (s

′
i, si+1) respectively. Now

we have
〈γ̇(si+1)(s

′
i+1 − s

′
i), γ̇(si+1)〉

= s′i+1 − s
′
i.

(18)

Since γ is of class C2, there is a constant C0 > 0 such that |γ̈(s)| ≤ C0 for all
s ∈ [0.l]. Therefore we also have∣∣∣∣〈12 γ̈(ξi+1)(s′i+1 − si+1)2 − 12 γ̈(ηi+1)(si+1 − s′i)2, γ̇(si+1)〉

∣∣∣∣
≤
1

2
C0
[
(s′i+1 − si+1)

2 + (si+1 − s
′
i)
2
]

≤ C0(s
′
i+1 − s

′
i)
2.

(19)

Similarly, we have

〈γ(s′i+1)− γ(s
′
i),Du〉

= 〈γ̇(si+1),Du〉(s
′
i+1 − s

′
i)

+ 〈
1

2
γ̈(ξ′i+1)(s

′
i+1 − si+1)

2 −
1

2
γ̈(η′i+1)(si+1 − s

′
i)
2,Du〉,

(20)

with ∣∣∣∣〈12 γ̈(ξ′i+1)(s′i+1 − si+1)2 − 12 γ̈r(η′i+1)(si+1 − s′i)2,Du〉
∣∣∣∣

≤ C0|Du|(s
′
i+1 − s

′
i)
2.

(21)

Now we can estimate the sum AN in (17):

AN ≤
N−1∑
i=0

∫
Γi+1

[
F (u,Du)− 〈Du, γ̇(si+1)〉

2
]
dS(s′i+1 − s

′
i)

+ C0

N−1∑
i=0

l

N

[∫
Γi+1

∣∣∣∣12 |Du|2 − |u|
p+1

p+ 1

∣∣∣∣+ |Du|2dS
]
(s′i+1 − s

′
i)

= B1(N) +B2(N),

where

B1(N) =
N−1∑
i=0

∫
Γi+1

[
F (u,Du)− 〈Du, γ̇(si+1)〉

2
]
dS(s′i+1 − s

′
i)

→

∫ l
0

∫
Γs

[(
1

2
|Du|2 −

|u|p+1

p+ 1

)
− 〈Du, γ̇(s)〉2

]
dSds,

as N →∞, where

Γs = {γ(s) + x2e2(s) + x3e3(s) + · · ·+ xnen(s), x
2
2 + x

2
3 + · · ·+ x

2
n ≤ r

2}. (22)

We also have

B2 = C0

N−1∑
i=0

l

N

∫
Γi+1

[∣∣∣∣12 |Du|2 − |u|
p+1

p+ 1

∣∣∣∣+ |Du|2
]
dS(s′i+1 − s

′
i)→ 0
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as N → 0 because
N−1∑
i=0

∫
Γi+1

[∣∣∣∣12 |Du|2 − |u|
p+1

p+ 1

∣∣∣∣+ |Du|2
]
dS(s′i+1 − s

′
i)

converges to an integral.
Now we sum up the right hand side of (15):

N−1∑
i=0

Ji =

N−1∑
i=0

∫
Ωi

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx

=

∫
Ωr

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx.

We now change variables

x = γ(s) + x2e2(s) + x3e3(s) + · · ·+ xnen(s),

to obtain∫
Ωr

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
dx

=

∫ l
0

∫
Γs

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
(1 + x2k1(s))dS ds,

when rk0 < 1. Finally we obtain∫ l
0

∫
Γs

[(
n− 2

2
− a

)
|Du|2 +

(
a−

n

p+ 1

)
|u|p+1

]
(1 + x2k1(s))dS ds

≤

∫ l
0

∫
Γs

[(
1

2
|Du|2 −

|u|p+1

p+ 1

)
− 〈Du, γ̇(s)〉2

]
dSds.

(23)

Now, we deduce from (23) that∫ l
0

∫
Γs

[(
n− 2

2
− a

)
φ−
1

2

]
|Du|2 +

[(
a−

n

p+ 1

)
φ+

1

p+ 1

]
|u|p+1dS ds

−

∫ l
0

∫
Γs

〈Du, γ̇(s)〉2dSds ≤ 0,

(24)

where φ := 1 + x2k1(s). Now, |φ− 1| ≤ rk0 → 0 as r→ 0. Therefore(
n− 2

2
− a

)
φ−
1

2
→
n− 3

2
− a, and

(
a−

n

p+ 1

)
φ+

1

p+ 1
→ a−

n− 1

p+ 1

uniformly on [0, l]× B̄r(0) as r → 0. Because p > (n+ 1)/(n − 3), it is possible to
find some a ∈ R and c > 0 such that(

n− 2

2
− a

)
φ−
1

2
≥ c,

(
a−

n

p+ 1

)
φ+

1

p+ 1
≥ c

on [0, l]× B̄r(0) as r > 0 sufficiently small. Thus (24) implies that u = 0 on Ωr.

If γ is not a closed curve, the proof is similar. We need to extend the curve at the
two end points γ(0) and γ(l) along the tangent directions as straight line segments
so that the extended curve reaches the boundary of Ωr at two points. Then the
proof proceeds as in the case of closed curves.
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