Electronic Journal of Differential Equations, Vol. **1998**(1998), No. 34, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM

Ruyun Ma

Abstract. We study the existence of positive solutions to the boundary-value problem $% \mathcal{A}$

$$\begin{split} u'' + a(t) f(u) &= 0, \quad t \in (0,1) \\ u(0) &= 0, \quad \alpha u(\eta) = u(1) \,, \end{split}$$

where $0 < \eta < 1$ and $0 < \alpha < 1/\eta$. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem in cones.

1. INTRODUCTION

The study of multi-point boundary-value problems for linear second order ordinary differential equations was initiated by Il'in and Moiseev [7, 8]. Then Gupta [5] studied three-point boundary-value problems for nonlinear ordinary differential equations. Since then, the more general nonlinear multi-point boundary value problems have been studied by several authors by using the Leray-Schauder Continuation Theorem, Nonlinear Alternatives of Leray-Schauder, and coincidence degree theory. We refer the reader to [1-3, 6, 10-12] for some recent results of nonlinear multi-point boundary value problems.

In this paper, we consider the existence of positive solutions to the equation

$$u'' + a(t)f(u) = 0, \quad t \in (0,1)$$
(1.1)

with the boundary condition

$$u(0) = 0, \quad \alpha u(\eta) = u(1),$$
 (1.2)

where $0 < \eta < 1$. Our purpose here is to give some existence results for positive solutions to (1.1)-(1.2), assuming that $\alpha \eta < 1$ and f is either superlinear or sublinear. Our proof is based upon the fixed point theorem in a cone.

From now on, we assume the following: (A1) $f \in C([0,\infty), [0,\infty));$ (A2) $a \in C([0,1], [0,\infty))$ and there exists $x_0 \in [\eta, 1]$ such that $a(x_0) > 0$

1991 Mathematics Subject Classifications: 34B15.

Key words and phrases: Second-order multi-point BVP, positive solution, cone, fixed point. ©1999 Southwest Texas State University and University of North Texas.

Submitted June 9, 1999. Published September 15, 1999.

Partially supported by NNSF (19801028) of China and NSF (ZR-96-017) of Gansu Province

Set

$$f_0 = \lim_{u \to 0^+} \frac{f(u)}{u}, \quad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u}$$

Then $f_0 = 0$ and $f_{\infty} = \infty$ correspond to the superlinear case, and $f_0 = \infty$ and $f_{\infty} = 0$ correspond to the sublinear case. By the positive solution of (1.1)-(1.2) we understand a function u(t) which is positive on 0 < t < 1 and satisfies the differential equation (1.1) and the boundary conditions (1.2).

The main result of this paper is the following

Theorem 1. Assume (A1) and (A2) hold. Then the problem (1.1)-(1.2) has at least one positive solution in the case (i) $f_0 = 0$ and $f_{\infty} = \infty$ (superlinear) or (ii) $f_0 = \infty$ and $f_\infty = 0$ (sublinear).

The proof of above theorem is based upon an application of the following wellknown Guo's fixed point theorem [4].

Theorem 2. Let E be a Banach space, and let $K \subset E$ be a cone. Assume Ω_1, Ω_2 are open subsets of E with $0 \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$, and let

$$A: K \cap (\overline{\Omega}_2 \setminus \Omega_1) \longrightarrow K$$

be a completely continuous operator such that (i) $||Au|| \leq ||u||$, $u \in K \cap \partial \Omega_1$, and $||Au|| \geq ||u||$, $u \in K \cap \partial \Omega_2$; or $(ii) \parallel Au \parallel \geq \parallel u \parallel, \quad u \in K \cap \partial \Omega_1 \ , \ and \parallel Au \parallel \leq \parallel u \parallel, \quad u \in K \cap \partial \Omega_2.$

Then A has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2. The Preliminary Lemmas

Lemma 1. Let $\alpha \eta \neq 1$ then for $y \in C[0,1]$, the problem

$$u'' + y(t) = 0, \quad t \in (0, 1)$$
(2.1)

$$u(0) = 0, \quad \alpha u(\eta) = u(1)$$
 (2.2)

has a unique solution

$$u(t) = -\int_0^t (t-s)y(s)ds - \frac{\alpha t}{1-\alpha\eta}\int_0^\eta (\eta-s)y(s)ds + \frac{t}{1-\alpha\eta}\int_0^1 (1-s)y(s)\,ds$$

The proof of this lemma can be found in [6].

Lemma 2. Let $0 < \alpha < \frac{1}{n}$. If $y \in C[0,1]$ and $y \ge 0$, then the unique solution u of the problem (2.1)-(2.2) satisfies

$$u \ge 0, \quad t \in [0,1]$$

Proof From the fact that $u''(x) = -y(x) \leq 0$, we know that the graph of u(t) is concave down on (0,1). So, if $u(1) \ge 0$, then the concavity of u and the boundary condition u(0) = 0 imply that $u \ge 0$ for $t \in [0, 1]$.

If u(1) < 0, then we have that

$$u(\eta) < 0 \tag{2.3}$$

and

$$u(1) = \alpha u(\eta) > \frac{1}{\eta} u(\eta). \tag{2.4}$$

This contradicts the concavity of u.

Lemma 3. Let $\alpha \eta > 1$. If $y \in C[0,1]$ and $y(t) \ge 0$ for $t \in (0,1)$, then (2.1)-(2.2) has no positive solution.

Proof Assume that (2.1)-(2.2) has a positive solution u. If u(1) > 0, then $u(\eta) > 0$ and

$$\frac{u(1)}{1} = \frac{\alpha u(\eta)}{1} > \frac{u(\eta)}{\eta}$$

$$(2.5)$$

this contradicts the concavity of u.

If u(1) = 0 and $u(\tau) > 0$ for some $\tau \in (0, 1)$, then

$$u(\eta) = u(1) = 0, \quad \tau \neq \eta \tag{2.6}$$

If $\tau \in (0,\eta)$, then $u(\tau) > u(\eta) = u(1)$, which contradicts the concavity of u. If $\tau \in (\eta, 1)$, then $u(0) = u(\eta) < u(\tau)$ which contradicts the concavity of u again.

In the rest of the paper, we assume that $\alpha \eta < 1$. Moreover, we will work in the Banach space C[0, 1], and only the sup norm is used.

Lemma 4. Let $0 < \alpha < \frac{1}{\eta}$. If $y \in C[0,1]$ and $y \ge 0$, then the unique solution u of the problem (2.1)-(2.2) satisfies

$$\inf_{t \in [\eta, 1]} u(t) \ge \gamma \|u\|,$$

where $\gamma = \min\{\alpha\eta, \frac{\alpha(1-\eta)}{1-\alpha\eta}, \eta\}.$

Proof. We divide the proof into two steps. Step 1. We deal with the case $0 < \alpha < 1$. In this case, by Lemma 2, we know that

$$u(\eta) \ge u(1). \tag{2.7}$$

Set

$$u(\bar{t}) = ||u||. \tag{2.8}$$

If $\bar{t} \leq \eta < 1$, then

$$\min_{t \in [\eta, 1]} u(t) = u(1) \tag{2.9}$$

and

$$u(\bar{t}) \le u(1) + \frac{u(1) - u(\eta)}{1 - \eta} (0 - 1)$$

= $u(1) [1 - \frac{1 - \frac{1}{\alpha}}{1 - \eta}]$
= $u(1) \frac{1 - \alpha \eta}{\alpha (1 - \eta)}.$

This together with (2.9) implies that

$$\min_{t \in [\eta, 1]} u(t) \ge \frac{\alpha(1 - \eta)}{1 - \alpha \eta} \|u\|.$$
(2.10)

If $\eta < \bar{t} < 1$, then

$$\min_{t \in [\eta, 1]} u(t) = u(1) \tag{2.11}$$

From the concavity of u, we know that

$$\frac{u(\eta)}{\eta} \ge \frac{u(t)}{\bar{t}} \tag{2.12}$$

Combining (2.12) and boundary condition $\alpha u(\eta) = u(1)$, we conclude that

$$\frac{u(1)}{\alpha\eta} \ge \frac{u(\bar{t})}{\bar{t}} \ge u(\bar{t}) = ||u||.$$

This is

$$\min_{t \in [\eta, 1]} u(t) \ge \alpha \eta \|u\|.$$
(2.13)

Step 2. We deal with the case $1 \le \alpha < \frac{1}{\eta}$. In this case, we have

$$u(\eta) \le u(1). \tag{2.14}$$

Set

$$u(\bar{t}) = \|u\| \tag{2.15}$$

then we can choose \overline{t} such that

$$\eta \le \bar{t} \le 1 \tag{2.16}$$

(we note that if $\overline{t} \in [0,1] \setminus [\eta,1]$, then the point $(\eta, u(\eta))$ is below the straight line determined by (1, u(1)) and $(\overline{t}, u(\overline{t}))$. This contradicts the concavity of u. From (2.14) and the concavity of u, we know that

$$\min_{t \in [\eta, 1]} u(t) = u(\eta).$$
(2.17)

Using the concavity of u and Lemma 2, we have that

$$\frac{u(\eta)}{\eta} \ge \frac{u(\bar{t})}{\bar{t}}.$$
(2.18)

This implies

$$\min_{t \in [\eta, 1]} u(t) \ge \eta \|u\|.$$
(2.19)

This completes the proof.

3 Proof of main theorem

Proof of Theorem 1. Superlinear case. Suppose then that $f_0 = 0$ and $f_{\infty} = \infty$. We wish to show the existence of a positive solution of (1.1)-(1.2). Now (1.1)-(1.2) has a solution y = y(t) if and only if y solves the operator equation

$$y(t) = -\int_{0}^{t} (t-s)a(s)f(y(s))ds - \frac{\alpha t}{1-\alpha\eta} \int_{0}^{\eta} (\eta-s)a(s)f(y(s))ds + \frac{t}{1-\alpha\eta} \int_{0}^{1} (1-s)a(s)f(y(s))ds$$

$$\stackrel{\text{def}}{=} Ay(t).$$
(3.1)

EJDE-1999/34

Denote

$$K = \{ y \mid y \in C[0,1], y \ge 0, \min_{\eta \le t \le 1} y(t) \ge \gamma \|y\| \}.$$
(3.2)

It is obvious that K is a cone in C[0,1]. Moreover, by Lemma 4, $AK \subset K$. It is also easy to check that $A: K \to K$ is completely continuous.

Now since $f_0 = 0$, we may choose $H_1 > 0$ so that $f(y) \le \epsilon y$, for $0 < y < H_1$, where $\epsilon > 0$ satisfies

$$\frac{\epsilon}{1-\alpha\eta}\int_0^1 (1-s)a(s)ds \le 1.$$
(3.3)

Thus, if $y \in K$ and $||y|| = H_1$, then from (3.1) and (3.3), we get

$$Ay(t) \leq \frac{t}{1 - \alpha \eta} \int_0^1 (1 - s)a(s)f(y(s))ds$$

$$\leq \frac{t}{1 - \alpha \eta} \int_0^1 (1 - s)a(s)\epsilon y(s)ds$$

$$\leq \frac{\epsilon}{1 - \alpha \eta} \int_0^1 (1 - s)a(s)ds ||y||$$

$$\leq \frac{\epsilon}{1 - \alpha \eta} \int_0^1 (1 - s)a(s)ds H_1.$$
(3.4)

Now if we let

$$\Omega_1 = \{ y \in C[0,1] \mid ||y|| < H_1 \}, \tag{3.5}$$

then (3.4) shows that $||Ay|| \leq ||y||$, for $y \in K \cap \partial \Omega_1$.

Further, since $f_{\infty} = \infty$, there exists $\hat{H}_2 > 0$ such that $f(u) \ge \rho u$, for $u \ge \hat{H}_2$, where $\rho > 0$ is chosen so that

$$\rho \frac{\eta \gamma}{1 - \eta \alpha} \int_{\eta}^{1} (1 - s) a(s) ds \ge 1.$$
(3.6)

Let $H_2 = \max\{2H_1, \frac{\hat{H}_2}{\gamma}\}$ and $\Omega_2 = \{y \in C[0, 1] \mid ||y|| < H_2\}$, then $y \in K$ and $||y|| = H_2$ implies

$$\min_{\eta \le t \le 1} y(t) \ge \gamma \|y\| \ge \hat{H}_2,$$

and so

$$\begin{split} Ay(\eta) &= -\int_{0}^{\eta} (\eta - s)a(s)f(y(s))dt - \frac{\alpha\eta}{1 - \alpha\eta} \int_{0}^{\eta} (\eta - s)a(s)f(y(s))ds \\ &+ \frac{\eta}{1 - \alpha\eta} \int_{0}^{1} (1 - s)a(s)f(y(s))ds \\ &= -\frac{1}{1 - \alpha\eta} \int_{0}^{\eta} (\eta - s)a(s)f(y(s))ds + \frac{\eta}{1 - \alpha\eta} \int_{0}^{1} (1 - s)a(s)f(y(s))ds \\ &= -\frac{1}{1 - \alpha\eta} \int_{0}^{\eta} \eta a(s)f(y(s))ds + \frac{1}{1 - \alpha\eta} \int_{0}^{\eta} sa(s)f(y(s))ds \\ &+ \frac{\eta}{1 - \alpha\eta} \int_{0}^{1} a(s)f(y(s))ds - \frac{\eta}{1 - \alpha\eta} \int_{0}^{1} sa(s)f(y(s))ds \\ &= \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} a(s)f(y(s))ds + \frac{1}{1 - \alpha\eta} \int_{0}^{\eta} sa(s)f(y(s))ds \\ &= \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} a(s)f(y(s))ds - \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} sa(s)f(y(s))ds \\ &= \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} a(s)f(y(s))ds - \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} sa(s)f(y(s))ds \quad (by \ \eta < 1) \\ &= \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} (1 - s)a(s)f(y(s))ds. \end{split}$$

Hence, for $y \in K \cap \partial \Omega_2$,

$$||Ay|| \ge \rho \frac{\eta \gamma}{1 - \alpha \eta} \int_{\eta}^{1} (1 - s)a(s)ds ||y|| \ge ||y||.$$

Therefore, by the first part of the Fixed Point Theorem, it follows that A has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$, such that $H_1 \leq ||u|| \leq H_2$. This completes the superlinear part of the theorem.

Sublinear case. Suppose next that $f_0 = \infty$ and $f_{\infty} = 0$. We first choose $H_3 > 0$ such that $f(y) \ge My$ for $0 < y < H_3$, where

$$M\gamma(\frac{\eta}{1-\alpha\eta})\int_{\eta}^{1}(1-s)a(s)ds \ge 1.$$
(3.8)

By using the method to get (3.7), we can get that

$$\begin{aligned} Ay(\eta) &= -\int_{0}^{\eta} (\eta - s)a(s)f(y(s))dt - \frac{\alpha\eta}{1 - \alpha\eta} \int_{0}^{\eta} (\eta - s)a(s)f(y(s))ds \\ &+ \frac{\eta}{1 - \alpha\eta} \int_{0}^{1} (1 - s)a(s)f(y(s))ds \\ &\geq \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} (1 - s)a(s)f(y(s))ds \\ &\geq \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} (1 - s)a(s)My(s)ds \\ &\geq \frac{\eta}{1 - \alpha\eta} \int_{\eta}^{1} (1 - s)a(s)M\gamma ds ||y|| \\ &\geq H_{3} \end{aligned}$$
(3.9)

Thus, we may let $\Omega_3 = \{ y \in C[0,1] \mid ||y|| < H_3 \}$ so that

$$\|Ay\| \geq \|y\|, \qquad y \in K \cap \partial\Omega_3.$$

Now, since $f_{\infty} = 0$, there exists $\hat{H}_4 > 0$ so that $f(y) \leq \lambda y$ for $y \geq \hat{H}_4$, where $\lambda > 0$ satisfies

$$\frac{\lambda}{1-\alpha\eta} \left[\int_0^1 (1-s)a(s)ds \right] \le 1.$$
(3.10)

We consider two cases:

Case (i). Suppose f is bounded, say $f(y) \leq N$ for all $y \in [0, \infty)$. In this case choose

$$H_4 = \max\{2H_3, \frac{N}{1 - \alpha\eta} \int_0^1 (1 - s)a(s)ds\}$$

so that for $y \in K$ with $||y|| = H_4$ we have

$$\begin{aligned} Ay(t) &= -\int_0^t (t-s)a(s)f(y(s))ds - \frac{\alpha t}{1-\alpha\eta} \int_0^\eta (\eta-s)a(s)f(y(s))ds \\ &+ \frac{t}{1-\alpha\eta} \int_0^1 (1-s)a(s)f(y(s))ds \\ &\leq \frac{t}{1-\alpha\eta} \int_0^1 (1-s)a(s)f(y(s))ds \\ &\leq \frac{1}{1-\alpha\eta} \int_0^1 (1-s)a(s)Nds \\ &\leq H_4 \end{aligned}$$

and therefore $||Ay|| \le ||y||$.

Case (ii). If f is unbounded, then we know from (A1) that there is $H_4 : H_4 > \max\{2H_3, \frac{1}{\gamma}\hat{H}_4\}$ such that

$$f(y) \le f(H_4) \quad \text{for} \quad 0 < y \le H_4.$$

(We are able to do this since f is unbounded). Then for $y \in K$ and $\|y\| = H_4$ we have

$$\begin{aligned} Ay(t) &= -\int_0^t (t-s)a(s)f(y(s))ds - \frac{\alpha t}{1-\alpha\eta}\int_0^\eta (\eta-s)a(s)f(y(s))ds \\ &+ \frac{t}{1-\alpha\eta}\int_0^1 (1-s)a(s)f(y(s))ds \\ &\leq \frac{t}{1-\alpha\eta}\int_0^1 (1-s)a(s)f(H_4)ds \\ &\leq \frac{1}{1-\alpha\eta}\int_0^1 (1-s)a(s)\lambda H_4ds \\ &\leq H_4. \end{aligned}$$

Therefore, in either case we may put

$$\Omega_4 = \{ y \in C[0,1] \mid \|y\| < H_4 \},\$$

and for $y \in K \cap \partial \Omega_4$ we may have $||Ay|| \leq ||y||$. By the second part of the Fixed Point Theorem, it follows that BVP (1.1)-(1.2) has a positive solution. Therefore, we have completed the proof of Theorem 1.

Ruyun Ma

REFERENCES

- W. Feng and J. R. L. Webb, Solvability of a three-point nonlinear boundary value problems at resonance, Nonlinear Analysis TMA, 30(6), (19970), 3227-3238.
- [2] W. Feng and J. R. L. Webb, Solvability of a *m*-point boundary value problems with nonlinear growth, J. Math. Anal. Appl., 212, (1997), 467-480.
- [3] W. Feng, On a *m*-point nonlinear boundary value problem, Nonlinear Analysis TMA 30(6), (1997), 5369-5374.
- [4] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego 1988.
- [5] C. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168, (1992), 540-551.
- [6] C. P. Gupta, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl., 205, (1997), 586-579.
- [7] V. A. Il'in and E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23, No. 7 (1987), 803-810.
- [8] V. A. Il'in and E. I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23, No. 8 (1987), 979-987.
- [9] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff Groningen, (1964).
- [10] S. A. Marano, A remark on a second order three-point boundary value problem, J. Math. Anal. Appl., 183, (1994), 581-522.
- [11] R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl. 212, (1997), 430-442.
- [12] R. Ma, Existence theorems for a second order *m*-point boundary value problem, J. Math. Anal. Appl. 211, (1997), 545-555.
- [13] R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Analysis, 59, (1995), 225-231.
- [14] H. Wang, On the existence of positive solutions for semilinear elliptic equations in annulus, J.Differential Equations 109, (1994), 1-7.
- [15] C. Gupta and S. Trofimchuk, Existence of a solution to a three-point boundary values problem and the spectral radius of a related linear operator, Nonlinear Analysis TMA, 34, (1998), 498-507.

Ruyun Ma

Department of Mathematics, Northwest Normal University

LANZHOU 730070, GANSU, P. R. CHINA

E-mail address: mary@nwnu.edu.cn