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DINI-CAMPANATO SPACES AND APPLICATIONS

TO NONLINEAR ELLIPTIC EQUATIONS

Jay Kovats

Abstract. We generalize a result due to Campanato [C] and use this to obtain

regularity results for classical solutions of fully nonlinear elliptic equations. We

demonstrate this technique in two settings. First, in the simplest setting of Pois-

son’s equation ∆u = f in B, where f is Dini continuous in B, we obtain known

estimates on the modulus of continuity of second derivatives D2u in a way that does

not depend on either differentiating the equation or appealing to integral represen-

tations of solutions. Second, we use this result in the concave, fully nonlinear setting

F (D2u, x) = f(x) to obtain estimates on the modulus of continuity of D2u when the

Ln averages of f satisfy the Dini condition.

0. Introduction

Let 1 ≤ q ≤ ∞ and let Ω be a domain in Rn. For any Dini modulus of continuity
ω(t) and u ∈ Lq(Ω), we define the seminorm

[u]′k,ω = [u]
′
q,k,ω;Ω = sup

x0∈Ω
0<r≤d(Ω)

[
1

rkq+nω(r)q
inf
P∈Pk

∫
Ωr(x0)

|u(x)− P (x)|qdx

]1/q
,

where Ωr(x0) = Br(x0)∩Ω and Pk denotes the spaces of polynomials of degree less
than or equal to k. We define the Dini-Campanato spaceMk,ω

q (Ω) as the space of
functions

Mk,ω
q (Ω) =

{
u ∈ Lq(Ω) : [u]′q,k,ω;Ω < +∞

}
.

Following Campanato’s original proof (in [C]) of the inclusion L
(q,λ)
k (Ω) ⊂ Ck,α(Ω),

for α = (λ−n− kq)/q, we obtain the regularity resultMk,ω
q (Ω) ⊂ C

k,ω1(Ω), under

the assumption that ω(t) is a Dini modulus of continuity and ω1(t) =
∫ t
0
ω(r)
r
dr. If

ω(t) is a modulus of continuity, the space Ck,ω(Ω) is defined in obvious generaliza-
tion of the Hölder spaces, namely the space of all u ∈ Ck(Ω) with seminorm

[u]k,ω;Ω = sup
x,y∈Ω
|β|=k

|Dβu(x)−Dβu(y)|

ω(|x− y|)
< +∞ .
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Our present result is more general than Campanato’s original inclusion. Indeed,

if u ∈ L(q,λ)k (Ω), then ω(r) ∼ rβ for some β ∈ (0, 1] and λ = kq + n + βq. Yet

for ω(r) = rβ , ω1(t) =
∫ t
0
rβ−1, dr ∼ tβ and so by our present result u ∈ Ck,ω1 =

Ck,β, whereas by Campanato’s original inclusion, u ∈ Ck,α for α = λ−n−kq
q

=
(kq+n+βq)−n−kq

q
= β. On the other hand, there are examples of u ∈ Mk,ω

q , where

u /∈ Ck,α for any α > 0. The special case k = 0, q = 1 was proved by Spanne [Sp].
In [C1],[CC], L. Caffarelli uses polynomial approximation to obtain pointwise

Hölder estimates for derivatives of viscosity solutions to fully nonlinear elliptic
equations. In the special case ω(t) ∼ tα, C1,α estimates involve approximation
by affine functions (q =∞, k = 1), while C2,α estimates involve approximation by
paraboloids (q =∞, k = 2). Using a generalization of the argument in Chapter 8 of
[CC], we use the Dini Campanato inclusion to obtain regularity results for solutions
of fully nonlinear elliptic equations. We illustrate this technique in two settings. In
Chapter 2, in the simplest setting of Poisson’s equation ∆u = f in B, where f is
Dini continuous in B, we obtain known estimates on the modulus of continuity of
second derivatives D2u in a way that does not depend on either differentiating the
equation or appealing to integral representations of solutions. In Chapter 3, we use
this technique in the concave, fully nonlinear setting F (D2u, x) = f(x) to obtain
estimates on the modulus of continuity of D2u, when f and the oscillations of F in
x are Dini continuous. Here, Dini continuity is measured in the weaker setting of
Ln averages instead of the usual L∞ norm. This condition was proposed by Wang
(see his closing remark of Section 1.1) in [W].
Finally, we remark that even in the simplest setting of Poisson’s equation, second

derivatives of C2 solutions will not, in general, be Dini continuous even when f is.
For example, direct calculation shows that the function

u(x) = u(x1, x2) = x1x2

(
ln
1

|x|

)−1
, x ∈ B = B1/2(0)

satisfies

∆u(x) =
x1x2

(
ln 1|x|

)−2
|x|2

(
2

ln 1|x|
+ 4

)
:= f(x)

in B, where f(x) = O

((
ln 1|x|

)−2)
is Dini continuous in B with Dini modulus of

continuity ω(t) ∼
(
ln 1

t

)−2
. However direct calculation shows that

D12u(x) =
∂2u(x)

∂x1∂x2
= O

((
ln
1

|x|

)−1)

has modulus of continuity ∼
(
ln 1

t

)−1
, which fails the Dini condition, since for any

ε > 0 ∫ ε

0

(
ln 1

r

)−1
r

dr =

∫ ∞
ln 1ε

u−1 du = +∞ .

It is well known, (see [GT] Chapter 4) that if u ∈ C2(Br) satisfies ∆u = f in
Br, where f ∈ Cα(Br), then D

2u ∈ Cα(Br/2). This “reproducing” regularity
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occurs not only for ω(t) = tα but more generally, for ω(t) = tα
(
ln 1

t

)β
, α ∈ (0, 1).

This can be seen by noting that both integrals in (13) are ∼ tα
(
ln 1

t

)β
, when

ω(t) = tα
(
ln 1

t

)β
. See also [B],[K].

We recall that any modulus of continuity ω(t) is non-decreasing, subadditive,
continuous and satisfies ω(0) = 0. Hence any modulus of continuity ω(t) satisfies

ω(r)

r
≤ 2

ω(h)

h
, 0 < h < r.

Indeed, by subadditivity, for m ∈ N and h > 0, we have ω(mh) ≤ mω(h). Thus
for 0 < h < r, ω(r) = ω( r

h
h) ≤ ω(

⌈
r
h

⌉
h) ≤

⌈
r
h

⌉
ω(h) ≤ 2 r

h
ω(h), where dae denotes

the smallest integer ≥ a. In particular, it immediately follows that ω(t) ≤ 2ω1(t),

since for t > 0, ω1(t) =
∫ t
0
ω(r)
r
dr ≥ ω(t)

2t

∫ t
0
dr = ω(t)

2 .

1. The Dini-Campanato InclusionMk,ω
q ⊂ Ck,ω1

We restrict ourselves to domains Ω ⊂ Rn which satisfy the following property
(this includes Lipschitz domains).

Definition 1.0. We say that Ω satisfies property (I) if there exists a constant
A > 0 such that ∀x0 ∈ Ω,∀r ∈ [0, d(Ω)], the Lebesque measure of Ωr(x0), |Ωr(x0)|
satisfies

|Ωr(x0)| ≥ Ar
n.

Main Theorem. Let 1 ≤ q ≤ ∞. If u ∈Mk,ω
q (Ω), where Ω satisfies property (I),

then u ∈ Ck,ω1(Ω), where ω1(t) =
∫ t
0
ω(r)
r
dr. That is, the kth order derivatives of

u satisfy

|Dku(x)−Dku(y)| ≤ C(n, k, q,A)ω1(|x− y|) ∀x, y ∈ Ω.

We begin the proof of the main theorem for the case 1 ≤ q < ∞ with a lemma
due to De Giorgi.

Lemma 1.1 (De Giorgi). If P (x) ∈ Pk, q ≥ 1 and E is any measurable subset
of Br(x0) satisfying

|E| ≥ Arn,

then ∃ constant c1(k, q, n,A) such that ∀ n-tuple p of non-negative integers, we have∣∣[DpP (x)]x=x0
∣∣q ≤ c1

rn+|p|q

∫
E

|P (x)|q dx.

If u ∈ Mk,ω
q (Ω), one can show that ∀x0 ∈ Ω,∀r ∈ [0, d(Ω)],∃Pk(x, x0, r, u) ∈ Pk

such that ∫
Ωr(x0)

|u(x)− Pk(x, x0, r, u)|
q dx = inf

P∈Pk

∫
Ωr(x0)

|u(x)− P (x)|q dx. (1)

If P (x) is an arbitrary polynomial in Pk, then for convenience we write it in the
form

P (x) =
∑
|p|≤k

ap
p!
(x− x0)

p

and henceforth put Pk(x, x0, r) for Pk(x, x0, r, u) and set

ap(x0, r) = [D
pPk(x, x0, r)]x=x0 . (2)
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Lemma 1.2. If u ∈Mk,ω
q (Ω), then ∀x0 ∈ Ω,∀ 0 < r ≤ d(Ω) and integer h ≥ 0, we

have∫
Ω r

2h+1
(x0)

∣∣Pk (x, x0, r2h )− Pk (x, x0, r
2h+1

)∣∣q dx ≤ 2q+1[u]′qω ( r
2h

) (
r
2h

)kq+n
. (3)

Proof. ∀x0 ∈ Ω, 0 < r ≤ d(Ω), integer h ≥ 0, x ∈ Ω r

2h+1
(x0), by (1) and the

definition ofMk,ω
q (Ω) we have∫

Ω r
2h+1

(x0)

∣∣Pk (x, x0, r2h )− Pk (x, x0, r
2h+1

)∣∣q dx
≤ 2q

{ ∫
Ω r
2h
(x0)

∣∣Pk (x, x0, r2h )− u(x)∣∣q dx+ ∫
Ω r
2h+1

(x0)

∣∣u(x)− Pk (x, x0, r
2h+1

)∣∣q dx}

≤ 2q
{
[u]′

q
ω
(
r
2h

)q ( r
2h

)kq+n
+ [u]′

q
ω
(

r
2h+1

)q ( r
2h+1

)kq+n}
≤ 2q+1[u]′

q
ω
( r
2h

)q ( r
2h

)kq+n
. �

Lemma 1.3. If Ω has property (I) and u ∈Mk,ω
q (Ω), then ∀ two points x0, y0 ∈ Ω

and any n-tuple p of integers with |p| = k,∃ c2 = c2(k, n, q,A) such that

|ap(x0, 2|x0 − y0|)− ap(y0, 2|x0 − y0|)|
q ≤ c2 [u]

′q ω(|x0 − y0|)
q . (4)

Proof. Say x0, y0 ∈ Ω and put r = |x0 − y0|, Ir = Ω(x0, 2r) ∩ Ω(y0, 2r). Then
∀x ∈ Ω(x0, r) ⊂ Ir, we have, again by (1) and the fact that ω(t) is a modulus of
continuity∫

Ωr(x0)

|Pk(x, x0, 2r)− Pk(x, y0, 2r)|
q dx

≤ 2q
{∫
Ω2r(x0)

|Pk(x, x0, 2r)− u(x)|
q dx+

∫
Ω2r(y0)

|u(x)− Pk(x, y0, 2r)|
q dx

}
≤ 2q

{
2[u]′

q
ω(2r)q(2r)kq+n

}
≤ 22q+1+kq+n[u]′

q
rkq+nω(r)q.

Applying Lemma 1.1 to the polynomial P (x) = Pk(x, x0, 2r) − Pk(x, y0, 2r), and
observing that the k-th derivatives of a polynomial of degree k are constant and
hence can be evaluated independent of any particular point, we see that

|ap(x0, 2r)− ap(y0, 2r)|
q ≤

c1
rn+kq

∫
Ωr(x0)

|Pk(x, x0, 2r)− Pk(x, y0, 2r)|
q dx

≤
c1

rn+kq
22q+1+kq+n[u]′

q
rkq+nω(r)q

= c2[u]
′qω(r)q . �
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Lemma 1.4. If Ω has property (I) and u ∈Mk,ω
q (Ω), then ∃ constant c3(q, k, n,A)

such that ∀x0 ∈ Ω, 0 < r ≤ d(Ω) and integer i ≥ 0, |p| ≤ k, we have

∣∣∣ap(x0, r)− ap (x0, r
2i

)∣∣∣ ≤ c3[u]′ i−1∑
h=0

( r
2h

)k−|p|
ω
( r
2h

)
. (5)

Proof. With x0, r, |p| ≤ k as in the hypotheses, note that by (2) and (3)

∣∣∣ap(x0, r)− ap (y0, r
2i

)∣∣∣ ≤ i−1∑
h=0

∣∣ap (x0, r2h )− ap (x0, r
2h+1

)∣∣
=

i−1∑
h=0

∣∣∣Dp
[
Pk
(
x, x0,

r
2h

)
− Pk

(
x, x0,

r
2h+1

)]
x=x0

∣∣∣
≤

i−1∑
h=0

c
1/q
1

( r
2h+1
)
n+|p|q
q

{∫
Ω r
2h+1

(x0)

∣∣Pk (x, x0, r2h )− Pk (x, x0, r
2h+1

)∣∣q dx}1/q

≤
i−1∑
h=0

c
1/q
1

( r

2h+1
)
n+|p|q
q

2
q+1
q
(
r
2h

)n+kq
q ω

(
r
2h

)
[u]′

≤ c1/q1 2
n+(k+1)q+1

q [u]′
i−1∑
h=0

(
r
2h

)k−|p|
ω
(
r
2h

)
. �

Lemma 1.5. Let Ω have property (I) and u ∈ Mk,ω
q (Ω), where ω(t) is a Dini

modulus of continuity. Then for every l with 0 ≤ l ≤ k, there exists a system of
functions {vp(x0)}|p|≤l, defined in Ω such that ∀ 0 < r ≤ d(Ω), x0 ∈ Ω and |p| ≤ l,
we have, for some constant c5 = c5(q, k, n,A)

|ap(x0, r)− vp(x0)| ≤ c5[u]
′ rk−|p|ω1(r), where ω1(t) =

∫ t

0

ω(r)

r
dr. (6)

Consequently ∀x0 ∈ Ω, lim
r→0

ap(x0, r) = vp(x0) uniformly. (7)

Proof. Fix x0 ∈ Ω, 0 < r ≤ d(Ω), |p| ≤ l. We will show that the sequence
{ap(x0,

r
2i )} converges as i → ∞. Indeed, if i, j are non-negative integers with

j > i, then by Lemma 1.4 we have

∣∣∣ap (x0, r
2j

)
− ap

(
x0,

r

2i

)∣∣∣ ≤ c3[u]′ j−1∑
h=i

ω
( r
2h

)( r
2h

)k−|p|
.

But since ω(t) is a Dini modulus of continuity, the integral test, applied to the
non-negative, non-increasing sequence {ω( r

2h
)}∞h=0 yields that the series

∑∞
h=0 ω(

r
2h
)

converges. Indeed, by the integral test

∞∑
h=0

ω
( r
2h

)
≤ ω(r)+

∫ ∞
1

ω
( r

2x−1

)
dx = ω(r)+

1

ln 2

∫ r

0

ω(t)

t
dt ≤

(
2+

1

ln 2

)
ω1(r).
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Thus, {ap(x0,
r
2i
)} is a Cauchy sequence, and hence convergent. Moreover the

limit will be independent of our choice of r ∈ [0, d(Ω)]. Indeed, if r1, r2 satisfy
0 < r1 ≤ r2 ≤ d(Ω), then by Lemma 1.1 and the definition ofMk,ω

q (Ω), we get that∣∣ap (x0, r12i )− ap (x0, r22i )∣∣q ≤ ∣∣∣Dp
[
Pk
(
x, x0,

r1
2i

)
− Pk

(
x, x0,

r2
2i

)]
x=x0

∣∣∣q
≤

c1

( r1
2i
)n+|p|q

∫
Ω r1
2i
(x0)

∣∣Pk (x, x0, r12i )− Pk (x, x0, r22i )∣∣q dx
≤

c12
q

( r12i )
n+|p|q

{ ∫
Ω r1
2i
(x0)

∣∣Pk (x, x0, r12i )− u(x)∣∣q dx+ ∫
Ω r2
2i
(x0)

∣∣u(x)− Pk (x, x0, r22i )∣∣q dx}

≤
c12

q

( r12i )
n+|p|q

{
[u]′

q
ω
(r1
2i

)q (r1
2i

)kq+n
+ [u]′

q
ω
(r2
2i

)q (r2
2i

)kq+n}
≤
c12

q+1[u]′q

( r12i )
n+|p|q

ω
(r2
2i

)(r2
2i

)kq+n
= c12

q+1[u]′
q
ω
(r2
2i

) rkq+n2

r
|p|q+n
1

2iq(|p|−k) → 0 as i→∞ (even if |p| = k).

Thus, {ap(x0,
r
2i )} converges independent of our choice of r ∈ [0, d(Ω)] and ∀x0 ∈

Ω, 0 < r ≤ d(Ω), |p| ≤ l ≤ k, lim
i→∞

ap(x0,
r
2i
) = vp(x0). Furthermore, from (5) in

Lemma 1.4 we have∣∣∣ap(x0, r)− ap (x0, r
2i

)∣∣∣ ≤ c3 [u]′ rk−|p| i−1∑
h=0

ω
( r
2h

)
.

Letting i→∞, we get

|ap(x0, r)− vp(x0)| ≤ c3 [u]
′ rk−|p|

∞∑
h=0

ω
( r
2h

)
≤ c5 [u]

′ rk−|p|ω1(r). � (8)

Theorem 1.6. If Ω has property (I) and u ∈Mk,ω
q (Ω), where ω(t) is a Dini mod-

ulus of continuity, then the functions vp(x) with |p| = k have modulus of continuity

ω1(t) in Ω and ∀x, y ∈ Ω, we have, with ω1(t) =
∫ t
0
ω(r)
r
dr

|vp(x)− vp(y)| ≤ c6 [u]
′ω1(|x− y|), (9)

for some constant c6 = c6(k, q, n,A).

Proof. Fix an n-tuple of nonnegative integers p = (p1, ..., pn) with |p| = k and let

x, y ∈ Ω. Since Ω is connected, we may assume that r = |x− y| ≤ d(Ω)
2 . By Lemma

1.5 (with 2r in place of r), Lemma 1.3 and the fact that ω1(mr) ≤ mω1(r)∀m ∈ N,
we have

|vp(x)− vp(y)| ≤ |vp(x)− ap(x, 2r)|+ |ap(x, 2r)− ap(y, 2r)|+ |ap(y, 2r)− vp(y)|

≤ c5[u]
′ ω1(2r) + c

1/q
2 [u]

′ ω(r) + c5[u]
′ω1(2r)

≤ c6[u]
′ω1(|x− y|). �
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Theorem 1.7. If Ω has property (I) and u ∈ Mk,ω
q (Ω), where ω(t) is a Dini

modulus of continuity, then the functions vp(x) with |p| ≤ k − 1 have first order
partial derivatives in Ω and ∀x ∈ Ω, we have

∂vp(x)

∂xi
= v(p+ei)(x) (i = 1, 2, ..., n). (10)

Proof. By Theorem 1.6, the vp(x) with |p| = k are continuous in Ω. Our theorem
will be proved by induction under the additional assumption that the v(p+δei)(x)

are continuous in Ω for δ = 1, 2, ..., k−|p|. So let |p| ≤ k− 1, 1 ≤ i ≤ n, x0 ∈ Ω and
choose r so small that B|r|(x0) ⊂ Ω. We have

ap(x0 + eir, 2|r|)− ap(x0, 2|r|)

r
=
Dp[Pk(x, x0 + eir, 2|r|) − Pk(x, x0, 2|r|)]x=x0

r

−

k−|p|∑
δ=1

(−1)δ

δ!
rδ−1a(p+δei)(x0 + eir, 2|r|).

(11)
First, since k − |p| − 1 ≥ 0, applying Lemma 1.1, we see that∣∣∣∣Dp[Pk(x, x0 + eir, 2|r|) − Pk(x, x0, 2|r|)]x=x0

r

∣∣∣∣q
≤

c1

(2|r|)n+|p|q

∫
Ω|r|(x0)

|Pk(x, x0 + eir, 2|r|) − Pk(x, x0, 2|r|)|
q dx

≤
c1

(2|r|)n+|p|q
22q+1+kq+n |r|kq+n[u]′

q
ω(|r|)

= c[u]′
q
ω(|r|) |r|q(k−|p|) → 0 as r → 0.

Second, ∀δ with 1 ≤ δ ≤ k − |p|, by (8) we have

|a(p+δei)(x0 + eir, 2|r|) − v(p+δei)(x0)|

≤ |a(p+δei)(x0 + eir, 2|r|) − v(p+δei)(x0 + eir)|+ |v(p+δei)(x0 + eir)− v(p+δei)(x0)|

≤ c5[u]
′(2|r|)k−|p|ω1(2|r|) + |v(p+δei)(x0 + eir)− v(p+δei)(x0)|

But since the v(p+δei)(x) are continuous for δ = 1, 2, . . . , k − |p|, we immediately
get

lim
r→0

a(p+δei)(x0 + eir, 2|r|) = v(p+δei)(x0) δ = 1, 2, ..., k − |p|.

Hence by (11), we get (uniformly with respect to x0)

lim
r→0

ap(x0 + eir, 2|r|) − ap(x0, 2|r|)

r

(
= lim
r→0

a(p+ei)(x0 + eir, 2|r|)

)
= v(p+ei)(x0).

It remains only to verify that

lim
r→0

vp(x0 + eir)− vp(x0)

r
= lim
r→0

ap(x0 + eir, 2|r|) − ap(x0, 2|r|)

r
.
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Recalling that |p| ≤ k − 1, we write

vp(x0 + eir)− vp(x0)

r
=
vp(x0 + eir)− ap(x0 + eir, 2|r|)

r

+
ap(x0 + eir, 2|r|) − ap(x0, 2|r|)

r
+
ap(x0, 2|r|)− vp(x0)

r

But by the first inequality in (8), we see that the first and third summands → 0 as
r→ 0, proving the theorem. �

Theorem 1.8. If Ω has property (I) and u ∈ Mk,ω
q (Ω), where ω(t) is a Dini

modulus of continuity, then the function v(0)(x) ∈ C
k,ω1(Ω) and ∀x ∈ Ω, |p| ≤ k,

Dpv(0)(x) = vp(x).

Proof. Immediate corollary of Theorems 1.7 and 1.8.

Main Theorem. If Ω has property (I) and u ∈ Mk,ω
q (Ω), where ω(t) is a Dini

modulus of continuity, then u ∈ Ck,ω1(Ω)

[u]k,ω1;Ω ≤ c6[u]
′
q,k,ω;Ω.

Proof. Recall that if u ∈ Lq(Ω), then by Lebesque’s theorem, for almost every
x0 ∈ Ω we have

lim
r→0

1

|Ωr(x0)|

∫
Ωr(x0)

|u(x)− u(x0)|
q dx = 0. (12)

So choose x0 ∈ Ω for which (12) holds. For almost every x ∈ Ω, we have

|a(0)(x0, r)− u(x0)|
q

≤ c6(q)
{
|a(0)(x0, r)− Pk(x, x0, r)|

q + |Pk(x, x0, r)− u(x)|
q + |u(x)− u(x0)|

q
}

and hence integrating over Ωr(x0) gives

|a(0)(x0, r)− u(x0)|
q ≤

c6
|Ωr(x0)|

∫
Ωr(x0)

|a(0)(x0, r)− Pk(x, x0, r)|
q dx

+
c6

|Ωr(x0)|

∫
Ωr(x0)

|Pk(x, x0, r)− u(x)|
q
dx+

c6
|Ωr(x0)|

∫
Ωr(x0)

|u(x) − u(x0)|
q dx

= I1 + I2 + I3.

By Lebesque’s theorem, I3 → 0 as r → 0. Since Ω satisfies property (I), as r→ 0

I2 ≤
c6
Arn

∫
Ωr(x0)

|Pk(x, x0, r)− u(x)|
q
dx ≤

c6 r
kq+n

Arn
ω(r)q[u]′

q
→ 0 as r → 0.
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Finally, for some constant c7 = c7(A,n, q, k), we have

I1 ≤
c6
Arn

∫
Ωr(x0)

|a(0)(x0, r)− Pk(x, x0, r)|
q dx

≤c7
∑

1≤|p|≤k

|ap(x0, r)|
qr|p|q → 0 as r → 0.

Thus, |a(0)(x0, r)− u(x0)|
q → 0 as r → 0 and so, for almost every x0 ∈ Ω

lim
r→0

a(0)(x0, r) = u(x0).

But then by (7) we have u(x0) = lim
r→0

a(0)(x0, r) = v(0)(x0) ∈ Ck,ω1(Ω). Since

x0 ∈ Ω was arbitrary, u ≡ v(0) and thus ∀x, y ∈ Ω, |p| = k, Theorems 1.6 and 1.8
give, with c6 = c6(k, q, n,A)

|Dpu(x)−Dpu(y)| = |Dpv(0)(x)−D
pv(0)(y)| = |vp(x)− vp(y)| ≤ c6[u]

′ω1(|x− y|).

That is,
[u]k,ω1;Ω ≤ c6[u]

′
q,k,ω;Ω ,

which proves our Main Theorem for the case 1 ≤ q <∞. �
Remark. For the case q =∞, the proof is the same (yet easier), and the space

Mk,ω
∞ (Ω) =

{
u ∈ L∞(Ω) : [u]′∞,k,ω;Ω < +∞

}
is defined by way of the finite seminorm

[u]′∞,k,ω;Ω = sup
x0∈Ω

0<r≤d(Ω)

1

rkω(r)
inf
p∈Pk

‖u− p‖L∞(Ωr(x0)).

When Ω is convex, it follows by Taylor’s formula that Ck,ω(Ω) ⊂ Mk,ω
q (Ω), and

hence when Ω is convex and satisfies property (I), by our main theorem, we have
the inclusion Ck,ω(Ω) ⊂Mk,ω

q (Ω) ⊂ C
k,ω1(Ω). In our applications, we will use only

the case q =∞.

Remark. The inclusion Mk,ω
∞ ⊂ Ck,ω1 is sharp in the sense that ω1 cannot be

replaced by a smaller modulus of continuity. In particular (since ω(t) ≤ 2ω1(t)),
Mk,ω
∞ 6' Ck,ω. The following example demonstrates this, as well as provides an

example of u ∈Mk,ω
∞ where u /∈ Ck,α∀α > 0.

Example. Let k = n = 1, q =∞. Consider the function

u(x) = x

(
ln
1

|x|

)−1
, x ∈ Ω = B1/2(0).

Note that

u′(x) =

(
ln
1

|x|

)−1
+

(
ln
1

|x|

)−2
,



10 Jay Kovats EJDE–1999/37

and hence u′(x) has modulus of continuity ∼
(
ln 1

t

)−1
, while u ∈ M1,ω

∞ (B1/2(0))

for ω(t) =
(
ln 1

t

)−2
. But

ω1(t) =

∫ t

0

(
ln 1

r

)−2
r

dr =

(
ln
1

t

)−1
.

That is, Du = u′ has modulus of continuity ∼ ω1(t), hence our inclusion above is
sharp. To verify that u ∈ M1,ω

∞ , i.e. that [u]
′
∞,1,ω < +∞, fix x ∈ Ω = B1/2(0)

and take r > 0. For any y ∈ Br(x), set p(y) = T1,xu(y) ∈ P1. Of course, u′′(x) ≤

3
(
ln 1|x|

)−2
/|x|, for all x ∈ Ω. Now if |x| ≥ 2r, by Taylor’s Theorem, for some

z ∈ (y, x), we have

|u(y) − p(y)| =|
u′′(z)

2
(y − x)2| ≤

3
(
ln 1|z|

)−2
|y − x|2

2|z|

≤
3
(
ln 1

r

)−2
r2

2r
=
3r
(
ln 1

r

)−2
2

=
3

2
rω(r).

On the other hand, if |x| < 2r, choose p(y) = y
(
ln 1

r

)−1
∈ P1. Without loss of

generality, since u is an odd function, we may consider x > 0. By the Mean Value
Theorem, we have, for some z ∈ (y, r)

sup
y∈Br(x)

|u(y)− p(y)| ≤ sup
y∈B3r(0)

|u(y)− p(y)| = sup
|y|≤3r

∣∣∣∣y (ln 1|y|)−1 − y (ln 1|r|)−1∣∣∣∣
≤ sup
|y|≤3r

|y|

∣∣∣∣ (ln 1
|z|)

−2

|z| (y − r)

∣∣∣∣
≤ 3r

(
ln
1

r

)−2
= 3rω(r),

hence [u]′∞,1,ω ≤ 3, since x ∈ B1/2, r > 0 were arbitrary. Thus u ∈ M
1,ω
∞ (B1/2).

Note however that u /∈ C1,ω(B1/2), since

sup
x6=y∈B1/2(0)

|u′(x)− u′(y)|

ω(|x− y|)
≥ sup
x6=0∈B1/2(0)

|u′(x)|

ω(|x|)

= sup
x6=0∈B1/2(0)

(ln 1
|x| )

−1
+(ln 1

|x|)
−2

(ln 1
|x| )

−2 = +∞ .

Thus, [u]′∞,1,ω < +∞, while [u]1,ω = +∞ and so in general, even if ω(t) is a Dini
modulus of continuity, the seminorms [u]′q,k,ω;Ω and [u]k,ω;Ω are not equivalent.

Moreover, u /∈ C1,α(B1/2(0)) for any α > 0. Since u
′(0) = 0, we have

sup
x6=y∈B1/2(0)

|u′(x)− u′(y)|

|x− y|α
≥ sup
x6=0∈B1/2(0)

|u′(x)|

|x|α

= sup
x6=0∈B1/2(0)

(ln 1
|x| )

−1
+(ln 1

|x|)
−2

|x|α = +∞ .
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2. Interior regularity for ∆u = f

In this section, we give an application of the inclusion M2,ω
∞ (B) ⊂ C2,ω1(B) in

the simplest setting. We use this inclusion to obtain estimates on the modulus of
continuity of second derivatives of classical solutions of Poisson’s equation ∆u = f
in B, where f is Dini continuous in B, i.e. f ∈ C0,ω(B). Using potential theory,
various authors (see [ME], [B], [HW]) have shown that if u ∈ C2(B2(x0)) satisfies
∆u = f in B2(x0), then for all 0 < r < 1, we have

sup
|x−y|≤r

|D2u(x)−D2u(y)| ≤ C
{∫ r

0

ω(t)

t
dt+ r

∫ c

r

ω(t)

t2
dt
}
, (13)

where C depends only on n, ω, |u|0;B1 and |f |0,ω;B1 and c is independent of r. Of
course, when f ∈ Cα(B2), i.e. ω(t) ∼ tα, 0 < α < 1, the right hand side of (13)
is ≤ Crα. But for general Dini moduli of continuity, neither of the summands
in the right hand side of (13) can be omitted, as simple examples show. The
usual way of obtaining this estimate is by a lengthy examination of the Newtonian
potential of f . By using the Dini-Campanato inclusion, we can obtain this estimate
in a simpler way. Specifically, we will show that if u ∈ C2(B1(0)) satisfies ∆u =
f ∈ C0,ω(B1(0)), then u ∈ M2,ϕ

∞ (B1/2(0)) ⊂ C2,ϕ1(B1/2(0)), for an appropriate
Dini modulus of continuity ϕ, where ϕ1 will be the right hand side of (13). It
suffices to show ∃δ = δ(n, ω) > 0, such that if |u|0;B1 ≤ 1 and |f |0,ω ≤ δ, then
u ∈ M2,ϕ

∞ (B1/2(0). The estimate (2.0) will follow by rescaling. For our solution u,
consider the function

ũ(x) =
u(x)

|u|0;B1 + δ
−1|f |ω;B1

:=
u(x)

K
, if K ≥ 1

(Otherwise, consider ũ = u.) Note that ũ satisfies |ũ|0;B1 ≤ 1 and ∆ũ =
f
K
:= f̃

in B1, where f̃ is Dini continuous in B1 and |f̃ |ω;B1 ≤
|f |ω;B1
K

≤ δ. That u ∈
M2,ϕ
∞ (B1/2(0) follows from the following lemma.

Lemma 2.1. Take any x0 ∈ B1/2(0). There exists 0 < µ < 1 depending only on
n, ω and a sequence of paraboloids

Pk(x) = Pk,x0(x) = ak + bk · (x− x0) +
(x− x0)tCk(x− x0)

2

such that ∀k ∈ N+

tr(Ck) = 0

|u− Pk|0;B
µk
(x0)
≤ µ2kϕ(µk),

where P0 ≡ 0 and ϕ(t) = t

∫ c

t

ω(r)

r2
dr, t ∈ (0, c/2].

Proof. In the upper limit of the integral defining ϕ, we usually take c ≤ 1, depending

on the domain of definition of ω. (e.g. if ω(t) = tα
(
ln 1

t

)β
, α ∈ (0, 1), we can take

c = 1.) Note since ω is nondecreasing, by the definition of ϕ(t), we always have

ω(t) ≤

(
c

c− t

)
ϕ(t) ≤ 2ϕ(t).
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We may assume x0 = 0 and f(0) = 0. First choose µ so small, depending on ω, so
that

N181µce ≤
1

2
, µ ≤

7

16
, ω(µ) ≤

1

2

and then choose δ = µ3

4N2
, where ce,N1,N2 are constants depending only on n.

Observe that by considering ϕ(Kt) instead of ϕ(t) (and considering smaller values
of t) we may assume ϕ(1) ≥ 1 and hence the claim holds for k = 0, since P0 ≡
0, tr(0) = 0 and |u|0;B1(0) ≤ 1. Assume it holds for k = i. We now show it holds

for k = i+ 1. So for this fixed i, consider the function

v(x) =
(u− Pi)(µix)

µ2iϕ(µi)
x ∈ B1(0),

which, by inductive hypothesis, satisfies

∆v(x) =
∆u(µix)− tr(Ci)

ϕ(µi)
=
f(µix)

ϕ(µi)
:= fi(x) in B1(0), |v|0;B1(0) ≤ 1.

Let h ∈ C∞(B7/8(0)) be the solution to the Dirichlet problem

∆h = 0 in B7/8(0)

h = v on ∂B7/8(0)

with
[h]4,0;B 7

16
(0) ≤

(
16
7

)4
ce|v|0;∂B7/8(0) ≤ 81ce|v|0;B1(0) ≤ 81ce,

for some constant ce = ce(n). By Taylor’s formula, for

T2,0h(x) = h(0) +Dh(0)x +
1

2
xtD2h(0)x ∈ P2,

we have

|h− T2,0h|0;Bµ(0) ≤ N1(n)[h]4,0;Bµ(0)µ
4 ≤ N1[h]4,0;B 7

16
(0)µ

4 ≤ N181µ
4ce .

Since f(0) = 0, the classical a priori estimates yield, for some constant N2 = N2(n)

|v − h|0;B7/8(0) ≤|v − h|0;∂B7/8(0) +N2
(
7
8

)2
|∆v −∆h|0;B7/8(0)

≤N2|fi|0;B7/8(0) ≤ N2[f ]ω
ω(µi)

ϕ(µi)
≤ 2N2[f ]0,ω

Thus

|v − T2,0h|0;Bµ(0) ≤ |v − h|0;Bµ(0) + |h− T2,0h|0;Bµ(0) ≤ 2N2[f ]0,ω +N181µ
4ce.

So for x ∈ Bµi+1(0), set Pi+1(x) = Pi(x) + µ
2iϕ(µi)T2,0h

(
x
µi

)
∈ P2. Rescaling

back, plugging in the definition of v, recalling that µ, δ are small and that µϕ(µi) ≤
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ϕ(µi+1) we get, ∀x ∈ Bµi+1(0)

|u(x)− Pi+1(x)| =
∣∣∣u(x)− Pi(x)− µ2iϕ(µi)T2,0h( x

µi

)∣∣∣
= µ2iϕ(µi)

∣∣∣v ( x
µi

)
− T2,0h

(
x
µi

)∣∣∣
≤ µ2iϕ(µi)|v − T2,0h|0;Bµ(0)

≤ µ2iϕ(µi)
{
2N2[f ]ω +N181µ

4ce

}
= µ2(i+1)

{
2N2[f ]ω

ϕ(µi)

µ2
+N181ϕ(µ

i)µ2ce

}
≤ µ2(i+1)

{
2N2[f ]ω

ϕ(µi+1)

µ3
+N181ϕ(µ

i+1)µce

}
≤ µ2(i+1)ϕ(µi+1)

{2N2δ
µ3
+N181µce

}
≤ µ2(i+1)ϕ(µi+1),

and hence |u − Pi+1|0;Bµi+1(0) ≤ µ2(i+1)ϕ(µi+1). Moreover, by definition of Pi+1,

Ci+1 = Ci + ϕ(µ
i)D2h(0) from which it follows

tr(Ci+1) = tr(Ci) + ϕ(µ
i)∆h(0) = 0,

which completes the proof of Lemma 2.1. �
By Lemma 2.1, we know that ∀x0 ∈ B1/2(0),∃ 0 < µ < 1 (depending only on

n, ω) and a sequence {Pk} = {Pk,x0} ⊂ P2 such that

|u− Pk|0;B
µk
(x0)
≤ µ2kϕ(µk) ∀k ≥ 0.

So, ∀ 0 < r ≤ 1, choose k ≥ 0 so large that µk+1 < r ≤ µk. Since {Pk} ⊂ P2, we
immediately get

inf
p∈P2

|u− p|0;Br(x0) ≤ infp∈P2
|u− p|0;B

µk
(x0)

≤ |u− Pk|0;B
µk
(x0)
≤ µ2kϕ(µk) = µ2(k+1)

µ2
ϕ
(
µk+1

µ

)
≤
1

µ3
r2ϕ(r) = C1r

2ϕ(r).

Since 0 < r ≤ 1 = d(B1/2(0)) and x0 ∈ B1/2(0), are arbitrary, we have with q =∞

[u]′2,ϕ;B1/2(0) = sup
0<r≤d(B1/2(0))
x0∈B1/2(0)

1

r2ϕ(r)
inf
p∈P2

|u− p|0;Br(x0)∩B1/2(0) ≤ C1.

That is, u ∈ M2,ϕ
∞ (B1/2(0)). Since ϕ is a Dini modulus of continuity (since ω is),

by our Dini-Campanato inclusion, we have u ∈ C2,ϕ1(B1/2(0)) and

[u]2,ϕ1;B1/2(0) ≤ N [u]
′
2,ϕ;B1/2(0)

≤ C2.
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But by definition of ϕ(t) and Fubini’s theorem, we have

ϕ1(t) =

∫ t

0

ϕ(r)

r
dr =

∫ t

0

∫ c

r

ω(ρ)

ρ2
dρ dr

=

∫ t

0

∫ ρ

0

ω(ρ)

ρ2
dr dρ+

∫ c

t

∫ t

0

ω(ρ)

ρ2
dr dρ

=

∫ t

0

ω(ρ)

ρ
dρ+ t

∫ c

t

ω(ρ)

ρ2
dρ.

3. Interior Regularity for F (D2u, x) = f(x)

In this chapter, we use the inclusionM2,ω
∞ (B) ⊂ C

2,ω1(B) to estimate the mod-
ulus of continuity of second derivatives D2u of solutions of fully nonlinear elliptic
equations F (D2u, x) = f(x) in B = B1(0). Here, we assume that f is Dini con-
tinuous in B1, in the weaker L

n (as opposed to L∞) sense with Dini modulus of
continuity ω(t). That is, we assume that ∀x0 ∈ B1(0){

1

|Br(x0)|

∫
Br(x0)

|f(x)− f(x0)|
n
dx

}1/n
≤ Cω(r), ∀r < 1.

We further assume that ω(t) satisfies the following property

lim
µ→0+

sup
0≤t≤ 12

µαϕ(t)

ϕ(tµ)
= 0, where ϕ(t) := tα + ω(t), (14)

where α = α(n, λ,Λ) ∈ (0, 1) is the Hölder exponent given in the Evans-Krylov
theorem. This restriction was not required in the linear case, since there, we had
solvability of the constant coefficient Dirichlet problem with any order of smooth-
ness. In the fully nonlinear setting however, we have solvability of the constant
coefficient Dirichlet problem with order of smoothness only 2 + α.

Remark. As strong a condition as (14) appears, it is satisfied by ω(t) = tα
(
ln 1

t

)β
,

0 < α < α, β ∈ R. This enables us to generalize the known result for Hölder

continuous f , i.e. f ∈ C0,α(B), 0 < α < α. Indeed, for ω(t) = tα
(
ln 1

t

)β
, 0 <

α < α, integration by parts gives that
∫ t
0

rα(ln 1r )
β

r
dr ≤ Ctα

(
ln 1

t

)β
and hence by

Theorem 3.1 below, D2u has modulus of continuity ≤ Cψ(t), where

ψ(t) = tα +

∫ t

0

rα
(
ln 1

r

)β
r

dr ≤ tα + Ctα
(
ln
1

t

)β
≤ C1t

α

(
ln
1

t

)β
.

Taking β = 0, we recover the well-known result for f ∈ C0,α(B), 0 < α < α.
Note that ψ(t) is a Dini modulus of continuity. This is not always the case, as our
Example 3.1 shows.

More importantly, (14) holds for ω(t) =
(
ln 1

t

)β
, β < −1. The significance of this

class of moduli of continuity satisfying (14) is that it permits us to consider f whose
Ln averages are Dini continuous, yet not in C0,α(B) for any α > 0. (See Example 3.1
below.) Property (14) fails for Dini moduli of continuity which are “nice” compared
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to tα. Indeed (14) implies that lim
t→0+

tα

ω(t) = 0, which generalizes the 0 < α < α

condition. Hence (14) fails for ω(t) = tα, ω(t) = t
(
ln 1

t

)β
, β ≥ 0 and most notably

for ω ≡ 0. But if ω ≡ 0, then f is constant and by the Evans-Krylov theorem,

D2u ∈ C0,α. Furthermore, for sufficiently small t > 0, t
(
ln 1

t

)β
≤ tα,∀α ∈ (0, 1).

Hence any f whose Ln averages are ∼ t
(
ln 1

t

)β
, β ≥ 0 will automatically have

Ln averages belonging to C0,α(B),∀α ∈ (0, α) and hence by Safonov’s result (see
[S1]), D2u ∈ C0,αloc (B). We cannot conclude however, that if ω(t) fails (14) then
ω(t) ≤ Ctα, since for example, ω(t) = tα ln 1

t
, has limit 1 in (14). Even in this case,

the regularity of second derivatives is covered by known results, since for sufficiently
small t > 0, tα ln 1

t
≤ tα ∀α ∈ (0, α). Thus, property (14) enables us to generalize

well-known regularity results for Hölder continuous f (subject to the restriction
0 < α < α) and extend these results to a large class of functions whose Ln averages
are Dini, yet non-Hölder continuous.

Example 3.1. Consider the uniformly elliptic, concave equation

F (D2u, x) = f(x) :=

(
ln
1

|x|

)−2
in B = B1/2(0).

Taking x0 = 0 (since f(0) = 0), the inequalities

C(n)

(
ln
1

r

)−2
≤
{ n
rn

∫ r

0

ρn−1
(
ln
1

ρ

)−2n
dρ
}1/n

=
{ ∫
Br(0)

�

(
ln
1

|x|

)−2n
dx
}1/n

≤

(
ln
1

r

)−2

show that f is not Hölder continuous at x0 = 0 in the L
n sense for any α ∈ (0, 1).

Here,
∫
� denotes average. Yet clearly, f is Dini continuous in B in the Ln sense,

since for x0 ∈ B, by the subadditivity of the function
(
ln 1

t

)−2
for t > 0 small, we

have

{ ∫
Br(x0)

�

∣∣∣∣∣
(
ln
1

|x|

)−2
−

(
ln
1

|x0|

)−2∣∣∣∣∣
n

dx
}1/n

≤
{ ∫
Br(x0)

�

(
ln

1

|x− x0|

)−2n
dx
}1/n

≤

(
ln
1

r

)−2
and ω(r) =

(
ln 1

r

)−2
is a Dini modulus of continuity which satisfies (14). Hence by

our Theorem 3.1 below, locally, D2u has modulus of continuity ≤ Cψ(t), where for
sufficiently small t > 0

ψ(t) = tα +

∫ t

0

(
ln 1

r

)−2
r

dr = tα +

(
ln
1

t

)−1
≤ C1

(
ln
1

t

)−1
.

Observe that ψ(t) is not a Dini modulus of continuity.
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Now consider the function

β̃(x, x0) = β̃F (x, x0) = sup
M∈S

|F (M,x) − F (M,x0)|

‖M‖+ 1
,

which measures the oscillation of F in x near the point x = x0 ∈ B. For our Theo-
rem 3.1, we must impose some sort of continuity restriction on β̃(·, x0), since even
in the linear case Lu = tr

[
A(x)D2u

]
= aij(x)Diju = f(x) (for Hölder continuity)

we require that f and aij belong to C
0,α. Hence we require that both f and all

β̃(·, x0) belong to C0,ω(B) in the Ln sense. The following is a generalization of
the argument used by Caffarelli in [C1],[CC] to prove pointwise C2,α estimates for
viscosity solutions of F (D2u, x) = f(x).

Theorem 3.1. Let F be concave, uniformly elliptic (with ellipticity constants λ
and Λ), F and f are continuous in x. Suppose that f , as well as all the oscillations
of F in x, belong to C0,ω(B1) in the L

n sense, where ω(t) is a Dini modulus of
continuity satisfying property (14). If u ∈ C2(B1) is a solution of F (D2u, x) = f(x)
in B1(0), then u ∈ C2,ψ(B1/2(0)), where for 0 ≤ t ≤ 1/2

ψ(t) = tα +

∫ t

0

ω(r)

r
dr,

where α = α(n, λ,Λ) ∈ (0, 1) is the Hölder exponent given in the Evans-Krylov
theorem.

Proof.. Since ω(t) is a Dini modulus of continuity, assume for definiteness that∫ 1
0
ω(r)
r
dr < +∞. Following routine normalizations (see [CC] p.75), we may assume

|u|0;B1 ≤ 1. It suffices to prove ∃δ > 0 (small enough) depending only on n, λ,Λ, ω

such that if u ∈ C2(B1) is a solution of F (D2u, x) = f(x) in B1 = B1(0) and if
∀x0 ∈ B1/2(0){ ∫

Br(x0)

�β̃(x, x0)
n dx

}1/n
≤ δω(r),

{ ∫
Br(x0)

�|f(x)− f(x0)|
n dx

}1/n
≤ δω(r) ∀r ≤ 1,

then u ∈ C2,ψ(B1/2(0)). It suffices to prove the following lemma.

Lemma 3.2. Take any x0 ∈ B1/2(0). There exists 0 < µ < 1 depending only on
n, λ,Λ, ω and a sequence of polynomials

Pk(x) = ak + bk · (x− x0) +
1

2
(x− x0)

tCk(x− x0)

such that F (Ck, x0) = 0 for all k ≥ 0, |u− Pk|0;B
µk
(x0)
≤ µ2kϕ(µk) for all k ≥ 0

and

|ak − ak−1|+ µ
k−1|bk − bk−1|+ µ

2(k−1)‖Ck − Ck−1‖ ≤ 13ceµ
2(k−1)ϕ(µk−1),

where P0 ≡ P−1 ≡ 0, ce is a universal constant and ϕ(t) = tα + ω(t).

Proof. As before, we assume that x0 = 0 and that F (0, 0) = 0 = f(0). First choose
µ small enough (depending only on n, ω, λ,Λ) such that (14) holds and ω(µ) ≤ 1/2,
µ ≤ 7/16. Then choose δ such that

2N1ω
1/n
n δ(52ceϕ1(1) + 1)(9ce + 2) ≤ ceµ

2+α,
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where ce = ce(n, λ,Λ) is the constant in the Evans-Krylov theorem, N1 = N1(n, λ,Λ)
is from the Alexandrov estimates and ωn is the volume of the unit ball. Note that δ
depends only on n, λ,Λ, ω. The claim holds for k = 0 since P0 ≡ P−1 ≡ 0, F (0, 0) =
0 and |u|0;B1(0) ≤ 1. Assume it holds for k = i. We now show it holds for k = i+1.
So for this fixed i, consider the function

v(x) =
(u− Pi)(µix)

µ2iϕ(µi)
x ∈ B1(0),

which satisfies F
(
ϕ(µi)D2v(x) + Ci, µ

ix
)
= f(µix) and hence Fi(D

2v, x) = fi(x)
in B1(0), where

Fi(M,x) =
F (ϕ(µi)M +Ci, µ

ix)− F (Ci, µix)

ϕ(µi)
, fi(x) =

f(µix)− F (Ci, µix)

ϕ(µi)
.

Now Fi(M,x) is concave in M and has ellipticity constants λ,Λ (since F does),

and Fi(0, x) = 0. By the Evans-Krylov theorem, ∃h ∈ C
2,α
loc (B7/8(0)) solving

Fi(D
2h, 0) = 0 in B7/8(0)

h = v on ∂B7/8(0)

and
‖h‖∗C2,α(B7/16(0)) ≤ ce|v|0;∂B7/8(0) ≤ ce|v|0;B1(0) ≤ ce

where ce = ce(n, λ,Λ). By Taylor’s formula, for

T2,0h(x) = h(0) +Dh(0)x+
1

2
xtD2h(0)x ∈ P2,

we have
|h− T2,0h|0;Bµ(0) ≤[h]2,α;Bµ(0)µ

2+α ≤ [h]2,α;B 7
16
(0)
µ2+α

≤
(
16
7

)2+α
ceµ

2+α ≤ ce27µ2+α.

By the classical Alexandrov estimates, we have, for some constant N1 = N1(n, λ,Λ)

|v − h|0;B7/8(0) ≤ |v − h|0;∂B7/8(0) +N1‖Fi(D
2h, ·) − Fi(D

2v, ·)‖Ln(B7/8)

= N1‖Fi(D
2h, ·)− fi‖Ln(B7/8)

≤ N1

{
‖Fi(D

2h, ·)− Fi(D
2h, 0)‖Ln(B7/8) + ‖fi‖Ln(B7/8)

}
≤ N1

{
‖β̃Fi(·, 0)‖Ln(B1)(9ce + 1) + ‖fi‖Ln(B1)

}
We need to estimate both ‖β̃Fi (·, 0)‖Ln(B1) and ‖fi‖Ln(B1). For x ∈ B1(0),

β̃Fi(x, 0) = sup
M∈S

|Fi(M,x) − Fi(M, 0)|

‖M‖+ 1

= sup
M∈S

∣∣∣∣∣
[
F (ϕ(µi)M + Ci, µ

ix)− F (ϕ(µi)M + Ci, 0)
]
−
[
F (Ci, µ

ix)− F (Ci, 0)
]

ϕ(µi)(‖M‖+ 1)

∣∣∣∣∣
≤ sup
M∈S

(
‖ϕ(µi)M + Ci‖+ 1 + ‖Ci‖+ 1

‖M‖ + 1

)
β̃(µix, 0)

ϕ(µi)

≤ sup
M∈S

(
ϕ(µi)‖M‖+ 2(‖Ci‖+ 1)

‖M‖+ 1

)
β̃(µix, 0)

ϕ(µi)
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Since ω (hence ϕ) is a Dini modulus of continuity, the integral test yields

‖Ci‖ ≤
i∑

k=1

‖Ck − Ck−1‖ ≤ 13ce

∞∑
k=1

ϕ(µk−1)

≤13ce

(
ϕ(1) + ln

(
1
µ

)−1 ∫ 1
0

ϕ(r)

r
dr

)
≤ 52ceϕ1(1).

Hence for x ∈ B1(0)

β̃Fi(x, 0) ≤ sup
M∈S

(
ϕ(µi)‖M‖ + 2

(
52ceϕ1(1) + 1

)
‖M‖+ 1

)
β̃(µix, 0)

ϕ(µi)

≤2 (52ceϕ1(1) + 1)
β̃(µix, 0)

ϕ(µi)
,

and thus since ω ≤ ϕ and the Ln average of β̃(·, 0) is small, we get

‖β̃Fi(·, 0)‖Ln(B1) ≤2 (52ceϕ1(1) + 1)
‖β̃(µi·, 0)‖Ln(B1)

ϕ(µi)

≤2 (52ceϕ1(1) + 1)
ω
1/n
n δω(µi)

ϕ(µi)
≤ 2ω1/nn δ (52ceϕ1(1) + 1) .

Similarly, for x ∈ B1(0)

|fi(x)| =
|f(µix)− F (Ci, µix)|

ϕ(µi)
≤
|f(µix)|+ |F (Ci, 0) − F (Ci, µix)|

ϕ(µi)

≤
|f(µix)|+ β̃(µix, 0)(‖Ci‖+ 1)

ϕ(µi)

≤
|f(µix)|+ β̃(µix, 0) (52ceϕ1(1) + 1)

ϕ(µi)
,

which implies, since the Ln average of f is small

‖fi‖Ln(B1) ≤
‖f(µi·)‖Ln(B1) + ‖β̃(µ

i·, 0)‖Ln(B1) (52ceϕ1(1) + 1)

ϕ(µi)

≤
ω
1/n
n δω(µi) + ω

1/n
n δω(µi) · (52ceϕ1(1) + 1)

ϕ(µi)

≤ 2ω1/nn δ (52ceϕ1(1) + 1) .

Returning to our a priori estimates and recalling that δ is small, we get

|v − h|0;B7/8 ≤ N1

{
‖β̃Fi(·, 0)‖Ln(B1)(9ce + 1) + ‖fi‖Ln(B1)

}
≤ N1

{
2δω1/nn (52ceϕ1(1) + 1) (9ce + 1) + 2δω

1/n
n (52ceϕ1(1) + 1)

}
≤ N12δω

1/n
n (52ceϕ1(1) + 1) (9ce + 2)

≤ ceµ
2+α,



EJDE–1999/37 Dini-Campanato spaces 19

and hence, since µ ≤ 7
16
, we have

|v − T2,0h|0;Bµ(0) ≤ |v − h|0;Bµ(0) + |h− T2,0h|0;Bµ(0) ≤ 28ceµ
2+α.

Now, for x ∈ Bµi+1(0), set Pi+1(x) = Pi(x) + µ
2iϕ(µi)T2,0h

(
x
µi

)
∈ P2. Rescaling

back, plugging in the definition of v and recalling that ω(t) satisfies (14), we get

|u(x)− Pi+1(x)| =
∣∣∣u(x)− Pi(x)− µ2iϕ(µi)T2,0h( x

µi

) ∣∣∣
= µ2iϕ(µi)

∣∣∣v ( x
µi

)
− T2,0h

(
x
µi

) ∣∣∣
≤ µ2iϕ(µi)28ceµ

2+α

≤ µ2(i+1)ϕ(µi+1),

i.e. |u−Pi+1|0;Bµi+1 (0) ≤ µ
2(i+1)ϕ(µi+1), completing the induction step. Note that

Pi+1’s coefficients satisfy

Ci+1 = Ci+ϕ(µ
i)D2h(0), bi+1 = bi+µ

iϕ(µi)Dh(0), ai+1 = ai+µ
2iϕ(µi)h(0).

Hence F (Ci+1, 0) = F (ϕ(µi)D2h(0) + Ci, 0) = ϕ(µi)Fi(D
2h(0), 0) + F (Ci, 0) = 0.

Since ‖h‖∗C2,α(B 7
16
(0)) ≤ ce, we have

|ai+1 − ai|+ µ
i|bi+1 − bi|+ µ

2i‖Ci+1 − Ci‖

≤ µ2iϕ(µi)
(
|h(0)| + |Dh(0)| + ‖D2h(0)‖

)
≤ µ2iϕ(µi)

(
ce +

16

7
ce +

(
16

7

)2
ce

)
≤ 13ceµ

2iϕ(µi).

This completes the proof of Lemma 3.2. �
The above argument holds at any fixed x0 ∈ B1/2(0) since for concave F ,

the Evans-Krylov theorem guarantees the solvability of the Dirichlet problem for
F (D2h, x0) = 0, with universal constant ce. The same argument which follows
Lemma 2.1 now gives us that u ∈M2,ϕ

∞ (B1/2(0)) ⊂ C
2,ϕ1(B1/2(0)). But by defini-

tion of ϕ(t), we have

ϕ1(t) =

∫ t

0

ϕ(r)

r
dr =

∫ t

0

rα−1 dr +

∫ t

0

ω(r)

r
dr ∼ ψ(t),

which completes the proof of Theorem 3.1.
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[ME] M.I. Matĭichuk and S.D. Éidel’man, The Cauchy Problem for Parabolic Systems whose

Coefficients Have Slight Smoothness, Ukrainian Math. Journal 22 (1970), 18–30.
[S1] M.V. Safonov, On the Classical Solutions of Bellman’s Elliptic Equation, Soviet Math.

Doklady 30 (1984), 482–485.

[S2] , On the Classical Solutions of Nonlinear Elliptic Equations of Second Order, Math.

USSR Izv. 33 (1989), 597–612.

[Sp] S. Spanne, Some Function Spaces Defined Using the Mean Oscillation over Cubes, Ann.

Scuola Norm. Sup. Pisa (3) 19 (1965), 593–608.

[Tr] N. Trudinger, Lectures on Nonlinear Elliptic Equations of Second Order, Univ. Tokyo,

Tokyo, 1995, pp. 34–35.

[W] L. Wang, On the Regularity of Fully Nonlinear Parabolic Equations II, Comm. Pure and

Applied Math. 45 (1992), 141–178.

Jay Kovats

Department of Mathematical Sciences

Florida Institute of Technology

Melbourne, FL 32901, USA

E-mail address: jkovats@zach.fit.edu


