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BOUNDARY BEHAVIOR AND ESTIMATES FOR SOLUTIONS
OF EQUATIONS CONTAINING THE p-LAPLACIAN

Jacqueline Fleckinger, Evans M. Harrell II, & François de Thélin

Abstract

We use “Hardy-type” inequalities to derive Lq estimates for solutions of equations

containing the p-Laplacian with p > 1. We begin by deriving some inequalities using
elementary ideas from an early article [B3] which has been largely overlooked. Then

we derive Lq estimates of the boundary behavior of test functions of finite energy,

and consequently of principal (positive) eigenfunctions of functionals containing the p-
Laplacian. The estimates contain exponents known to be sharp when p = 2. These

lead to estimates of the effect of boundary perturbation on the fundamental eigenvalue.

Finally, we present global Lq estimates of solutions of the Cauchy problem for some
initial-value problems containing the p-Laplacian.

I. Introduction

Our interest in this article is to derive potentially sharp Lq estimates for solutions of
equations containing the p-Laplacian, in analogy with what is known for the usual
Laplacian (p = 2), and to explore the consequences of those estimates.

The p-Laplacian has applications in several fields, including glaciology, non-
Newtonian fluid flow, and flow through porous media. It has been intensively studied
in the mathematical literature both because of these applications and because it is a
model for understanding degenerate elliptic equations and non-convex functionals.
We refer to the recent book [D3] for discussion and further references. Here we
define the p-Laplacian in the weak sense, i.e., by considering the variational analysis
of energy forms

R(ζ) :=
‖∇ζ(x)‖p

Lp +
∫
V (x)|ζ(x)|pdNx

‖ζ(x)‖p
Lp

(1.1)

with ζ(x) ∈ C∞c (Ω), or by density W 1,p
0 , where Ω is a connected open set in RN ,

and V (x) is a given real-valued function. The nonlinear operator known as the
p-Laplacian arises in the first variation of (1.1), which leads to the equation

−∆pu+ V (x)up−1 = λup−1, (1.2)

where
∆pζ := ∇ ·

(
|∇ζ|p−2∇ζ

)
. (1.3)
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The behavior in the Lq sense of Dirichlet eigensolutions of elliptic linear oper-
ators (p = 2) near a boundary has been studied in [E2], [P1], [D2]. In particular
it was shown in [D2] that sharp rates of decay can be derived from inequalities of
“Hardy type”,

c2
∫

Ω

|∇ζ|2 ≥
∫

Ω

∣∣∣∣ ζ

d(x)

∣∣∣∣2, (1.4)

where d(x) denotes the distance from x to the boundary of the domain Ω. (Actually,
d(x) may be any absolutely continuous function satisfying |∇d| ≤ 1 on Ω).

We were inspired by the philosophy of these articles to seek analogous estimates
for the p-Laplacian. Lq versions of (1.4) are known, with sharp constants, which
would suffice for some of our purposes. We begin, however, by presenting a little–
known but elementary way to derive inequalities of this type, building on an idea of
Boggio [B3], which predates related inequalities by Barta [B1], Duffin [D4], Hardy
[H1], and others. This is the content of section II.

In section III we derive some estimates of boundary decay of principal eigenfunc-
tions of equations containing the p-Laplacian modeled on those of [D2] for elliptic
second–order linear operators. The argument there is based on the spectral theo-
rem, however, which is not available when p 6= 2, as the p-Laplacian is not even
linear then. It was thus necessary to substantially replace many of the technical
ideas of [D2], and in the course of this we were obliged to establish certain special
algebraic inequalities (see Section IV). The constants involved in these inequalities
determine the exponents appearing in the theorems, and we have striven to make
them as sharp as possible. In Section V we use the estimates of Sections III and IV
to estimate how the fundamental eigenvalue is affected by a boundary perturbation.

Finally, we turn our attention to the Cauchy problem for equations of the form

up−2ut = ∆pu− V (x)up−1,

and prove an Lq growth estimate for solutions.

In the interest of clarity we have restricted ourselves to Euclidean domains and
p-Laplacians without weights, and we have not attempted to specify the widest class
of potentials V (x) for which our estimates remain valid. We anticipate few if any
technical barriers in extending our results to manifolds or to V (x) in function classes
analogous to those treated in [S1].

Notation and terminology

A function or vector field is of class AC1 if all components are differentiable by the
Cartesian coordinates and the derivatives are absolutely continuous.

A distance function may be any absolutely continuous function d(x) satisfying
|∇d| ≤ 1 a.e. on Ω. We invariably choose d(x) as the distance from x to the
boundary of Ω.

The energy form is the functional R(ζ) defined in (1.1).

The Hardy constant is the positive number defined in (3.3), which extends (1.4) to
the case where p 6= 2.

The index p is a real number in (1,∞), and the dual index is p′ := p/(p− 1).
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The inradius of a domain Ω is the supremum of the radii of all balls included in Ω.

The p-Laplacian is the nonlinear operator defined in (1.3).

The principal eigenvalue which appears in (1.2) is

λ1 = inf
ζ∈W 1,p

0 (Ω),ζ 6≡0

∫
Ω

(|∇ζ|p + V (x)|ζ|p) dNx∫
Ω
|ζ|pdNx

. (1.5)

Under the conditions of this article, the minimum is attained in the classical Sobolev
space W 1,p

0 (Ω); the minimizer is known as the principal eigenfunction.

A regular domain is a connected open set the boundary of which satisfies a uniform
external ball condition (See [D1], p. 27). This condition is implied by the standard
uniform external cone condition.

A test function is a smooth function of compact support in the domain Ω, and the
set of these is denoted C∞c

II. Lower bounds to energy forms

In 1907, Boggio [B3] derived some lower bounds to the fundamental eigenvalue of
the two-dimensional Laplacian by applying the divergence theorem to a well chosen
expression containing two arbitrary differentiable functions. From the modern point
of view, his result can be interpreted as a quadratic-form inequality for the Dirichlet
energy form of a test function, which contains an arbitrary sufficiently smooth vector
field, good choices of which lead to useful lower bounds (see below).

In this section we discuss extensions of Boggio’s idea and connections with
inequalities of Hardy and Rellich. To a certain extent the significance of the section
is historical, as estimates we need for later sections can be found elsewhere in the
literature. In addition to correcting the historical record, however, Boggio’s idea is
significant because it an elementary and efficient way to obtain useful inequalities
of this type. (We have recently learned from E. Mitidieri, in response to a preprint
version of this article, that he also has a preprint [M2] emphasizing the efficiency of
deriving Hardy–type inequalities from the divergence theorem. Mitidieri’s treatment
is somewhat different from ours, and he was unaware of [B3].)

Our generalization of Boggio’s result to the situation of p–Laplacians is:

Theorem II.1. Let Ω be a regular domain and ζ ∈ C∞c (Ω). Let Q be a vector
field on Ω of class AC1. Then∫

Ω

|∇ζ|p ≥
∫

Ω

{
div Q− (p− 1)|Q|p

′}
|ζ|p dNx. (2.1)

Remarks: Boggio’s result corresponds to the case p = 2:∫
Ω

|∇ζ|2 ≥
∫

Ω

ζ2
(
div Q− |Q|2

)
d2x.

The basic estimates for inequalities of the Hardy type (see Section 5.3 of [D1]) result
from choices for Q such as

Q = −const.∇Ln(x1)
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where x1 is a Cartesian coordinate. We shall make similar choices below.

Proof:
0 =

∫
Ω

div (Q|ζ|p) =
∫

Ω

(div Q)|ζ|p + p

∫
Ω

|ζ|p−2ζ∇ζ ·Q.

With w = |ζ|p−2ζQ, Young’s inequality gives

|∇ζ ·w| ≤ 1
p
|∇ζ|p +

1
p′
|w|p

′
=

1
p
|∇ζ|p +

1
p′
|ζ|p|Q|p

′
,

so ∫
Ω

|∇ζ|p ≥
∫

Ω

(
div Q− p

p′
|Q|p

′
)
|ζ|p.

♦
Our first application of this theorem is to derive a Hardy-type inequality with the
known sharp constant [M1].

Corollary II.2. Let Ω ⊂ RN
+ = {x ∈ RN , x1 > 0}, ζ ∈ C∞c (Ω), p′ = p

p−1 . Then:∫
Ω

|ζ|p

xp
1

≤ (p′)p

∫
Ω

∣∣∣∣ ∂ζ∂x1

∣∣∣∣p .
Proof: We use the one-dimensional version of Theorem II.1, with Q = ( −α

xp−1
1

, 0, . . . , 0),

finding div Q = α(p−1)
xp
1

, and |Q|p′ = αp′

xp
1

. Then for all α > 0 we have:∫
Ω

∣∣∣∣ ∂ζ∂x1

∣∣∣∣p ≥ (p− 1)
∫

Ω

(α− αp′)
∣∣∣∣ ζx1

∣∣∣∣p.
Now, α− αp′ reaches its maximum for p′αp′−1 = 1, which gives α = 1

(p′)p−1 and

α− αp′ =
1

(p′)p−1

[
1−

[
1

(p′)p−1

]p′−1
]

=
1

(p′)p−1

(
1− 1

p′

)
=

1
(p′)p−1

× 1
p
.

Hence
∫
Ω
|∇ζ|p ≥ p−1

p × 1
(p′)p−1

∫
Ω

∣∣∣ ζ
x1

∣∣∣p, and we obtain the desired result. ♦

Corollary II.3. Let Ω be a regular domain in RN , and let d(x) denote the distance
from the boundary. Assume that the inradius of Ω is finite. Then, there exists
cp <∞ such that, for any ζ ∈W 1,p

0 (Ω) Hardy’s inequality holds:

cp
p

∫
Ω

|∇ζ|p ≥
∫

Ω

∣∣∣∣ ζ

d(x)

∣∣∣∣p. (2.2)

Proof: Since the proof follows [D1], pp. 26-28, closely, we content ourselves with
an outline, referring the reader to that source. If Ω is a region in RN , and u is a
unit vector in RN , we define

du(x) = min{|t| : x + tu 6∈ Ω}
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and an averaged distance to the boundary m(x) by

1
m(x)p =

∫
‖u‖=1

dS(u)
du(x)p ,

where dS is the normalized surface measure on the unit sphere of RN . By averaging
the estimate of Corollary II.2 over directions, with the origin always shifted to the
edge of Ω, we obtain ∫

Ω

|ζ|p

m(x)p
≤ (p′)p

∫
Ω

|∇ζ|p

for all ζ ∈ C∞c (Ω). We now observe, as in [D1], that for regular domains with a
finite inradius, one has the estimate

d(x) ≤ m(x) ≤ γd(x)

for some constant γ computable from the inradius and the constants in the uniform
sphere condition. Then we obtain Hardy’s inequality (2.2), with the constant cp =
γp′. By density the same inequality holds for ζ ∈W 1,p

0 (Ω). ♦
Remark: Our further estimates are based on the minimal value of cp such that
(2.2) holds; in fact cp ≥ p′ as we have seen in the proof above.

We close the section with two corollaries which generalize the Rellich inequality
for p = 2.

Corollary II.4. Let Ω be any domain in RN , and N > p. Then for all ζ ∈W 1,p
0 (Ω),(

p

N − p

)p−1 ∫
Ω

|∇ζ|pdNx ≥
∫

Ω

∣∣∣∣ ζ|x|
∣∣∣∣pdNx.

Proof sketch: We apply Theorem II.1 with the choice

Q(x) =
(
N − p

p

)p−1 x
|x|p

.

Of course, this vector field is not AC1 near the origin, so it must be regularized
there, which accounts for the restriction that N > p. ♦

Corollary II.5. Let Ω be a finite domain in RN , and N > p > 2. Then there exists
a finite constant c0 such that for all ζ ∈W 1,p

0 (Ω).

cp0

∫
Ω

|∇ζ|p dNx ≥
∫

Ω

|ζ|p

|x|2
dNx

Proof sketch: Here the choice is

Q(x) =
αx

|x|2
,

which leads to a lower bound of the form
α (N − 2)
|x|2

− (p− 1)αp′

|x|p′
.

For p > 2 and Ω finite, the constant α can be chosen sufficiently small so that the
first term dominates the second throughout Ω. ♦
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III. Lq boundary behavior for functions of finite energy

In this section we provide estimates of the boundary decay of test functions of finite
energy and, consequently, the principal eigenfunction of equations of the form

−∆pu+ V (x)up−1 = λ1u
p−1. (3.1)

Recall that the energy form is defined by

R (ζ) :=

∫
Ω

(|∇ζ|p + V (x)|ζ|p) dNx

‖ζ‖p
Lp

, (3.2)

and that i.e., the principal eigenfunction is the positive function which minimizes
this functional in W 1,p

0 . Initially we consider V ≡ 0, after which we shall introduce
a class of potentials V for which the minimizer exists and similar estimates pertain.

As in [D2], we base these estimates on the Hardy constant, i.e., given a distance
function d(x) as above, the minimal value of cp such that for any ζ ∈W 1,p

0 (Ω),

cp
p

∫
Ω

|∇ζ|p ≥
∫

Ω

∣∣∣∣ ζ

d (x)

∣∣∣∣p. (3.3)

As remarked above, we choose d(x) as the distance from x ∈ Ω to the boundary of
Ω. The goal of this section is to replicate the boundary estimates of Section 3 of
[D2] to the extent possible, replacing estimates based on the spectral theorem with
integral inequalities as necessary.

The main theorems of this section are III.4 (for V = 0) and III.5.

The Hardy constant contains geometric information about the domain, and
in some cases can be estimated exactly (e.g., [M1]; note that by convention, the
constant cp in this work is the reciprocal of ours and of [D2].). In Section II of
this article, we established that any regular domain with a finite inradius has a
finite Hardy constant. A higher value than the minimal cp ≥ p′ in (3.3) may arise
depending on the geometry of Ω.

Here we assume that the value of cp is known and explore the consequences for
the eigenfunctions.

Our boundary estimates require an algebraic bound of the following form.

Basic Algebraic Bound

There are finite constants m̂ ≥ 1 and k̂ > 0 such that for all X ∈ RN , Z ∈ RN :

(A) ‖X + Z‖p
2 ≤ m̂p‖X‖p

2 + k̂
(
‖Z‖p

2 + p‖Z‖p−2
2 Z ·X

)
In Section IV we shall identify constants m̂ and k̂ depending on p and N such

that (A) is valid. For p = 2, they reduce to m̂ = k̂ = 1. More precisely, Section IV
proves (A) with:

p ≥ 2, N = 1 : m̂ = m = p− 1 k̂ = k = p2−p(p− 1)p−1

p ≥ 2, N ≥ 2 : m̂ = 2
(p−2)

2p (p− 1) k̂ = 2
(p−2)

2 p2−p(p− 1)p−1

1 < p ≤ 2, N = 1 : m̂ = m k̂ = k = 1
1 < p ≤ 2, N ≥ 2 : m̂ = 2

(2−p)
2p m k̂ = 1

Here, for p < 2, m is the constant defined in (4.6); by Lemma IV.2 we know that
m ≥ 1.
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Lemma III.1. With m̂ and k̂ such that (A) holds, for any ϕ ≥ 0 which is piecewise
C1 and any ζ ∈W 1,p

0 (Ω) such that ∆pζ ∈ Lp′(Ω),∫
Ω

|∇(ϕζ)|p ≤ m̂p

∫
Ω

|ζ∇ϕ|p + k̂

∫
Ω

ζϕp(−∆pζ).

Proof: Applying (A) with X = ζ∇ϕ and Z = ϕ∇ζ, we get:∫
Ω

|ζ∇ϕ+ ϕ∇ζ|p ≤ m̂p

∫
Ω

|ζ∇ϕ|p + k̂

∫
Ω

[
|ϕ∇ζ|p + pϕp−1ζ|∇ζ|p−2∇ζ · ∇ϕ

]
.

Moreover,∫
Ω

|ϕ∇ζ|p =
∫

Ω

(ϕp|∇ζ|p−2∇ζ) · ∇ζ = −p
∫

Ω

ϕp−1ζ|∇ζ|p−2∇ζ · ∇ϕ−
∫

Ω

ζϕp(∆pζ),

and we obtain: ∫
Ω

|∇(ϕζ)|p ≤ m̂p

∫
Ω

|ζ∇ϕ|p + k̂

∫
Ω

ζϕp(−∆pζ)

as claimed. ♦

With m̂ appearing in (A) and cp in (3.3), we henceforth set

c = m̂cp

and we remark that c ≥ p in view of (A).

Lemma III.2. Suppose that c > p and that ϕ is a piecewise C1 function such that
0 ≤ ϕ ≤ d(x)−1/c. Then for any ζ ∈W 1,p

0 (Ω):∫
Ω

ϕp2
|ζ|pdNx ≤ (cp)p2/c

(∫
Ω

|∇ζ|pdNx

)p/c(∫
|ζ|pdNx

)1−p/c

.

Proof: Because ϕ(x) ≤ d(x)−1/c,∫
Ω

ϕp2
|ζ|p ≤

∫
Ω

d−p2/c|ζ|p
2c−1+p(c−p)c−1

,

which by Hölder’s inequality is bounded by(∫
Ω

|ζ|p

dp

)p/c(∫
Ω

|ζ|p
)1−p/c

.

With the Hardy inequality (3.3), we therefore obtain:∫
Ω

ϕp2
ζp ≤ (cp)p2/c

(∫
Ω

|∇ζ|p
)p/c(∫

Ω

|ζ|p
)1−p/c

.

♦
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Lemma III.3. Let m̂ and k̂ be such that (A) holds, and let ϕ be any piecewise
C1 function such that 0 ≤ ϕ ≤ d(x)−1/c. Then for any ζ ∈ W 1,p

0 (Ω) such that

∆pζ ∈ Lp′(Ω):∫
Ω

|∇(ϕζ)|pdNx ≤ m̂p

∫
Ω

|ζ∇ω|pdNx+ k̂(cp)p/c

(∫
Ω

|∇ζ|pdNx

)1/c

×
(∫

Ω

|ζ|pdNx

)p−1−c−1 (∫
Ω

|−∆pζ|p
′
dNx

)1/p′

.

Proof: From Lemma III.1 we know that∫
Ω

|∇(ϕζ)|p ≤ m̂p

∫
Ω

|ζ∇ϕ|p + k̂

∫
Ω

ζϕp(−∆pζ).

Recall that c ≥ p. If c > p, then by Hölder’s inequality and Lemma III.2,∣∣∣∣∫
Ω

ζϕp(−∆pζ)
∣∣∣∣ ≤ (∫

Ω

ζpϕp2
)1/p(∫

Ω

|−∆pζ|p
′
)1/p′

(3.4)

≤ (cp)p/c

(∫
Ω

|∇ζ|p
)1/c(∫

Ω

|ζ|p
)1/p−1/c(∫

Ω

|−∆pζ|p
′
)1/p′

,

yielding the claim.

For c = p, since ϕp2 ≤ d−p2/c = d−p we have∣∣∣∣∫
Ω

(ζϕp)(−∆pζ)
∣∣∣∣ ≤ (∫

Ω

|ζ|pϕp2
)1/p(∫

Ω

|−∆pζ|p
′
)1/p′

,

which by Lemma III.2 is bounded by

cp

(∫
Ω

|∇ζ|p
)1/p

×
(∫

Ω

|−∆pζ|p
′
)1/p′

.

Hence the same inequality holds in this case. ♦

Our next result, Theorem III.4, shows that integrals involving ζ on an ε-
neighborhood of the boundary are bounded by expressions of the form F · εs, where
F depends only on Ω, ‖ζ‖p, ‖∇ζ‖p, and ‖∆pζ‖p′ . When p = 2, and ∂Ω is smooth,
our exponents s reduce to the sharp values as remarked in [D2].

We adopt some notation and other conventions of [D2]; in particular, for a given
ε > 0, we define

ω(x) = (max{d(x), ε})−1/c (3.5)

and

τ (x) =

{
ε−1/c if 0 < d(x) ≤ ε
c−1ε−1−1/c ((1 + c) ε− d(x)) if ε < d(x) ≤ (1 + c) ε
0 otherwise.

(3.6)

(Recall that c = m̂cp with m̂ appearing in (A) and cp in (3.3). We remark that both
functions ω and τ satisfy the conditions of the functions ϕ appearing in Lemma
III.1–Lemma III.3.)
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Theorem III.4. There are (identifiable) constants K1,2 such that given any ζ ∈
W 1,p

0 (Ω) such that ∆pζ ∈ Lp′(Ω):

(i)
∫
{d(x)<ε}∩Ω

|ζ|p

dp
dNx ≤

K1ε
p/c

(∫
Ω

|∇ζ|pdNx

)1/c(∫
Ω

|ζ|pdNx

)p−1−c−1 (∫
Ω

(−∆pζ)p′dNx

)1/p′

for all ε > 0. Hence also,

(ii)
∫
{d(x)<ε}∩Ω

|ζ|pdNx ≤

K1ε
p+p/c

(∫
Ω

|∇ζ|pdNx

)1/c(∫
Ω

|ζ|pdNx

)p−1−c−1 (∫
Ω

(−∆pζ)p′dNx

)1/p′

for all ε > 0. In addition,

(iii)
∫
{d(x)≤ε}

|∇ζ|pdNx ≤ K2Fε
p/c,

where F depends only on Ω, ‖ζ‖p, ‖∇ζ‖p, and ‖∆pζ‖p′ (and is implicitly specified
by the last few lines of the proof). Recall that c = m̂cp.

Proof: We deduce from Lemmas III.2 and III.3 that∫
Ω

|ωζ|p

dp
≤ (m̂cp)p

∫
Ω

|ζ∇ω|p + I, (3.7)

where

I = k̂(pcp)p+p/c

(∫
Ω

|∇ζ|p
)1/c(∫

Ω

|ζ|p
)p−1−c−1 (∫

Ω

| −∆pζ|p
′
)1/p′

.

Let Y (x) = ωp

dp − cp|∇ω|p. For d(x) ≥ ε, |∇ω| = 1
c

ω
d ; hence Y (x) ≥ 0, and for

d(x) < ε, ∇ω(x) = 0, so Y (x) ≥ 1
εp/cdp .

Rewriting (3.7) as ∫
Ω

|ζ|pY ≤ I

we deduce that ∫
{d(x)<ε}∩Ω

|ζ|p

dp
≤ k̂(cp)p+p/cεp/cI,

and hence we have part (i), from which (ii) is immediate.

For part (iii), we first note that∫
{d(x)<ε}

|∇ζ|pdNx ≤ εp/c

∫
Ω

|∇(τζ)|pdNx, (3.8)
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and then apply Lemma III.1 to conclude that∫
Ω

|∇(τζ)|pdNx ≤m̂p

∫
{d(x)<(1+c)ε}

|ζ∇τ |pdNx+ k̂cp/c
p

(∫
Ω

|∇ζ|pdNx

)1/c

×(∫
Ω

|ζ|pdNx

)1/p−1/c(∫
Ω

|−∆pζ|p′dNx

)1/p′

.

Now, ∫
{d(x)<(1+c)ε}

|ζ∇τ |pdNx ≤
(

1
cε1+1/c

)p ∫
{d(x)<(1+c)ε}

|ζ|pdNx,

which is bounded by quantities independent of ε according to part (ii). Together
with (3.8), this yields (iii). ♦

Next we obtain a similar estimate for (3.1) for nonzero V (x), for which the
coefficient of εs is given in terms of ‖ζ‖p, R(ζ), and ‖ −∆pζ + V (x)|ζ|p−2ζ‖p′ .

We shall assume that V (x) = V1(x) + V2(x), where V1(x) ≥ 0 and there exist
finite constants A,B, α, β, with α < 1, such that |V2| satisfies

(i)
∫

Ω

|V2|p
′
|ζ|pdNx ≤ A

∫
Ω

|∇ζ|pdNx+B

∫
Ω

|ζ|pdNx

and

(ii)
∫

Ω

|V2||ζ|pdNx ≤ α

∫
Ω

|∇ζ|pdNx+ β

∫
Ω

|ζ|pdNx (3.9)

for all ζ ∈ C∞c (Ω).

We remark that using the results of Section II, (3.9) will hold, for example, pro-
vided that |V2|p

′
< C1

dp + bounded function ⇔ |V2| < C2d
−(p−1) + bounded function

for some constants C1,2, since this implies that |V2| < 1
cp

p

1
dp + bounded function.

Theorem III.5. Given Hardy’s inequality (3.3) with c = m̂cp > p, assume that V

satisfies (3.9) and that ζ ∈W 1,p
0 with −∆pζ+V |ζ|p−2ζ ∈W 1,p

0 ∩Lp′(Ω). Then there
are quantities F1,2 depending only on Ω, ‖ζ‖p, R(ζ), and ‖ −∆pζ + V (x)|ζ|p−2ζ‖p′

such that

(i)
∫
{d(x)<ε}∩Ω

|ζ|p

dp
dNx ≤ F1ε

p/m̂cp

for all ε > 0. Hence also,

(ii)
∫
{d(x)<ε}∩Ω

|ζ|pdNx ≤ F1ε
p+p/m̂cp

for all ε > 0. In addition,

(iii)
∫
{d(x)≤ε}

|∇ζ|pdNx ≤ K2F2ε
p/c.
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Proof: We proceed as in the proof of Theorem III.4 until the stage where we call
on Lemma III.3. Instead of dominating

∫
ζωp(−∆pζ) as in (3.4), we bound it above

by ∫
ζωp(−∆pζ + V1|ζ|p−2ζ)

≤
(∫

|ζ|pωpc

)1/p (
‖ −∆pζ + V |ζ|p−2ζ‖p′ + ‖V2|ζ|p−2ζ‖p′

)
.

The claim requires that we control the final term, which to the p′ power is∫
|V2|p

′
|ζ|p ≤A

∫
|∇ζ|p +B

∫
|ζ|p

≤A
(∫

|∇ζ|p + V |ζ|p + |V2ζ
p|
)

+B‖ζ‖p
p

≤(AR(ζ) +B)‖ζ‖p
p +A

∫
|V2ζ

p|,

so it remains to control
∫
|V2ζ

p|. This we do using part (ii) of (3.7) as follows.∫
|V2ζ

p| ≤ α

(∫
|∇ζ|p + V |ζ|p + |V2ζ

p|
)

+ β

∫
|ζ|p,

so ∫
|V2ζ

p| ≤ 1
1− α

(αR(ζ) + β)‖ζ‖p
p.

♦

IV. Some inequalities

In this section we establish a family of elementary but refined algebraic inequalities,
needed to apply the estimates of Section III to the p-Laplacian for various values of
p.

First we establish some algebraic inequalities for a binomial in a scalar real
variable x, taken to the power p. Then we use them to derive vectorial inequalities
which imply the basic algebraic bound (A) of Section III.

Lemma IV.1. For p ≥ 2 and x ∈ R,

|x− 1|p ≤ (p− 1)p + p2−p(p− 1)p−1
(
|x|p − p|x|p−2

x
)
. (4.1)

Remark: Essentially we dominate the left side by a constant plus two terms from
its expansion for large |x|. The inequality is sharp in the sense that the constant
(p− 1)p on the right is minimal.

Proof: Because of the absolute values, we need to consider separately three cases,
1 < x, 0 ≤ x ≤ 1, and x < 0.
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Case 1. For 0 < x < 1, we let

f2(x) = (1− x)−p[(p− 1)p + pp−2(p− 1)p−1(xp − pxp−1)],

and calculate the derivative

f ′2(x) = p3−p(p− 1)p(1− x)−p−1[pp−2 − xp−2] > 0,

so the minimal value of f2 on this interval is f2(0) = (p− 1)p ≥ 1.

Case 2. For 1 < x, we claim that

f1(x) = (x− 1)−p[(p− 1)p + pp−2(p− 1)p−1(xp − pxp−1)]

achieves its unique minimum for x = p. This is because a calculation reveals that

f ′1(x) = p3−p(p− 1)p(x− 1)−p−1[xp−2 − pp−2],

which is zero uniquely for x = p and otherwise has the same sign as x− p.

Case 3. For convenience, for the case when x < 0, we replace x by −x. Thus we
need to show that for x > 0,

(1 + x)p ≤ (p− 1)p + p2−p(p− 1)p−1 (
xp + pxp−1

)
, (4.2)

or in other words that

f3(x) :=
(p− 1)p + p2−p(p− 1)p−1(xp + pxp−1)

(1 + x)p
≥ 1. (4.3)

Again we differentiate, finding

f ′3(x) = p3−p(p− 1)p(1 + x)−p−1(xp−2 − pp−2),

which reveals that f ′3 vanishes uniquely at p and elsewhere has the same sign as

x− p. Hence f3(x) ≥ f3(p) = (2p− 1)
(

p−1
p+1

)p−1

.

It remains to show that f3(p) ≥ 1, or equivalently that f4(y) ≥ 1 for y ≥ 2
where

f4(y) = (2y − 1)
(
y − 1
y + 1

)y−1

.

We note that f4(2) = 1. We prove now that f ′4 > 0:

f ′4(y) = f4(y)B(y),

where B(y) = 2
2y−1 + 2

y+1 + Ln
(

y−1
y+1

)
. Hence we wish to prove that B(y) > 0,

which is true for y = 2. Now,

B′(y) = 4
N(y)
D(y

,

with D(y) = (2y − 1)2(y + 1)2(y − 1) > 0 and N(y) = −y3 + 3y2 − 3y + 2. Since
N ′(y) = −3(y− 1)2 < 0, N ≤ 0 and thus B′(y) < 0, i.e., B is a decreasing function.
As y tends to ∞, B(y) → 0. Hence B > 0 and f ′4 > 0 for y > 2. Therefore f4(y) ≥ 1
for all y ≥ 2. ♦
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Lemma IV.2. For p ≤ 2 and x ∈ R,

|x− 1|p ≤ mp
p +

(
|x|p − p|x|p−2

x
)
, (4.5)

where mp
p is defined by

mp
p = max

0≤x≤1
((p− x)xp−1 + (1− x)p). (4.6)

Remarks: In comparison with Lemma IV.1, for p ≥ 2, the second constant
on the right has been simplified to 1, while the first one has a different form. Both
sharp inequalities trivialize to the same identity for (x− 1)2 when p becomes 2.

Observe that m2
2 = max(1) = 1, and that if hp (x) := (p − x)xp−1 + (1− x)p

, then
mp

p ≥ max(h(0), h(1)) = max(1, p− 1).

Proof: We need to show |x− 1|p ≤ mp
p + (|x|p− p|x|p−2x) for x ∈ R. As before, we

consider three cases.

Case 1. 0 ≤ x ≤ 1. The desired bound holds by the definition of mp
p.

Case 2, x ≥ 1. Let

φ = (x− 1)p, ψ = mp
p + xp − pxp−1.

We see that φ(1) = 0 < ψ(1) and define

r :=
ψ′

φ′
=

(x− (p− 1))xp−2

(x− 1)p−1
.

It is easy to see that lim
x↓1

r(x) = +∞ and lim
x→∞

r(x) = 1, and to calculate that

r′(x) = (positive) × (p − 2) < 0 on this interval. Thus r > 1, which implies the
bound in this case.

Case 3. x < 0. As before, it is convenient to redefine x ↔ −x and compare the
functions

φ = (1 + x)p and ψ = mp + xp + pxp−1

for x > 0. We define r = ψ′/φ′, and calculate as for case 2 that r′ = positive× (p−
2) < 0. By examining the limits lim

x↓0
r(x) = +∞ and lim

x→∞
r(x) = 1, we conclude

that r(x) > 1 on this interval, implying the desired bound. ♦
We now proceed to deduce vectorial inequalities from the scalar inequalities of

Lemma IV.1 and Lemma IV.2.

Lemma IV.3. For p > q > 1, the following inequalities hold ∀ Y ∈ RN ,

‖Y‖p ≤︸︷︷︸
(1)

‖Y‖q ≤︸︷︷︸
(2)

N (p−q)/pq‖Y‖p.
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where ‖Y‖p =
{

N∑
i=1

|yi|p
}1/p

.

Proof: (1) By a homothety, it is sufficient to consider the case

N∑
i=1

|yi|q ≥ 1 with |yi| ≤ 1,∀ i = 1, . . . , N

N∑
i=1

|yi|p ≤
N∑

i=1

|yi|q

so that (
N∑

i=1

|yi|p
)q

≤

(
N∑

i=1

|yi|q
)q

≤

(
N∑

i=1

|yi|q
)p

⇒ ‖Y‖p ≤ ‖Y‖q

(2) Letting xi = |yi|q, by convexity we have

(
x1 + · · ·+ xN

N

)p/q

≤ 1
N

(
x

p/q
1 + · · ·+ x

p/q
N

)
1

Np/q
(|y1|q + · · ·+ |yN |q)p/q ≤ 1

N
(|y1|p + · · ·+ |yN |p)

‖Y‖q ≤ (Np/q−1)1/p‖Y‖p = N (p−q)/pq‖Y‖p.

♦
Remarks: The constant 1 in (1) is optimal: take y2 = · · · = yN = 0. The constant
N (p−q)/pq in (2) is likewise optimal: take y1 = y2 = · · · = yN = 1; in that case, (2)
becomes N1/q ≤ N (p−q)/pqN1/p.

Lemma IV.4. Suppose that for m ≥ 1 and k > 0 it has been established that

∀y, z ∈ R : |y − z|p ≤ mp|z|p + k|y|p − kp|y|p−2yz. (4.7)

Then the following inequalities hold for any Y and Z ∈ Rn:

(i) For p ≥ 2, ‖Y − Z‖p
2 ≤ 2(p/2)−1

{
mp‖Z‖p

2 + k‖Y‖p
2 − kp‖Y‖p−2

2 Y · Z
}

(ii) For 1 < p ≤ 2, ‖Y − Z‖p
2 ≤ 21−(p/2)mp‖Z‖p

2 + k‖Y‖p
2 − kp‖Y‖p−2

2 Y · Z.

Proof: Since the formulae (i) and (ii) are not changed by rotation or if we replace
X and Y by any homothetic vectors, it is sufficient to consider the case where

Y = (1, 0, . . . , 0) and Z = (z1, z2, 0, . . . , 0).

(i) Observe that from Lemma IV.3 we have

|z1|p + |z2|p ≤ {|z1|2 + |z2|2}p/2. (4.8)
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We get

‖Y − Z‖p
2 =

{
(z1 − 1)2 + z2

2

}p/2
= 2p/2

{
(z1 − 1)2 + z2

2

2

}p/2

≤ 2(p/2)−1 {(z1 − 1)p + zp
2} by convexity

≤ 2(p/2)−1 {mp|z1|p + k − kpz1 +mp|z2|p} from (4.7)

≤ 2(p/2)−1
{
mp(|z1|2 + |z2|2)p/2 + k − kpz1

}
from (4.8)

≤ 2(p/2)−1
{
mp‖Z‖p

2 + k‖Y‖p
2 − kp‖Y‖p−2

2 Y · Z
}
.

(ii) Since 2 > p, from Lemma IV.3 we find

‖Y − Z‖p
2 =

{
(z1 − 1)2 + z2

2

}p/2 ≤ |z1 − 1|p + |z2|p

≤ mp(|z1|p + |z2|p) + k − kpz1 from (4.7)

≤ mp21−(p/2)(z2
1 + z2

2)p/2 + k − kpz1.

From the second relation of Lemma IV.3, we obtain here:

(|z1|p + |z2|p)1/p ≤ 2(1/p)−(1/2)(z2
1 + z2

2)1/2,

and hence

‖Y − Z‖p
2 ≤ mp21−(p/2)‖Z‖p

2 + k‖Y‖p
2 − kp‖Y‖p−2Y · Z.

♦
By combining the lemmas of this section, we obtain the estimates needed for

Section III.

Proposition IV.5. For any X and Z ∈ Rn,

(i) For p ≥ 2:

‖X + Z‖p
2 ≤ 2(p/2)−1

{
(p− 1)p‖X‖p

2 + p2−p(p− 1)p−1
(
‖Z‖p

2 + p‖Z‖p−2
2 Z ·X

)}
.

(ii) For 1 < p ≤ 2:

‖X + Z‖p
2 ≤ 21−(p/2)mp

p‖X‖
p
2 + ‖Z‖p

2 + p‖Z‖p−2
2 Z ·X,

where mp
p is defined in (4.6).

V. Perturbation of the boundary

In this section we use the results stated in Section III to estimate how the first
eigenvalue of the p-Laplacian, or the p-Laplacian plus a potential, depends on the
domain. Again we follow ideas of [E2] and [D2]. More precisely, we wish to compare
the fundamental eigenvalues for Ω and for the retracted domain Ωε = {x ∈ Ω/d(x) >
ε}. We shall find it convenient to define Γε = {x ∈ Ω/d(x) < ε} and Sε = Ωε ∩ Γ2ε.

We denote by λ1(Ω) the first eigenvalue of the Dirichlet p-Laplacian on Ω. By the
variational principle, we have

λ1(Ω) ≤ λ1(Ωε).

Our main result in this section is the following
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Theorem V.1. There exists a positive constant k depending only on p, N , and Ω,
such that for ε sufficiently small,

λ1(Ωε) ≤ λ1(Ω) + kε
p

m̂cp .

Proof: We introduce µ : Ω −→ [0;+∞) defined by

µ(x) =

{ 0 if x ∈ Γε,
ε−1(d(x)− ε) if x ∈ Sε,
1 if x ∈ Ω2ε.

Let φ1 be the first eigenfunction of the Dirichlet p-Laplacian on Ω such that ‖φ1‖Lp =
1. We have∫

Ω

(|∇(µφ1)|p − |∇φ1|p) =
∫

Γ2ε

(|∇(µφ1)|p − |∇φ1|p)

≤
∫

Sε

(|∇(µφ1)|p − |∇φ1|p)

≤
∫

Sε

[(
|∇φ1|+ |

φ1

ε
|
)p

− |∇φ1|p
]

≤p
∫

Sε

|φ1

ε
|
(
|∇φ1|+ |

φ1

ε
|
)p−1

≤K
∫

Sε

|φ1

ε
|p +K

(∫
Sε

|φ1

ε
|p
) 1

p
(∫

Sε

|∇φ1|p
) 1

p′

.

From Theorem III.4, we deduce that∫
Ω

(|∇(µφ1)|p − |∇φ1|p) ≤ K ′ε
p

m̂cp +K ′′ε
p

m̂cp

(
1
p + 1

p′

)
≤ Kε

p
m̂cp .

Hence ∫
Ω

|∇(µφ1)|p ≤ λ1(Ω) +Kε
p

m̂cp .

From the variational principle we conclude that∫
Ω

|∇(µφ1)|p ≥ λ1(Ωε)
∫

Ω

|µφ1|p.

Now, ∫
Ω

|φ1|p =
∫

Ω

|µφ1 + (1− µ)φ1|p

≤
∫

Ω

|µφ1|p +
∫

Ω

(1− µ)p|φ1|p

≤
∫

Γ2ε

|φ1|p +
∫

Ω

|µφ1|p

≤Kε
p

m̂cp
+p +

∫
Ω

|µφ1|p.
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Thus ∫
Ω

|∇(µφ1)|p ≥ λ1(Ωε)
[
1−Kε

p
m̂cp

+p
]
,

and hence for ε sufficiently small

λ1(Ωε) ≤
λ1(Ω) +Kε

p
m̂cp

1−Kε
p+ p

m̂cp

≤λ1(Ω) +K(1 + 2λ1(Ω))ε
p

m̂cp

≤λ1(Ω) + kε
p

m̂cp .

♦
Estimates of this type apply, with the same power of ε under conditions as in

Section III, to the p-Laplacian with a potential.

VI. Ls(Ω) estimates for solutions of |u|p−2ut = ∆pu− V (x)|u|p−2u

In this section we turn our attention to the Cauchy problem for evolution equations
of the form

|u|p−2ut = ∆pu− V (x)|u|p−2u. (6.1)

The reason for the factor |u|p−2 on the left side is that it guarantees that the equation
is homogeneous (see the definition (1.3) of the p-Laplacian).

In this section, we assume that V (x) = V1(x) + V2(x), where V1(x) ≥ 0 and
|V2| satisfies a bound of the form∫

Ω

|V2| |ζ|p dNx ≤ α

∫
Ω

|∇ζ|pdNx+ β

∫
Ω

|ζ|p dNx, (6.2)

with α <∞. We recall that in Section II we provided some criteria for this bound;
for instance, by Corollary II.4, if N > p, then the negative part of V (x) may be
bounded in magnitude by a sufficiently small constant, proportional to α, times a
sum of terms with local divergences of the form 1

|x−x0|p .

Belyi and Semenov [B2] and Liskevich [L1] have shown that for certain linear
differential operators the growth in time t of ‖u(t, x)‖Lp(Ω) can be estimated when
the negative part of V is relatively form bounded. In this section we show that similar
estimates are valid for solutions of (6.1). We consider only classical solutions of
(6.1) on regular domains, with vanishing Dirichlet boundary conditions, and content
ourselves with two theorems, which sufficiently well illustrate the idea.

Theorem VI.1. Assume that u is a classical solution of equation (6.1), u belongs to
W 1,p

0 (Ω) ∩ Ls(Ω), s ≥ p, and −∆pu ∈ L∞(Ω). Assume moreover that the potential
V (x) satisfies (6.2) with α ≤ (s+ 1− p)

(
p
s

)p
. Let fs,u (t) := ‖u (t;x) ‖Ls(Ω). Then

fs,u (t) ≤ fs,u (0) exp (βt) .
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Proof: We write r = s− p and multiply (6.1) by |u|ru and integrate. We find

1
p+ r

d

dt

∫
Ω

|u|p+r =
∫ {

|u|ru∇ · (|∇u|p−2∇u)− V |u|p+r
}

≤ −
∫ {

∇(|u|ru) · |∇u|p−2∇u
}

+
∫
|V2||u|p+r

= −(r + 1)
∫
{|u|r|∇u|p}+

∫
|V2||u|p+r

≤ −(r + 1)
∫
|u|r|∇u|p + α

∫ ∣∣∣∇(u(p+r)/p
)∣∣∣p + β

∫
|u|(p+r)

=
(
α

(
p+ r

p

)p

− (r + 1)
)∫

|u|r|∇u|p + β

∫
|u|(p+r)

.

The assumption on α makes the first term in the final line ≤ 0, so we drop it,
obtaining

d

dt
‖u‖s

s ≤ βs‖u‖s
s,

which implies the claim. ♦

Theorem VI.2. Assume that u is a positive solution of a differential equation for
which the differential inequality

|u|p−2ut ≤ ∆pu− V (x)|u|p−2u. (6.3)

holds, that u ∈ W 1,p
0 (Ω) ∩ Ls(Ω), s ≥ p, and −∆pu ∈ L∞(Ω). Assume moreover

that the potential V (x) satisfies (6.2) with α ≤ (s+ 1− p)
(

p
s

)p
. Let

fs,u (t) := ‖u (t;x) ‖Ls(Ω).

Then
fs,u (t) ≤ fs,u (0) exp (βt) .

Proof: Exactly as for Theorem VI.1; positivity matters because the proof requires
the inequality to be multiplied by a power of u. ♦
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In Corollary II.4, the formula( p

N − p

)p−1
∫

Ω

∣∣∇ζ|pdNx ≥
∫

Ω

∣∣∣ ζ|x| ∣∣∣pdNx.

should be replaced by( p

N − p

)p
∫

Ω

∣∣∇ζ|pdNx ≥
∫

Ω

∣∣∣ ζ|x| ∣∣∣pdNx.
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31062 Toulouse, France
e-mail address: dethelin@mip.ups-tlse.fr


