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HOMOGENIZATION OF LINEARIZED ELASTICITY SYSTEMS

WITH TRACTION CONDITION IN PERFORATED DOMAINS

MOHAMED EL HAJJI

Abstract. In this paper, we study the asymptotic behavior of the linearized
elasticity system with nonhomogeneous traction condition in perforated do-
mains. To do that, we use the H0e -convergence introduced by M. El Hajji in
[4] which generalizes - in the case of the linearized elasticity system - the notion
of H0-convergence introduced by M. Briane, A. Damlamian and P. Donato in
[1]. We give then some examples to illustrate this result.

1. Introduction

The notion of H0e -convergence was introduced by M. El Hajji in [4] for the
study of the asymptotic behavior of the linearized elasticity system with homoge-
neous traction condition in perforated domains. It translates the notion of H0-
convergence introduced by M. Briane, A. Damlamian and P. Donato in [1] for the
study of the diffusion system problem with homogeneous Neumann condition in
perforated domains which generalizes in the case of perforated domains the H-
convergence introduced by F. Murat and L. Tartar in [13], and the G-convergence
for the symmetric operator introduced by S. Spagnolo in [14].
This paper is devoted to giving an application of the H0e - convergence to study

the asymptotic behavior of the linearized elasticity system with nonhomogeneous
traction condition in perforated domains by using the convergence of a distribution
defined from data on the boundaries of the holes. This result is the analogue for the
linearized elasticity of Theorem 1 given by P. Donato and M. El Hajji in [3] as an
application of the H0-convergence to the study of the nonhomogeneous Neumann
problem.
In Section 2, we recall the definition ofH0e -convergence introducing a definition of

e-admissible set similar to that given by M. Briane, A. Damlamian and P. Donato
in [1] for the H0-convergence and by F. Murat and L. Tartar in [13] for the H-
convergence. In Section 3, we introduce the linearized elasticity problem and we
give the main result. We establish then the proof making use of some preliminary
results. In Section 4, we give some applications of this result - first for the case
of periodic perforated domains by holes of size rε = ε where we use the results
given by F. Lene in [11] and D. Cioranescu and P. Donato in [2]. Then we apply
the results of section 3 and those of C. Georgelin in [8] and S. Kaizu in [10] when
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rε≪ ε. Finally, we apply section 3 to the case of a perforated domain with double
periodicity (introduced by T. Levy in [12]) using the results given by M. El Hajji
in [9] and P. Donato and M. El Hajji in [3].

2. Recall of H0e -convergence

In this section, we recall the definition of H0e -convergence introduced in [4]. First
let us introduce the following notations.
Let Ω be a bounded open subset of RN , ε the general term of a positive sequence,

and c different positive constants independent of ε. We introduce the following sets:

Ms = {symmetric linear operators l : R
N → RN

2

},

L(Ms) = {linear operators p :Ms →Ms},

Ls(Ms) = {symmetric operators p ∈ L(Ms)},

Me(α, β; Ω) =
{
A ∈ L∞(Ω,Ls(Ms)), A(x)ξ · ξ ≥ α|ξ|

2,

A−1(x)ξ · ξ ≥ β|ξ|2, ∀ξ ∈ Ls(Ms), x a.e. ∈ Ω
}
.

In what follows, we use the Einstein summation convention, that is, we sum over
repeated indices. We denote by e(·) the symmetric tensor of elasticity defined by

e(u) = (eij(u))ij where eij =
1

2

{
∂ui

∂xj
+
∂uj

∂xi

}
.

We denote by Sε a compact subset of Ω. We denote the perforated domain by
Ωε = Ω \ Sε. We denote by χε the characteristic function of Ωε and we set

Vε =
{
v ∈ [H1(Ωε)]

N , v|∂Ω = 0
}
, (1)

which equipped with the H1-norm forms a Hilbert space.
Definition 1 (e-admissible set). The set Sε is said to be admissible (in Ω) for the
linearized elasticity if

every function in L∞(Ω) weak ? of χε is positive almost everywhere in Ω, (2)

and for each ε there is an extension operator Pε from Vε to [H
1
0 (Ω)]

N and there
exists a real positive C such that

i) Pε ∈ L
(
Vε, [H

1
0 (Ω)]

N
)
,

ii) (Pεv) |Ωε= v, ∀v ∈ Vε,

iii) ‖e(Pεv)‖[(L2(Ω)]N2 ≤ C‖e(v)‖[(L2(Ωε)]N2 , ∀v ∈ Vε.

(3)

Remark 1. 1) As an example of an e-admissible set, one can consider the case of
a periodic function on a perforated domain by holes of size ε or rε (see F. Lene
[11] and C. Georgelin [8]). One can consider also a perforated domain with double
periodicity introduced by T. Levy in [12] (see also M. El Hajji [9]).
2). Observe that if Sε is admissible in the sense of definition 1, then we have a Korn
inequality in Ωε independent of ε, i.e.,

‖∇v‖[L2(Ωε)]N2 ≤ C(Ω)‖e(v)‖[L2(Ω)]N2 , ∀v ∈ Vε.

Indeed, from the Korn inequality in Ω and (3 iii) one has

‖∇v‖[L2(Ωε)]N2 ≤‖∇(Pεv)‖[L2(Ω)]N2

≤c(Ω)‖e(Pεv)‖[L2(Ω)]N2

≤C(Ω)‖e(v)‖[L2(Ω)]N2 , ∀v ∈ Vε.
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To give the definition of H0e -convergence, we introduce the adjoint operator P
?
ε

of Pε defined from [H
−1(Ω)]N to V ′ε by

〈P ?ε f, v〉V ′ε ,Vε =〈f, Pεv〉[H−1(Ω)]N ,[H10(Ω)]N

=

N∑
i=1

〈fi, (Pεv)i〉H−1(Ω),H10 (Ω), ∀v ∈ V
′
ε .

Definition 2. Let Aε ∈Me(α, β; Ω) and Sε be e-admissible in Ω. One says that the
pair (Aε, Sε) H

0-converges to A0 (in the sense of the linearized elasticity) and we

denote this (Aε, Sε)⇀
H0e A0 if for each function f in [H−1(Ω)]N , the solution uε

of
− div (Aεe(uε)) = P ?ε f in Ωε,

(Aε(x)e(uε)) · n = 0 on ∂Sε,

uε = 0 on ∂Ω,

(4)

satisfies
Pεu

ε ⇀ u weakly in [H10 (Ω)]
N ,

Aεẽ(uε)⇀ A0e(u) weakly in
(
L2 (Ω)

)N2
,

(5)

where u is the solution of the problem

− div
(
A0e(u)

)
= f in Ω,

u = 0 on ∂Ω,
(6)

and ṽ is the extension by zero to Ω of the function v defined in Ωε.
Remark 2. 1) If Sε is empty, the H

0
e -convergence reduces to the notion of H-

convergence in elasticity introduced by G.A. Francfort and F. Murat in [7].
2). The system (4) is equivalent to the system

−
∂

∂yj
σεij(u

ε) = (P ?ε f)i in Ωε

σεij(u
ε) · nj = 0 on ∂Sε,

uε = 0 on ∂Ω,

where σεij(u
ε) = Aεijkhekh(u

ε), Aε = (Aεijkh), and whose variational formulation is
written as: Find uε ∈ Vε such that∫

Ωε

σεij(u
ε)eij(v)dx = 〈P

?
ε f, v〉V ′ε ,Vε .

We can rewrite this problem in the form: Find uε ∈ Vε such that∫
Ωε

Aεe(uε)e(v)dx = 〈P ?ε f, v〉V ′ε ,Vε .

Some examples will be given in section 4, when we apply the main result of this
paper.

3. The main result

In this section, we establish a property of the H0e -convergence, and apply it to
the study of the asymptotic behavior of the linearized elasticity system with nonho-
mogeneous traction condition. This result is analogous to the linearized elasticity
of Theorem 1 in [9] given as an application of the H0-convergence to the study of
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the nonhomogeneous Neumann problem. We then give some examples to illustrate
this result.
Let Aε = (aεijkh) ∈Me(α, β; Ω) and let Sε be e-admissible in Ω such that

Sε has boundary ∂Sε of class C
1. (7)

We consider the linearized elasticity system

− div (Aεe(uε)) = 0 in Ωε,

(Aε(x)e(uε)) · n = gε on ∂Sε,

uε = 0 on ∂Ω,

(8)

where

gε ∈ [H−1/2(∂Sε)]
N . (9)

It is well known that (8) has a unique solution. Our aim is to study the asymptotic
behavior of the solution uε as ε approaches zero. To do that, we introduce a
vectorial distribution νεg defined in Ω by

〈νεg , ϕ〉[H−1(Ω)]N , [H10 (Ω)]N = 〈g
ε, ϕ〉[H−1/2(∂Sε)]N , [H1/2(∂Sε)]N , ∀ϕ ∈ [H

1
0 (Ω)]

N .

(10)
It is easy to check that this defines νεg as an element of [H

−1(Ω)]N , and if

νεg ∈ [L
2(Ω)]N , we deduce from the Riesz Theorem that νεg is a measure. The

following theorem shows that the convergence of uε can be deduced from the H0e -
convergence of (Aε, Sε) and the convergence of ν

ε
g in [H

−1(Ω)]N .

Theorem 1. Let {uε} be the sequence of the solutions of (8). Suppose that (7) is
satisfied and that

i) (Aε, Sε)⇀
H0e A0,

ii) there exists ν ∈ [H−1(Ω)]N such that νεg → ν strongly in [H−1(Ω)]N .
(11)

Then
i) Pεu

ε ⇀ u weakly in [H10 (Ω)]
N ,

ii) Aεẽ(uε)⇀ A0e(u) weakly in
(
L2 (Ω)

)N2
,

(12)

where u is the solution of the problem

− div
(
A0e(u)

)
= ν in Ω,

u = 0 on ∂Ω.
(13)

Proof. Observe first, by using (3 ii) and (10), that

〈gε, v〉[H−1/2(∂Sε)]N , [H1/2(∂Sε)]N = 〈ν
ε
g , Pεv〉[H−1(Ω)]N , [H10 (Ω)]N , ∀v ∈ Vε.

Hence, problem (8) is equivalent to the problem

− div (Aεe(uε)) = P ∗ε ν
ε
g in Ωε,

(Aε(x)e(uε)) · n = 0 on ∂Sε,

uε = 0 on ∂Ω,

since both of the two systems have the variational formulation: Find uε ∈ Vε such
that ∫

Ωε

Aεe(vε)e(v)dx = 〈νεg , Pεv〉V ′ε ,Vε , ∀v ∈ Vε. (14)
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Let us show that there exist c independent of ε such that

‖Pεu
ε‖[H10 (Ω)]N ≤ c . (15)

By taking uε as a test function in the variational formulation of (14) one obtains∫
Ωε

Aεe(uε)e(v)dx = 〈νεg , Pεu
ε〉V ′ε ,Vε .

From (3 iii) and the fact that Aε ∈Me(α, β,Ω) one deduces that

‖e (Pεu
ε)‖2[L2(Ω)]N2 ≤C

∫
Ωε

e (uε) e(uε)dx

≤
C

α

∫
Ωε

Aεe(uε)e(uε)dx

≤c
∥∥νεg∥∥[H−1(Ω)]N ‖e (Pεvε)‖[L2(Ω)]N2 .

Hence (15) gives (11 ii). One may deduce (up to a subsequence) that

Pεu
ε ⇀ u? weakly in [H10 (Ω)]

N . (16)

Consider now the solution vε of the problem

− div (Aεe(vε)) = P ∗ε ν in Ωε,

(Aε(x)e(vε)) · n = 0 on ∂Sε,

vε = 0 on ∂Ω.

(17)

From (11 i), one deduces that

i) Pεv
ε ⇀ v weakly in [H10 (Ω)]

N ,

ii) Aεẽ(vε)⇀ A0e(v) weakly in
(
L2 (Ω)

)N2
,

(18)

where v is the solution to (13).
On the other hand, wε = uε − vε is the solution to

− div (Aεe(wε)) = P ∗ε
(
νεg − ν

)
in Ωε,

(Aε(x)e(wε)) · n = 0 on ∂Sε,

wε = 0 on ∂Ω.

(19)

By choosing wε as a test function in the variational formulation of (19) and (3)
and the fact that Aε ∈Me(α, β,Ω), one has

‖(Pεw
ε)‖2
[L2(Ω)]N2

≤C‖e(wε)‖2
[L2(Ωε)]N

2

≤
C

α

∫
Ωε

Aεe(wε)e(wε)dx

=c〈νεg − ν, Pεw
ε〉[H−1(Ω)]N ,[H10 (Ω)]N .

Since Pεw
ε is bounded in [H10 (Ω)]

N , one deduces from (12 ii) that

〈νεg − ν, Pεw
ε〉[H−1(Ω)]N ,[H10 (Ω)]N → 0,

which implies that
Pεw

ε → 0 strongly in [H10 (Ω)]
N . (20)

This, with (18) proves that in (16) one has u? = u.
Finally, one deduces from (20) and the fact that Aε ∈Me(α, β,Ω) that

‖Aεẽ(wε)‖[L2(Ω)]N2 ≤ c ‖e(w
ε)‖[L2(Ωε)]N2 ≤ c ‖e(Pεw

ε)‖[L2(Ω)]N2 → 0 .
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�

rεS Ωε

Figure 1. A periodic perforated domain

With the convergence (18 ii), it follows then that (12 ii) holds. ♦
Remark 3. As in the case of Theorem 1 of [9], from the linearity of the equation and
the definition of the H0e - convergence, the choice of an nonhomogeneous right-hand
side of the equation (8) is not restrictive.

4. Some applications of the main result

The case of a periodic perforated domain. Let Y = [0, l1[×.. × [0, lN [ be
the representative cell, S an open set of Y with smooth boundary ∂S such that
S ⊂ Y . Let rε be the general term of a positive sequence which converge to zero
and satisfying rε ≤ ε. One denote by τ(rεS) the set of all the translated of rεS of
the form (εkl + rεS), k ∈ ZN , kl = (k1l1, .., kN lN ). It represents the holes in RN .
One suppose that the holes τ(rεS) do not intersect the boundary ∂Ω. If Sε

design the holes contained in Ω, it follows that

Sε is a finite union of the holes, i.e Sε = ∪k∈Krε(kl + S).

Set Ωε = Ω \ Sε, by this construction, Ωε is a periodic perforated domain by holes
of size rε (see Figure 1)
We propose to study the asymptotic behavior of the solution vε of the system

− div (Aεe(vε)) = 0 in Ωε,

(Aε(x)e(vε)) · n = hε on ∂Sε,

vε = 0 on ∂Ω,

(21)

where
hε(x) = h(

x

ε
), h ∈ [L2(∂S)]N Y-periodic. (22)

We suppose that

lim
ε→0

εN

rN−2ε

= 0, (23)

and that Aε = (aεijkh) satisfies

aεijkh(x) = aijkh(
x

ε
), aijkh ∈Me(α, β;Y

∗). (24)

In this case of a periodic perforated domain, the homogenization of system (21) has
been studied by F. Lene in [11] for the case rε = ε, and C. Georgelin in [8] for the
case rε≪ ε. The results obtained allow us to deduce that

(Aε, Sε)⇀
H0e A0, (25)
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where A0 = (a0ijkh) is defined by

A0ijkh =
1

|Y |

∫
Y \S
Aijkhekh(χ

kh − P kh)eij(χij − P
ij)dy, (26)

where P ij is the vector all of whose components are equal to zero except the ith

one, i.e., (P ij)k = yjδki, and for all k, h = 1, .., N , χ
kh ∈ [H1(Y \ S)]N Y-periodic,

and is a solutin to

− div(Ae(χkh − P kh)) = 0 in Y \ S,

(Ae(χkh − P kh)) · n = 0 on ∂S,

if rε = ε and

A0ijkh =
1

|Y |

∫
Y

aijkhekh(χ
kh − P kh)eij(χij − P

ij)dy, (27)

where P ij is the vector all of whose components are equal to zero except the ith one
which is equal to yj , i.e., (P

ij)k = yjδki, and for any k, h = 1, .., N , χ
kh ∈ [H1(Y )]N

Y-periodic is a solution to

− div(Ae(χkh − P kh)) = 0 in Y,

if rε≪ ε.
On the other hand, from the results obtain by D. Cioranescu and P. Donato in

[2] for the case rε = ε, and S. Kaizu in [10] for the case rε≪ ε, we can deduce the
following lemma.

Lemma 1 ([2],[10]). Let νεh be defined by (10). We suppose that (23) is satisfied
and that the reference hole S is star-shaped if rε≪ ε. Then

εN

rN−1ε

νεh → ν in H−1(Ω) strongly, (28)

with

〈ν, v〉H−1(Ω),H10 (Ω) = Ih

∫
Ω

v dx ∀v ∈ H10 (Ω), (29)

and Ih =
1
|Y |

∫
∂S
h ds.

Consequently, we can apply Theorem 1 to uε = εNvε/rN−1ε and gε = εNhε/rN−1ε

to obtain the following theorem.

Theorem 2. Let vε be a solution of (21). Suppose that (22) and (23) are satisfied
and that S is star-shaped if rε ≪ ε. Then there exists Pε an extension operator
satisfying (3) such that

Pε(
εN

rN−1ε

vε)⇀ v0 weakly in [H10 (Ω)]
N ,

Aεe(
εN

rN−1ε

ṽε)⇀ A0e(v0) weakly in
(
L2 (Ω)

)N2
,

where v0 is the solution to

− div
(
A0e(v0)

)
= ν in Ω,

v0 = 0 on ∂Ω,
(30)

with ν defined by (29).
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rε(S + kz
0)/ε

Figure 2. The reference cell

4.1. The case of a perforated domain with double periodicity. We consider
the perforated domain Ωε defined as Ωε = Ω \ Sε, where Sε is a set with a double
periodicity defined below. We adopt here the geometrical framework introduced in
[5] and [6].
Assume that Y and Z are two fixed reference cells,

Y =]0, yo1[×...×]0, y
o
N [, Z =]0, z

o
1[×...×]0, z

o
N [. (31)

We set

y0 = (yo1 , .., y
o
N), z

0 = (zo1 , ..., z
o
N ). (32)

Let F ⊂ Y and S ⊂ Z be two closed subsets with smooth boundaries and nonempty
interiors.
Suppose that rε and ε are the general term of two positive sequences such that

rε < ε and

lim
ε→0

rε

ε
= 0. (33)

We assume that for each ε > 0 there exists a fine Kε ⊂ ZN , such that⋃
k∈Kε

rε

ε
(Z + kz0) = Y, (34)

and that

(∂F ) ∩ (
⋃
k∈Kε

rε

ε
(S + kz0)) = ∅.

This means that for any ε the sets Y and Y \ F are exactly covered by a finite
number of translated cells of rεε Z and

rε
ε S respectively. Denote

SεY = (Y \ F ) ∩ (
⋃
k∈Kε

rε

ε
(S + kz0))

and Yε = Y \ SεY . From (34) it follows that there exist a finite set K
′
ε ⊂ Z

N such
that

SεY =
⋃
k∈K′ε

rε

ε
(S + kz0).

Hence SεY is a subset of Y \F of closed sets (“inclusions”) periodically distributed
with periodicity rε/ε and of the same size as the period (see Figure 2).
We also assume that for each ε > 0, there exists a finite set Hε ⊂ ZN such that⋃

h∈ZN

ε(SεY + hy
0) ∩ Ω =

⋃
h∈Hε

ε(SεY + hy
0)

and we set

Sε =
⋃
h∈Hε

ε(SεY + hy
0).
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Figure 3. The perforated domain Ωε

Hence, ∀ε > 0, Ω and Ωε are exactly covered by a finite number of translated cells
of εYε and εS

ε
Y respectively. Consequently, the structure of Ωε presents a double

periodicity (ε and rε). The zones in which the inclusions are concentrated are ε-
periodic and of size ε. The inclusions in each zone are rε-periodic and of size rε
(see Figure 3).
Our aim is to apply Theorem 1 to this case of double periodicity with a matrix

Aε = (aεijkh) defined in (21) and satisfying

aεijkh(x) = aijkh(
x

ε
,
x

rε
)

i) aijkh Y × Z − periodic

ii) aijkh ∈ L
∞(Z,C0(Y )) or aijkh ∈ L

∞
(
Y,C0(Z)

)
iii) aijkh = aijhk = ajikh

iv) ∃α > 0 s.t. aijkh(y, z)ekheij ≥ αeijeij , a.e. (y, z) ∈ Y × Z

(35)

for any symmetric tensor eij , and h
ε is defined by

hε = (F
ε ◦ Qε)h, hε ∈ H

−1/2(∂Sε) (36)

where h is Z-periodic, h ∈ H−1/2(∂S), and

〈h, 1〉H−1/2(∂S),H1/2(∂S 6= 0. (37)

The operator Qε ∈ L
(
H−1/2 (∂S) , H−1/2 (∂SεY )

)
is defined by

〈Qεz, v〉H−1/2(∂SεY ), H1/2(∂SεY ) =
∑
k∈K′ε

(
rε

ε
)N−1〈z, v◦σ−1ε 〉H−1/2(∂S+kz0), H1/2(∂S+kz0),

(38)
and the operator Fε ∈ L(H−1/2(∂SεY ), H

−1/2(∂Sε)) is defined by

〈Fεu, φ〉H−1/2(∂Sε), H1/2(∂Sε) =
∑
h∈Hε

(ε)N−1〈u, φ◦τ−1ε 〉H−1/2(∂SεY+hy0), H1/2(∂SεY +hy0),

(39)
where σε and τε are the homotheties

σε : x −→
ε

rε
x, τε : x −→

x

ε
. (40)

From the result obtained in [9], we deduce that

(Aε, Sε)⇀
H0e A0, (41)
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where A0 = (a0ijkh) is defined as follows: set

dijkh(y, z) =
(
χF (y) + χY \F (y)χZ\S(z)

)
aijkh(y, z), (42)

and for l,m = 1, .., N, let Rlm =
(
Rlmk
)
k=1,..,N

be the vector defined by

Rlmk = zmδkl.

We denote by χlm = χlm(y, .) the unique function in [H1(Z \S)]N Z-periodic which
is a solution to

−
∂

∂zj
[dijkhe

z
kh(R

lm − χlm)] = 0 in Z \ S

dijkhe
z
kh(R

lm − χlm) · nj = 0 on ∂S.

(43)

We set

qijkh =
1

|Z|

∫
Z\S
dijrse

z
rs(R

kh − χkh)dz.

Let P lm =
(
P lmk
)
k=1,..,N

be the vector defined by P lmk = ymδkl, and let β
lm in

[H1(F )]N Y -periodic, which is a solution to

−
∂

∂yj
[qijkhe

y
kh(P

lm − βlm)] = 0 in F,

qijkhe
y
kh(P

lm − βlm) · nj = 0 on ∂F \ ∂Y .

(44)

We define the homogenizated coefficients by

a0ijkh =
1

|Y |

∫
Y

qijrse
y
rs(P

kh − βkh)dy, (45)

where y = (yi)i=1,..,N and z = (zi)i=1,..,N .
Observe that the coefficients (a0ijkh) are obtained by applying the homogenization

process twice (see the classical methods of homogenization introduced by F. Murat
and L. Tartar in [13] and S. Spagnolo in [14]). Indeed, first starting with the tensor
(dijkh) and homogenizing with respect to Z, we obtain the tensor (qijkh). Then
starting with (qijkh) and homogenizing with respect to Y , we obtain the tensor
(a0ijkh).

On the other hand, using the results obtain by P. Donato and M. El Hajji in [4],
we obtain

Lemma 2. Let νhε be defined by (10), suppose that 〈h, 1〉H−1/2(∂S),H1/2(∂S) 6= 0,
and that (33) is satisfied. Then

rεν
ε
h → ν strongly in H−1(Ω),

where ν is given by

〈ν, φ〉H−1(Ω),H10 (Ω) = γθIh

∫
Ω

φdx ∀φ ∈ H10 (Ω), (46)

with

γ =

(
|Y ‖Z|

|Y − F |
− |S|

)−1
, Ih = 〈h, 1〉H−1/2(∂S),H1/2(∂S), (47)

and θ is defined by

θ =
|F |

|Y |
+
|Y \ F |

|Y |

|Z \ S|

|Z|
.

Hence, we can apply Theorem 1 to uε = rεu
ε and obtain
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Theorem 3. Let vε be the solution of (21). Then there exists Pε an extension
operator satisfying (3) such that

Pε(rεv
ε)⇀ u0 weakly in [H10 (Ω)]

N ,

Aεẽ(rεvε)⇀ A
0e(u0) weakly in

(
L2 (Ω)

)N2
,

where v0 is the solution of the problem

− div
(
A0e(v0)

)
= ν in Ω,

v0 = 0 on ∂Ω,
(48)

where A0 = (a0ijkh) is given by (43)-(45), and ν defined by (46), (47).

Acknowledgments. It is a pleasure for the author to acknowledge his indebtedness
to Patrizia Donato for her help and friendly suggestions throughout this work.

References

[1] Briane M., A. Damlamian & Donato P., H-convergence in perforated domains, Nonlinear
Partial Differential Equations & Their Applications, Vol. 13, Collège de France seminar,
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