A non-local problem with integral conditions for hyperbolic equations *

L. S. Pulkina

Abstract

A linear second-order hyperbolic equation with forcing and integral constraints on the solution is converted to a non-local hyperbolic problem. Using the Riesz representation theorem and the Schauder fixed point theorem, we prove the existence and uniqueness of a generalized solution.

1 Introduction

Certain problems arising in: plasma physics [1], heat conduction [2, 3], dynamics of ground waters [4, 5], thermo-elasticity [6], can be reduced to the non-local problems with integral conditions. The above-mentioned papers consider problems with parabolic equations. However, some problems concerning the dynamics of ground waters are described in terms of hyperbolic equations [4]. Motivated by this, we study the equation

$$
\begin{equation*}
L u \equiv u_{x y}+A(x, y) u_{x}+B(x, y) u_{y}+C(x, y) u=f(x, y) \tag{1}
\end{equation*}
$$

with smooth coefficients in the rectangular domain

$$
D=\{(x, y): 0<x<a, 0<y<b\}
$$

bounded by the characteristics of equation (1), with the conditions

$$
\begin{equation*}
\int_{0}^{\alpha} u(x, y) d x=\psi(y), \quad \int_{0}^{\beta} u(x, y) d y=\phi(x) \tag{2}
\end{equation*}
$$

where $\phi(x), \psi(y)$ are given functions and $0<\alpha<a, 0<\beta<b$. The special case $\alpha=a, \beta=b$ is considered by author in [7]. The consistency condition assumes the form

$$
\int_{0}^{\alpha} \phi(x) d x=\int_{0}^{\beta} \psi(y) d y
$$

[^0]
2 A problem for a loaded equation

Since the integral conditions (2) are not homogeneous, we construct a function $K(x, y)=\frac{1}{\alpha} \psi(y)+\frac{1}{\beta} \phi(x)-\frac{1}{\alpha \beta} \int_{0}^{\alpha} \phi(x) d x$, satisfying the conditions (2), and introduce a new unknown function $\bar{u}(x, \underline{y})=u(x, y)-K(x, y)$. Then (1) is converted into a similar equation $L \bar{u}=\bar{f}$, where $\bar{f}=f-L K$, while the corresponding integral data are now homogeneous. Now we construct another function

$$
M(x, y)=\frac{1}{a} \int_{\alpha}^{a} \bar{u}(x, y) d x+\frac{1}{b} \int_{\beta}^{b} \bar{u}(x, y) d y-\frac{1}{a b} \int_{\beta}^{b} \int_{\alpha}^{a} \bar{u}(x, y) d x d y
$$

which satisfies the conditions

$$
\int_{0}^{a} M(x, y) d x=\int_{\alpha}^{a} \bar{u}(x, y) d x, \quad \int_{0}^{b} M(x, y) d y=\int_{\beta}^{b} \bar{u}(x, y) d y
$$

Let $\bar{u}(x, y)=w(x, y)+M(x, y)$, where $w(x, y)$ satisfies a differential equation to be determined. To find the form of this equation, we consider the previous equality as an integral equation with respect to \bar{u}

$$
\begin{equation*}
\bar{u}(x, y)-\frac{1}{a} \int_{\alpha}^{a} \bar{u}(x, y) d x-\frac{1}{b} \int_{\beta}^{b} \bar{u}(x, y) d y+\frac{1}{a b} \int_{\beta}^{b} \int_{\alpha}^{a} \bar{u}(x, y) d x d y=w(x, y) . \tag{3}
\end{equation*}
$$

It is not difficult to show that

$$
\begin{equation*}
\bar{u}(x, y)=w(x, y)+\frac{1}{\alpha} \int_{\alpha}^{a} w(x, y) d x+\frac{1}{\beta} \int_{\beta}^{b} w(x, y) d y+\frac{1}{\alpha \beta} \int_{\beta}^{b} \int_{\alpha}^{a} w(x, y) d x d y \tag{4}
\end{equation*}
$$

If we substitute (4) into the left-hand side of the equation $L \bar{u}=\bar{f}$, then we obtain the so called loaded equation with respect to $w(x, y)$,

$$
\begin{align*}
& \bar{L} w \equiv w_{x y}+A\left(w+\frac{1}{\beta} \int_{\beta}^{b} w(x, y) d y\right)_{x}+B\left(w+\frac{1}{\alpha} \int_{\alpha}^{a} w(x, y) d x\right)_{y} \\
&+C\left(w+\frac{1}{\alpha} \int_{\alpha}^{a} w(x, y) d x+\frac{1}{\beta} \int_{\beta}^{b} w(x, y) d y\right. \tag{5}\\
&\left.+\frac{1}{\alpha \beta} \int_{\beta}^{b} \int_{\alpha}^{a} w(x, y) d x d y\right)=\bar{f}(x, y)
\end{align*}
$$

and integral conditions

$$
\begin{equation*}
\int_{0}^{a} w(x, y) d x=0, \int_{0}^{b} w(x, y) d y=0 \tag{6}
\end{equation*}
$$

3 Generalized solution

Define the function S by

$$
S w=A\left(w+\frac{1}{\beta} \int_{\beta}^{b} w d y\right)_{x}+B\left(w+\frac{1}{\alpha} \int_{\alpha}^{a} w d x\right)_{y}
$$

$$
+C\left(w+\frac{1}{\alpha} \int_{\alpha}^{a} w d x+\frac{1}{\beta} \int_{\beta}^{b} w d y+\frac{1}{\alpha \beta} \int_{\beta}^{b} \int_{\alpha}^{a} w d x d y\right)
$$

and $F(x, y, S w)=\bar{f}(x, y)-S w$. Then (5) can be assumed to have the form

$$
w_{x y}=F(x, y, S w)
$$

We introduce the function space

$$
V=\left\{w: w \in C^{1}(\bar{D}), \exists w_{x y} \in C(\bar{D}), \int_{0}^{a} w d x=\int_{0}^{b} w d y=0\right\}
$$

The completion of this space, with respect to the norm

$$
\|w\|_{1}^{2}=\int_{0}^{b} \int_{0}^{a}\left(w^{2}+w_{x}^{2}+w_{y}^{2}\right) d x d y
$$

is denoted by $\tilde{H}^{1}(D)$. Notice that $\tilde{H}^{1}(D)$ is Hilbert space with

$$
(w, v)_{1}=\int_{0}^{b} \int_{0}^{a}\left(w v+w_{x} v_{x}+w_{y} v_{y}\right) d x d y
$$

For $v \in \tilde{H}^{1}$ define the operator l by

$$
l v \equiv \int_{0}^{y} v_{x}(x, \tau) d \tau+\int_{0}^{x} v_{y}(t, y) d t-\int_{0}^{y} \int_{0}^{x} v(t, \tau) d t d \tau
$$

Consider the scalar product $\left(w_{x y}, l v\right)_{L_{2}}$. Employing integration by parts and taking account of $w \in V, v \in \tilde{H}^{1}$, we can see that $\left(w_{x y}, v\right)_{L_{2}}=(w, v)_{1}$.

Definition. A function $w \in \tilde{H}^{1}(D)$ is called a generalized solution of the problem (5)-(6), if $(w, v)_{1}=(F(x, y, S w), l v)_{L_{2}}$ for every $v \in \tilde{H}^{1}(D)$.

4 Subsidiary problem

Consider the problem with integral conditions (6) for the equation

$$
w_{x y}=F(x, y)
$$

Theorem 1 Let $F(x, y) \in L_{2}(D)$. Then there exists one and only one generalized solution w_{0} of the problem

$$
\begin{gathered}
w_{x y}=F(x, y) \\
\int_{0}^{a} w d x=0, \quad \int_{0}^{b} w d y=0
\end{gathered}
$$

where for some positive constant c_{1},

$$
\begin{equation*}
c_{1}\left\|w_{0}\right\|_{1} \leq\|F\|_{L_{2}} \tag{7}
\end{equation*}
$$

Proof. For $F(x, y) \in L_{2}(D), \Psi(v)=(F, l v)_{L_{2}}$ is a bounded linear functional on $\tilde{H}^{1}(D)$. Indeed,

$$
|(F, l v)| \leq\|F\|_{L_{2}}\|l v\|_{L_{2}} \leq 3 \max \left\{a^{2}, b^{2}, a^{2} b^{2}\right\}\|F\|_{L_{2}}\|v\|_{1} .
$$

Thus by the Riesz-representation theorem there exists a unique $w_{0} \in \tilde{H}^{1}(D)$ such that $\Psi(v)=(F, l v)_{L_{2}}=\left(w_{0}, v\right)_{1}$. Hence $(w, v)_{1}=\left(w_{0}, v\right)_{1}$ for every $v \in \tilde{H}^{1}(D)$, i.e., w_{0} is generalized solution. Letting $\frac{1}{c_{1}}=3 \max \left\{a^{2}, b^{2}, a^{2} b^{2}\right\}$, we obtain inequality (7).

Lemma 1 Operator $S: \tilde{H}^{1} \rightarrow L_{2}$ is bounded, that is, there exists a positive constant c_{2} such that $\|S w\|_{L_{2}} \leq c_{2}\|w\|_{1}$.

Proof. Let $|A(x, y)| \leq A_{0},|B(x, y)| \leq B_{0}$, and $|C(x, y)| \leq C_{0}$. Then $S w=$ $A \bar{u}_{x}+B \bar{u}_{y}+C \bar{u}$, and

$$
\begin{aligned}
\|S w\|_{L_{2}}^{2} & =\int_{0}^{b} \int_{0}^{a}\left(A \bar{u}_{x}+B \bar{u}_{y}+C \bar{u}\right)^{2} d x d y \\
& \leq 3\left(A_{0}^{2}\left\|\bar{u}_{x}\right\|_{L_{2}}^{2}+B_{0}^{2}\left\|\bar{u}_{y}\right\|_{L_{2}}^{2}+C_{0}^{2}\|\bar{u}\|_{L_{2}}^{2}\right)
\end{aligned}
$$

Now by straightforward calculation, using the inequality $2 a b \leq a^{2}+b^{2}$, and Hölder's inequality, we find that

$$
\begin{gathered}
\|\bar{u}\|_{L_{2}}^{2} \leq c_{3}\|w\|_{L_{2}}^{2} \\
\text { with } c_{3}=4\left(1+\frac{(a-\alpha) a}{\alpha^{2}}+\frac{(b-\beta) b}{\beta^{2}}+\frac{(b-\beta)(a-\alpha) a b}{\alpha^{2} \beta^{2}}\right) \\
\left\|\bar{u}_{x}\right\|_{L_{2}}^{2} \leq c_{4}\left\|w_{x}\right\|_{L_{2}}^{2}, \text { with } c_{4}=2\left(1+\frac{(b-\beta) b}{\beta^{2}}\right) \\
\left\|\bar{u}_{y}\right\|_{L_{2}}^{2} \leq c_{5}\left\|w_{y}\right\|_{L_{2}}^{2}, \text { with } c_{5}=2\left(1+\frac{(a-\alpha) a}{\alpha^{2}}\right)
\end{gathered}
$$

Hence $\|S w\|_{L_{2}}^{2} \leq c_{2}\|w\|_{1}^{2}$, where $c_{2}=3 \max \left\{A_{0}^{2} c_{4}, B_{0}^{2} c_{5}, C_{0}^{2} c_{3}\right\}$. Indeed,

$$
\begin{aligned}
\|S w\|_{L_{2}}^{2} & \leq 3\left(A_{0}^{2} c_{4}\left\|w_{x}\right\|_{L_{2}}^{2}+B_{0}^{2} c_{5}\left\|w_{y}\right\|_{L_{2}}^{2}+C_{0}^{2} c_{3}\|w\|_{L_{2}}^{2}\right) \\
& \leq c_{2}\left(\left\|w_{x}\right\|_{L_{2}}^{2}+\left\|w_{y}\right\|_{L_{2}}^{2}+\|w\|_{L_{2}}^{2}\right) \\
& =c_{2}\|w\|_{1}^{2}
\end{aligned}
$$

As S is linear $S(\sqrt{2} \lambda w)=\sqrt{2} \lambda S(w)$ for arbitrary λ. Let $\lambda>\frac{1}{c_{1}}$, and let

$$
S_{\lambda}(w)=S(\sqrt{2} \lambda w)
$$

Theorem 2 If $\bar{f}(x, y) \in L_{2}(D)$ and $|\bar{f}(x, y)| \leq \frac{P}{\sqrt{2}}$, then there exists at least one generalized solution $w_{0} \in \tilde{H}^{1}(D)$ to problem (5)-(6), where $\left\|w_{0}\right\|_{1}^{2} \leq \frac{P^{2}}{\eta^{2}}$, with $\eta^{2}=c_{1}^{2}-\frac{1}{\lambda^{2}}$. Furthermore, the solution is uniquely determined, if $c_{2}<c_{1}$.

Proof. Consider the closed ball

$$
W=\left\{S_{\lambda} \omega: S_{\lambda} \omega \in L_{2}(D),\left\|S_{\lambda} \omega\right\|_{L_{2}}^{2} \leq \frac{P^{2} a b}{\eta^{2}}\right\}
$$

Then

$$
|F(x, y, S \omega)| \leq|\bar{f}(x, y)|+\sqrt{\frac{c_{1}^{2}-\eta^{2}}{2}}\left|S_{\lambda} \omega\right|
$$

and for all $S_{\lambda} \omega \in W$ we have

$$
\|F(x, y, S \omega)\|^{2} \leq \frac{c_{1}^{2} P^{2} a b}{\eta^{2}}
$$

From Theorem 1 there exists a unique generalized solution of the problem

$$
w_{x y}=F(x, y, S \omega), \int_{0}^{a} w(x, y) d x=0, \int_{0}^{b} w(x, y) d y=0
$$

so that $(w, v)_{1}=(F, l v)_{L_{2}}$ and $\|w\|_{1}^{2} \leq \frac{1}{c_{1}^{2}}\|F\|^{2} \leq \frac{P^{2} a b}{\eta^{2}}$. Define an operator $T: S \omega \in W \rightarrow w=T S \omega \in \tilde{H}^{1}(D), T(W) \subset W$. Notice that T is a continuous operator. To see this, let $(S \omega)_{n},(S \omega)_{0} \in W$ and $\left\|(S \omega)_{n}-(S \omega)_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then for $w_{n}=T(S \omega)_{n}, w_{0}=T(S \omega)_{0}$ we have
$\left(w_{n}-w_{0}, v\right)=\left(F\left(x, y,(S \omega)_{n}\right)-F\left(x, y,(S \omega)_{0}\right), l v\right)_{L_{2}}=\left((S \omega)_{n}-(S \omega)_{0}, l v\right)_{L_{2}}$.
Now from Theorem 1

$$
\left\|w_{n}-w_{0}\right\|_{1} \leq \frac{1}{c_{1}}\left\|(S \omega)_{n}-(S \omega)_{0}\right\|_{L_{2}} \rightarrow 0, \quad n \rightarrow \infty
$$

Furthermore, T is a compact operator. In order to show this, we take a sequence $\left\{(S \omega)_{n}\right\} \subset W$, that is $\left\|(S \omega)_{n}\right\|_{L_{2}}^{2} \leq \frac{P^{2} a b}{\eta^{2}}$. For $w_{n}=T(S \omega)_{n}$ we have $\left\|w_{n}\right\|^{2} \leq \frac{P^{2} a b}{\eta^{2}}$, so a sequence $\left\{w_{n}\right\}$ is bounded in $\tilde{H}^{1}(D)$, therefore there exists a subsequence weakly convergent in $\tilde{H}^{1}(D)$. Since any bounded set in \tilde{H}^{1} is compact in L_{2}, then there exists a subsequence, which we again denote by $\left\{w_{n}\right\}$, strongly convergent in $L_{2}(D)$ to w_{0}, as $n \rightarrow \infty$. Now w_{0} satisfies the inequality $\left\|w_{0}\right\|_{L_{2}}^{2} \leq P^{2} a b / \eta^{2}$. As S is a bounded operator, T is completely continuous and so $T S$ is completely continuous. Thus from Schauder's fixed-point theorem there exists at least one $w_{0} \in W$ such that $w_{0}=T S w_{0}$ and

$$
\left(w_{0}, v\right)_{1}=\left(F\left(x, y, S w_{0}\right), l v\right)_{L_{2}}
$$

for all $v \in \tilde{H}^{1}(D)$.
Assume that w_{1}, w_{2} are distinct generalized solutions, then

$$
\left(w_{1}-w_{2}, v\right)_{1}=\left(F\left(x, y, S w_{1}\right)-F\left(x, y, S w_{2}\right), l v\right)_{L_{2}}
$$

¿From (7) and Lemma 1 we have

$$
\left\|w_{1}-w_{2}\right\|_{1} \leq \frac{1}{c_{1}}\left\|S w_{1}-S w_{2}\right\|_{L_{2}} \leq \frac{c_{2}}{c_{1}}\left\|w_{1}-w_{2}\right\|_{1}
$$

Thus, if $c_{2}<c_{1}$ then it gives a contradiction; therefore, $w_{1}=w_{2}$.

References

[1] Samarskii A.A., Some problems in the modern theory of differential equations, Differentsialnie Uravnenia, 16 (1980), 1221-1228.
[2] Cannon J.R., The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160.
[3] Ionkin N.I., Solution of boundary-value problem in heat-conduction theory with nonclassical boundary condition, Differentsialnie Uravnenia, 13 (1977), 1177-1182.
[4] Nakhushev A.M., On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics, Differentsialnie Uravnenia, 18 (1982), 72-81.
[5] Vodakhova V.A., A boundary-value problem with Nakhushev non-local condition for certain pseudo-parabolic water-transfer equation, Differentsialnie Uravnenia, 18 (1982), 280-285.
[6] Muravei L.A., Philinovskii A.V., On certain non-local boundary- value problem for hyperbolic equation, Matem. Zametki, 54 (1993), 98-116.
[7] Pulkina L., A non-local problem for hyperbolic equation, Abstracts of Short Communications and Poster Sessions, ICM-1998, Berlin, p.217.

Ludmila S. Pulkina
Department of Mathematics
Samara State University
443011, 1, Ac.Pavlov st.
Samara, Russia.
e-mail: pulkina@ssu.samara.ru \& louise@valhalla.hippo.ru

[^0]: * 1991 Mathematics Subject Classifications: 35L99, 35D05.

 Key words and phrases: Non-local problem, generalized solution.
 (c)1999 Southwest Texas State University and University of North Texas.

 Submitted July 29, 1999. Published November 15, 1999.

