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A minmax problem for parabolic systems

with competitive interactions ∗

Sanjay Chawla

Abstract

In this paper we model the evolution and interaction between two com-
peting populations as a system of parabolic partial differential equations.
The interaction between the two populations is quantified by the presence
of non-local terms in the system of equations. We model the whole system
as a two-person zero-sum game where the gains accrued by one population
necessarily translate into the others loss.

For a suitably chosen objective functional(pay-off) we establish and
characterize the saddle point of the game. The controls(strategies) are
kernels of the interaction terms.

1 Introduction

In 1914 Lancaster [4] proposed the first analytic model for describing combat
between two forces. The Lancaster model, a coupled system of ordinary differ-
ential equations, fails to account for the spatial movement of opposing forces on
the battlefield. To overcome this obvious shortcoming and include spatial depen-
dence, Protopopescu et al. [9] introduced a more general model, namely, they
replaced the system of ordinary differential equations with a system of semilin-
ear parabolic equations with competitive interactions. These systems
belong to the class of reaction-diffusion systems which lately have become one
of the mainstream fields in pure, applied and numerical PDE’s [3]. This com-
petition model can be used to represent other phenomenon, e.g., densities of
competing biological populations and concentration of chemical reactants.
In this paper we consider competitive systems as a two-person zero-sum

game which implies that one player’s gains necessarily translate to the other
players’s losses. Each player controls some of the game parameters which the
player can manipulate to navigate the evolution of the system towards a desired
state. A quantitative measurement of the players performance is modeled in
terms of a minimizing(respectively maximizing) functional which depends upon
the state of the system and the controls.
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We will show that under suitable conditions the game admits a unique saddle
point and then we will characterize the saddle point of the game as a solution of
an optimality system. The optimality system will consist of the parabolic state
equations coupled with two adjoint equations. The controls will be the attrition
kernels of the non-local interaction terms. The attrition kernels represent the
effect of “weapons” in the combat model case. In general, the interactions
between the two populations are non-local and the kernels measure the range
over which one population can affect the other population.
Lenhart et al. [8] considered the steady state case with the operator −∆ and

Lenhart et al. [5] have also considered the parabolic case where the controls are
the source terms.
The outline of this part of the paper is the following. In the next section we

give the statement of the problem. The payoff(cost) functional is defined and
for given controls, the unique solution of the state system is constructed. The
existence of the unique saddle point is established in Section 3. In Section 4 the
optimality system is defined and the saddle point is represented as the solution
of this optimality system.

2 Statement of the Problem

Throughout this part of the paper, C denotes generic constants, unless otherwise
indicated.
Let Ω be a bounded domain in Rm with ∂Ω ∈ C1,1, let T > 0 and Q =

Ω× (0, T ). For Γ > 0, define the control set,

CΓ = {c ∈ L
∞
+ (Q×Q) | ‖c‖ ≤ Γ}.

where L∞+ is the set of positive L
∞ functions.

For any c, d ∈ CΓ, let the pair (u, v) = (u(c, d), v(c, d)) denote the solution
of the state system

L1u(x, t) = f(x, t)− u(x, t)

∫
Q

c(x, y, t, τ)v(y, τ) dydτ on Q

L2v(x, t) = g(x, t)− v(x, t)

∫
Q

d(x, y, t, τ)u(y, τ) dyd τ (2.1)

u = u0 , v = v0 on Ω× {0}

u = 0 , v = 0 on Σ = ∂Ω× (0, T )

where u, v ∈ L2(0, T,H10 (Ω)) = V , and

Lku = ut − (a
k
ijuxi)xj + b

k
i uxi + c

ku, k = 1, 2 .

Here we have used the summation convention with respect to repeated indices.
The solutions u, v represent the concentration of the two competing popula-

tions. The sources f, g are given and the attrition kernels c, d are the controls.
The first player controls d with the purpose of maximizing J (the payoff); the
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second player controls c to minimize J (the cost). Given two target functions,
ũ, ṽ ∈ L2, and K, L ≥ 0 andM, N > 0, the payoff (cost) functional J is defined
by

J (c, d) =
1

2

∫
Q

{
K[u(c, d)− ũ]2 − L[v(c, d)− ṽ]2

}
dx dt

+
1

2

∫
Q

∫
Q

(Nc2 −Md2) dx dt dy dτ. (2.2)

The saddle point (c∗, d∗) (if it exists) is defined as a pair of strategies (c∗, d∗) ∈
CΓ × CΓ, such that

J (c∗, d∗) = sup
d∈CΓ

J (c∗, d) = inf
c∈CΓ

J (c, d∗)

We make the following assumptions:

akij , b
k
i , c
k ∈ L∞(Q), k = 1, 2, i, j = 1, ...,m (2.3)

θζizetai ≤ akijζiζj ≤ θ
−1ζiζi, θ > 0 for all ζ ∈ Rm (2.4)

u0, v0 ∈ L∞+ (Ω) (2.5)

ck(x, t) > c0 > 0 , k = 1, 2 . (2.6)

Finally to set up solutions in V , we define the following bilinear form onH10 (Ω) :

ak(t, φ, ψ) =

∫
Ω

akijφxiψxj dx +

∫
Ω

bki φxiψ dx+

∫
Ω

ckφψ dx for each t ∈ (0, T ).

(2.7)
Then for all φ, ψ ∈ L2(0, T,H10 (Ω)), solutions (u, v) in V × V of (2.1) satisfy∫ T

0

(〈ut, ψ〉+ a
1(t, u, ψ)) dt

=

∫ T
0

∫
Ω

(f − u(x, t)

∫
Q

c(x, y, t, τ)v(y, τ) dydτ)ψ dxdt (2.8)

∫ T
0

(〈vt, φ〉+ a
2(t, v, φ)) dt

=

∫ T
0

∫
Ω

(f − v(x, t)

∫
Q

d(x, y, t, τ)u(y, τ) dyd τ)φdx dt

where 〈, 〉 denotes the duality between H10 (Ω) and H
−1(Ω).

Using an iterative scheme we have the following existence result.

Proposition 2.1 (Existence of solutions of the state system). Given
c, d ∈ CΓ, there exists a solution (u, v) of the state system (2.1) in V × V and
there exists a constant C1 > 0 such that 0 ≤ u ≤ C1, 0 ≤ v ≤ C1.
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Proof: Since the bilinear form ak(t, φ, ψ) is continuous and coercive for all
φ, ψ ∈ H10 (Ω), we obtain, using standard linear theory [2], positive solutions u0,
ṽ in V to

L1u0 = f in Q,
u0 = u0 at t = 0,
u0 = 0 on Σ,

and
L2ṽ = g in Q,
ṽ = v0 at t = 0,
ṽ = 0 on Σ.

Solution u0, ṽ will be the supersolutions for the iterates to be constructed.
Also, by standard existence theory[2], there exists a constant C1 > 0 such
that ‖u0‖∞, ‖ṽ‖∞ ≤ C1.
Now let v0 be the solution in V of

L2v0 = g − ṽ
∫
Q
d(x, y, t, τ)u0 dyd τ in Q,

v0 = v0 at t = 0,
v0 = 0 on Σ.

Let (uk, vk) be the solutions of the pair of linear Initial - Boundary value problem

L1uk + µuk = f − uk−1
∫
Q
cvk−1 + µuk−1

L2vk + µvk = g − vk−1
∫
Q
duk−1 + µvk−1 in Q,

uk = u
0, vk = v

0 at t = 0,
uk = 0, vk = 0 on Σ,

(2.9)

where µ is a constant which makes the right hand side of the first equation in
(2.9) an increasing function of u and the right hand side of the second equation
an increasing function of v for iterates in the range 0 ≤ uk, vk ≤ C1. We have
monotone convergence of the iterates,

uk ↘ u, vk ↗ v pointwise, 0 ≤ uk ≤ C1, 0 ≤ vk ≤ C1 ,

through comparision results[5]. From a priori estimates of uk, vk from the
system we get uniform bounds on ‖uk‖V , ‖vk‖V . Thus, uk and vk convege
weakly to u and v in V . Now we show that u, v solve the state system in the
sense of (2.8). The uniform bounds on uk and vk in V combined with the state
equation give uniform bounds for (uk)t and (vk)t in L

2(0, T,H−1(Ω)). Using
compactness results [7, Chapter 4, Prop. 4.2] implies that uk, vk converge
strongly in L2(Q). Passing to the limit in the weak formulation of the system
(2.9) we obtain u = u(c, d) and v = v(c, d) which solve the system (2.1). ♦

Proposition 2.2 (Uniqueness of solutions of the state system.) For a
fixed pair (c, d) in [CΓ]

2 and for c0 sufficiently large, the state system (2.1)
admits a unique solution.
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Proof. Suppose (u, v) and (ū, v̄) solve the state system for given initial condi-
tions u0 and v0. Using test functions (u− ū), (v − v̄) and then subtracting the
(ū, v̄) system from (u, v) system∫

Q

[(u − ū)t(u− ū) + a
1
ij(u− ū)xi(u− ū)xj + b

1
i (u− ū)xi(u − ū) + c

1(u− ū)2

+

∫
Q

[(v − v̄)t(v − v̄) + a
2
ij(v − v̄)xi(v − v̄)xj + b

2
i (v − v̄)xi(v − v̄) + c

2(v − v̄)2] =

−

∫
Q

u(u− ū)

∫
Q

cv +

∫
Q

ū(u− ū)

∫
Q

cv̄ −

∫
Q

v(v − v̄)

∫
Q

du+

∫
Q

v̄(v − v̄)

∫
Q

dū.

(2.10)

We will estimate the various terms in the above equality and show that the
resulting relationship can only be satisfied if u = ū and v = v̄. Note that
(i) ∫

Q

[(u− ū)t(u− ū) + (v − v̄)t(v − v̄)] =
1

2

∫
Ω×T
[(u− ū)2 + (v − v̄)2],

(ii) ∫
Q

a1ij(u − ū)xi(u− ū)xj ≥ θ

∫
Q

[|∇(u − ū)|2,

(iii) ∫
Q

a2ij(v − v̄)xi(v − v̄)xj ≥ θ

∫
Q

[|∇(v − v̄)|2,

where θ is the ellipticity constant in (2.4),
(iv) ∣∣∣∣

∫
Q

b1i (u − ū)xi(u− ū)

∣∣∣∣ ≤ C(ε)
∫
Q

|∇(u− ū)|2 + C(
1

ε
)

∫
Q

(u− ū)2

and
(v) ∣∣∣∣

∫
Q

b2i (v − v̄)xi(v − v̄)

∣∣∣∣ ≤ C(ε)
∫
Q

|∇(v − v̄)|2 + C(
1

ε
)

∫
Q

(v − v̄)2.

We choose ε such that the C(ε)’s in (iv) and (v) equal θ in (ii) and (iii).
Now we estimate the double integrals:

−

∫
Q

u(u− ū)

∫
Q

cv +

∫
Q

ū(u− ū)

∫
Q

cv̄

= −

∫
Q

u(u− ū)

∫
Q

cv +

∫
Q

ū(u − ū)

∫
Q

cv

−

∫
Q

ū(u − ū)

∫
Q

cv +

∫
Q

ū(u − ū)

∫
Q

cv̄
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= −

∫
Q

(u − ū)2
∫
Q

cv −

∫
Q

ū(u− ū)

∫
Q

c(v − v̄)

≤ −

∫
Q

ū(u− ū)

∫
Q

c(v − v̄)

≤ C{

∫
Q

(u− ū)2 +

∫
Q

(v − v̄)2}. (2.11)

By choosing c0 sufficiently large, we absorb the
∫
Q
(u− ū)2 and

∫
Q
(v− v̄)2 terms

on the left hand side in (2.10). Thus we get

(c0 − C){

∫
Q

(u − ū)2 +

∫
Q

(v − v̄)2} ≤ 0

We conclude that u = ū and v = v̄. ♦

3 Existence of the Saddle Point

Sufficient conditions for the objective functional J (c, d) to admit a saddle point
are [1]:
(1) The mapping c 7→ J (c, d) is strictly convex and lower semi-continuous in
the weak toplogy of L2(Q×Q).
(2) The mapping d 7→ J (c, d) is strictly concave and upper semi-continuous in
the weak topology of L2(Q×Q).
We will prove (1), and (2) follows similarly.
For c, c̄ given in CΓ define a new function J : [0,1]→ R as

J(ν) = J (νc+ (1− ν)c, d).

The strict convexity of the map c 7→ J (c, d) is equivalent to showing J ′′(ν) > 0
for all ν in [0, 1].
Since J is a function of the state variables and the state variables them-

selves are functions of the controls, we begin by estimating the first and second
derivatives of u and v with respected to the control c. The derivatives involved
are directional derivatives, in the distributional sense. We begin by deriving a
useful apriori estimate.
Consider the Gelfand triple

V ⊂ L2(Q) ⊂ V ′

and for any (c, d) in [CΓ]
2 define the operator L : V 2 → (V

′
)2 by the formula

L

(
ζ
χ

)
=

(
L1ζ + u

∫
Q
cχ+ ζ

∫
Q
cv

L2χ+ v
∫
Q
dζ + χ

∫
Q
du

)
. (3.12)

Proposition 3.1 For any ε > 0, there exists c0(ε) such that if

ck(x, t) ≥ c0(ε) > 0, k = 1, 2.
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then the solution to

L

(
ζ
χ

)
=

(
α
β

)
, (3.13)

with ζ = χ at t = 0 and ζ = χ = 0 on Σ , satisfies the estimate,

‖ζ‖L2(Q) + ‖χ‖L2(Q) ≤ ε(‖α‖L2(Q) + ‖β‖L2(Q)).

Proof: We multiply the first equation in (3.13) by ζ and the second equation
by χ. Integrating over Q and using the coercivity of the parabolic operators
L1, L2, we get,

1

2

∫
Ω×T
(ζ2 + χ2) + θ

∫
Q

(|∇ζ|2 + |∇χ|2) + c0

∫
Q

(ζ2 + χ2)

≤ −

∫
Q

uζ

∫
Q

cχ−

∫
Q

vχ

∫
Q

dζ +

∫
Q

αζ +

∫
Q

βχ

−

∫
Q

b1i ζxiζ −

∫
Q

b2iχxiχ. (3.14)

Now we use the L∞ bounds of u, v, c, d and the ε - Cauchy inequality to estimate
the right hand side of the above inequality.
(i) −

∫
Q
uζ
∫
Q
cχ ≤ C

∫
Q
ζ
∫
Q
χ ≤ C

∫
Q
ζ2 + C

∫
Q
χ2.

(ii) −
∫
Q
vχ
∫
Q
dζ ≤ C

∫
Q
ζ2 + C

∫
Q
χ2.

(iii)
∫
Q
αζ ≤ ε

∫
Q
α2 + Cε

∫
Q
ζ2.

(iv)
∫
Q
βχ ≤ ε

∫
Q
β2 + Cε

∫
Q
χ2.

(v)
∫
Q
b1i ζxiζ ≤

θ
2

∫
Q
|∇ζ|2 + Cθ

∫
Q
ζ2.

(vi)
∫
Q
b2iχxiχ ≤

θ
2

∫
Q
|∇χ|2 + Cθ

∫
Q
χ2.

Choosing c0 sufficiently large and estimating the right hand side of (3.14) by
the above estimates, we arrive at our conclusion. ♦

We now we prove the existence of first derivatives of u, v with respect to the
controls. These derivatives satisfy a system with operator L from (3.12).

Proposition 3.2 For c0 sufficiently large, the mapping

c 7→ (u(c, d), v(c, d)) ∈ V 2

is differentiable in the sense

u(c+ βc, d)− u(c, d)

β
→ ζ weakly in V, (3.15)

v(c+ βc, d)− v(c, d)

β
→ χ weakly in V, (3.16)

as β → 0, for any (c, d) ∈ [CΓ]2 and c ∈ L∞(Q) such that c+ βc ∈ CΓ.

Also (ζ, χ)
def
= ((ζ(c, d; c, 0), (χ(c, d; c, 0)) is the unique solution of

L

(
ζ
χ

)
= −

(
u(c, d)

∫
Q
cv(c, d)

0

)
. (3.17)

with ζ = χ = 0 at t = 0 and ζ = χ = 0 on Σ.
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Proof: Let (uβ, vβ) be the solution of the state system corresponding to the
controls (c + βc, d).Then multipling the first equation of the state system by
(uβ − u) and the second equation by (vβ − v) and then integrating over Q, we
get∫
Q
(uβ − u)t(uβ − u) +

∫
Q
[a1ij(uβ − u)xi(uβ − u)xj +

∫
Q
b1i (uβ − u)xi(uβ − u) +∫

Q
c1(uβ − u)2]

= −

∫
Q

uβ(uβ − u)

∫
Q

(c+ βc)vβ +

∫
Q

u(uβ − u)

∫
Q

cv (3.18)

and∫
Q

(vβ − v)t(vβ − v) +

∫
Q

a2ij(vβ − v)xi(vβ − v)xj +

∫
Q

b2i (vβ − v)xi(vβ − v)

+

∫
Q

c2(x, y, t, τ)(vβ − v)
2(y, τ) dy dτ

=

−

∫
Q

vβ(vβ − v)

∫
Q

duβ +

∫
Q

v(vβ − v)

∫
Q

du. (3.19)

After standard manipulations on the left hand side of (3.18) ( using coercivity of
the a1ij ’s and applying ε - Cauchy inequality to separate

∫
Q
b1i (uβ−u)xi(uβ−u)

)

θ

2

∫
Q

|∇(uβ − u)|
2 + c0

∫
Q

(uβ − u)
2 ≤ −

∫
Q

uβ(uβ − u)

∫
Q

(c+ βc)vβ

+

∫
Q

u(uβ − u)

∫
Q

cv.

Adding and subtracting
∫
Q
uβ(uβ − u)

∫
Q
(c+ βc)v, we get

θ

2

∫
Q

|∇(uβ − u)|
2 + c0

∫
Q

(uβ − u)
2 ≤ −

∫
Q

(uβ(uβ − u)

∫
Q

(c+ βc)(vβ − v)

−

∫
Q

(uβ − u)
2

∫
Q

cv

−

∫
Q

uβ(uβ − u)

∫
Q

βcv.

Again using the apriori bounds of u, v, c ,
θ
2

∫
Q
|∇(uβ − u)|2 + c0

∫
Q
(uβ − u)2

≤ C{‖(uβ − u)‖
2
L2(Q) + ‖(vβ − v)‖

2
L2(Q)}+ Cβ

2‖c̄‖2L2(Q). (3.20)

Similarly (3.19) yields
θ
2

∫
Q
|∇(vβ − v)|2 + c0

∫
Q
(vβ − v)2

≤ C{‖(uβ − u)‖
2
L2(Q) + ‖(vβ − v)‖

2
L2(Q)} (3.21)
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Combining (3.20) and (3.21), using c0 large, and dividing across by β, we get∥∥∥∥uβ − uβ

∥∥∥∥
V

+

∥∥∥∥vβ − vβ

∥∥∥∥
V

≤ C.

Since bounded sets in V are weakly compact, we arrive at the required weak
limits. In the weak formulation the system satisfied by

uβ − u

β
,
vβ − v

β

is, for test functions φ, ψ ∈ V∫
Q

(
(uβ − u)

β

)
t

φ+

∫
Q

a1ij

(
(
uβ − u)

β

)
xi

φxj +

∫
Q

b1i

(
(uβ − u)

β

)
xi

φ

+

∫
Q

c1
(
(uβ − u)

β

)
φ

=

−
1

β

∫
Q

uβφ

∫
Q

(c+ βc)vβ +
1

β

∫
Q

uφ

∫
Q

cv (3.22)

and ∫
Q

(
(vβ − v)

β

)
t

ψ +

∫
Q

a2ij

(
(
vβ − v)

β

)
xi

ψxj +

∫
Q

b2i

(
(vβ − v)

β

)
xi

ψ

+

∫
Q

c2
(
(vβ − v)

β

)
ψ

=

−
1

β

∫
Q

vβψ

∫
Q

duβ +
1

β

∫
Q

uψ

∫
Q

du. (3.23)

Letting β → 0 and noting uβ → u , vβ → v we get

L

(
ζ
χ

)(
φ
ψ

)
= −

∫
Q

(φ, ψ)

(
u(c, d)

∫
Q
cv(c, d)

0

)
. (3.24)

♦

We have a similar result for the directional derivative of u, v with respect to
the control d.

Proposition 3.3 For c0 sufficiently large, the mapping

d 7→ (u(c, d), v(c, d)) ∈ V 2

is differentiable in the sense

u(c, d+ βd̄)− u(c, d)

β
→ ξ weakly in V, (3.25)
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v(c, d+ βd̄)− v(c, d)

β
→ σ weakly in V, (3.26)

as β → 0, for any (c, d) ∈ [CΓ]2 and d̄ ∈ L∞(Q) such that d+ βd̄ ∈ CΓ.

Also (ξ, σ)
def
= ((ξ(c, d; 0, d̄), (σ(c, d; 0, d̄)) is the unique solution of

L

(
ξ
σ

)
= −

(
0

v(c, d)
∫
Q
du(c, d)

)
. (3.27)

with ξ = σ = 0 at t = 0 and ξ = σ = 0 on Σ.

We present next the result for the second dervatives of u, v with respect to the
controls.

Proposition 3.4 The mapping

c 7→ (u(c, d), v(c, d)) ∈ V 2

admits second derivatives with respect to c in the sense

ζ(c + βc, d; c, 0)− ζ(c, d; c, 0)

β
→ τ weakly in V, (3.28)

χ(c+ βc, d; c, 0)− χ(c, d; c, 0)

β
→ η weakly in V, (3.29)

as β → 0, for any (c, d) ∈ [CΓ]2 and c ∈ L∞(Q) such that c+ βc ∈ CΓ.

Also (τ, η)
def
= ((τ(c, d; c, 0; c, 0), η(c, d; c, 0; c, 0)) is the unique solution of

L

(
τ
η

)
= −2

(
ζ
∫
Q
cχ+ u

∫
Q
cχ+ ζ

∫
Q
cv

χ
∫
Q
dζ

)
. (3.30)

with τ = η = 0 at t = 0 and τ = η = 0 on Σ.

Proof: We denote by ζβ , χβ , ζ, χ the solutions of system (3.17) corresponding
to
(c+ βc, d; c, 0) and (c, d; c, 0) respectively. Using test functions (ζβ − ζ, χβ − χ)
we subtract the (ζ, χ) system from the (ζβ , χβ) system∫
Q

[(ζβ− ζ)t(ζβ− ζ)+a
1
ij(ζβ− ζ)xi(ζβ− ζ)xj + b

1
i (ζβ− ζ)xi(ζβ− ζ)+ c

1(ζβ− ζ)
2]

+

∫
Q

[(χβ − χ)t(χβ − χ) + a
2
ij(χβ − χ)xi(χβ − χ)xj ]

+

∫
Q

[b2i (χβ − χ)xi(χβ − χ) + c
2(χβ − χ)

2]

= (3.31)

−

∫
Q

(ζβ − ζ)ζβ

∫
Q

c(vβ − v)−

∫
Q

(ζβ − ζ)
2

∫
Q

cv −

∫
Q

(ζβ − ζ)uβ

∫
Q

c(χβ − χ)
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−

∫
Q

(ζβ − ζ)(uβ − u)

∫
Q

cχ−

∫
Q

(ζβ − ζ)ζβ

∫
Q

βcvβ −

∫
Q

(ζβ − ζ)uβ

∫
Q

βcχβ

−

∫
Q

(ζβ − ζ)uβ

∫
Q

c(vβ − v)−

∫
Q

(ζβ − ζ)(uβ − u)

∫
Q

cv −

∫
Q

(χβ − χ)
2

∫
Q

duβ

−

∫
Q

(χβ−χ)vβ

∫
Q

d(ζβ−ζ)−

∫
Q

(χβ−χ)(vβ−v)

∫
Q

dζ−

∫
Q

(χβ−χ)χ

∫
Q

d(uβ−u).

We illustrate the estimates for a term with the kernel;∣∣∣∣
∫
Q

(ζβ − ζ)ζβ

∫
Q

c(vβ − v)

∣∣∣∣
=

∣∣∣∣
∫
Q

(
(ζβ − ζ)ζβ

∫
Q

c(vβ − v)(y, τ) dy dτ

)
(x, t) dx dt

∣∣∣∣ (3.32)

≤ C

∫
Q

(ζβ − ζ)
2(x, t) dx dt + C

∫
Q

(
ζβ

∫
Q

(vβ − v)(y, τ) dy dτ

)2
dx dt

≤ C

∫
Q

(ζβ − ζ)
2(x, t) dx dt + C

(∫
Q

ζ2β dx dt

)(∫
Q

(vβ − v)
2 dy dτ

)
.(3.33)

Notice how the specific form of the non-local term was used to derive (3.33)
from (3.32). Other such terms are estimated as below:

−

∫
Q

(ζβ − ζ)
2

∫
Q

cv ≤ 0.

∫
Q

(ζβ − ζ)uβ

∫
Q

c(χβ − χ) ≤ C

∫
Q

(ζβ − ζ)
2 + C

∫
Q

(χβ − χ)
2.

∫
Q

(ζβ − ζ)(uβ − u)

∫
Q

cχ ≤ C

∫
Q

(ζβ − ζ)
2 + C

∫
Q

(uβ − u)
2.

∫
Q

(ζβ − ζ)ζβ

∫
Q

βcvβ ≤ C

∫
Q

(ζβ − ζ)
2 + Cβ2

∫
Q

ζ2β .

All the terms of the form above
∫
Q
(ζβ−ζ)2 and

∫
Q
(χβ−χ)2 can be combined

with the c1
∫
Q
(ζβ−ζ)2 and c2

∫
Q
(χβ−χ)2 in equation (3.31). Terms above with

ζ2β , χ
2
β are estimated as follows:(∫
Q

ζ2β

)(∫
Q

(vβ − v)
2

)
+

(∫
Q

χ2β

)(∫
Q

(uβ − u)
2

)

≤
(
‖uβ − u‖

2
L2(Q)‖+ ‖vβ − v‖

2
L2(Q)‖

)(
‖ζβ‖

2
L2(Q) + ‖χβ‖

2
L2(Q)

)
.

Other terms include

Cβ2
∫
Q

ζ2β , Cβ
2

∫
Q

χ2β
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and

C

∫
Q

(vβ − v)
2, C

∫
Q

(uβ − u)
2.

Now use the estimate in equation (3.20) to get(
‖uβ − u‖

2
L2(Q) + ‖vβ − v‖

2
L2(Q)

)
≤ Cβ2‖c‖2L2(Q×Q).

Using proposition (3.1) with α = c̄ and β = 0 we derive(
‖ζβ‖

2
L2(Q) + ‖χβ‖

2
L2(Q)

)
≤ C‖c‖2L2(Q×Q).

The above estimates provide an a priori bound for the second derivative which
proves (3.28) and (3.29). These weak convergences of the quotients justify that
η and τ satisfy the weak formulation of the system (3.30). ♦
Remark 1. The estimates in the above Proposition also give us uniform L2

bounds for the second derivatives of τ and η. Namely,

‖τ‖L2(Q) + ‖η‖L2(Q) ≤ C‖c‖
2
L2(Q×Q).

Remark 2. From the proof of previous proposition,

uβ − u

β
→ ζ strongly in L2(Q),

vβ − v

β
→ χ strongly in L2(Q),

ζβ − ζ

β
→ τ strongly in L2(Q),

χβ − χ

β
→ η strongly in L2(Q).

(3.34)

We have a similar result for the second derivatives of u and v with respect
to the control d.

Proposition 3.5 The mapping

d 7→ (u(c, d), v(c, d)) ∈ V 2

admits second derivatives with respect to c in the sense

ζ(c, d + βd, 0; d)− ζ(c, d; 0, d)

β
→ κ weakly in V, (3.35)

χ(c, d+ βd, 0; d)− χ(c, d; 0, d)

β
→ δ weakly in V, (3.36)

as β → 0, for any (c, d) ∈ [CΓ]2 and d ∈ L∞(Q) such that d+ βd ∈ CΓ.

Also (κ, δ)
def
= ((κ(c, d; 0, d; 0, d), δ(c, d; 0, d; 0, d)) is the unique solution of

L

(
κ
δ

)
= −2

(
ξ
∫
Q
dσ + v

∫
Q
dσ + ξ

∫
Q
du

σ
∫
Q
cξ

)
. (3.37)

with κ = δ = 0 at t = 0 and κ = δ = 0 on Σ.
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Proposition 3.6 For a fixed d ∈ CΓ, the mapping c ∈ CΓ 7→ J (c, d) is strictly
convex.

Proof: As mentioned earlier, it suffices to show that J ′′(ν) > 0 for ν ∈ [0, 1].

The justification for differentiating J is a consequence of the above established
first and second derivatives of u, v with respect to the control variable c and the
strong convergence noted in the previous proposition. Now, for 0 ≤ ν ≤ 1,

J(ν) = J (c+ ν(c− c), d).

The directional derivative is now in the direction c− c.
Denoting

u = u(c+ ν(c− c), d),

v = v(c+ ν(c− c), d),

ζ = ζ(c+ ν(c− c), d; c− c, 0),

χ = χ(c+ ν(c− c), d; c− c, 0),

τ = χ(c+ ν(c− c), d; c− c, 0; c− c, 0),

η = η(c+ ν(c− c), d; c− c, 0; c− c, 0),

J(ν) =

∫
Q

{
K[u− ũ]2 − L[v − ṽ]2

}
+

∫
Q

∫
Q

{
N(c+ ν(c− c))2 −Md2

}
.

Differentiating twice with respect to c

J ′′(ν) =

∫
Q

(Kζ2 +K[u− ũ]τ − L[v − ṽ]η − Lχ2)

+

∫
Q

∫
Q

N(c− c̄)2. (3.38)

J ′′(ν) ≥ −K‖u‖L2(Q)‖τ‖L2(Q) −K‖ũ‖L2(Q)‖τ‖L2(Q)

− L‖χ‖2L2(Q) − L‖v‖L2(Q)‖η‖L2(Q)

− L‖ṽ‖L2(Q)‖η‖L2(Q) +N‖c− c‖
2
L2(Q).

From proposition 3.4, for ε > 0 there exists c0(ε) such that for ck > c0,
k = 1, 2,

‖τ‖L2(Q) + ‖η‖L2(Q) ≤ ε‖c− c‖
2
L2(Q×Q)

and
‖χ‖2L2(Q) ≤ ε‖c− c‖

2
L2(Q×Q).

Combining these estimates with above we get

J ′′(ν) > (N − ε̃)‖c− c‖2L2(Q×Q).

♦
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Proposition 3.7 For a fixed d ∈ CΓ the mapping c ∈ CΓ 7→ J (c, d) is lower
semicontinuous in the weak topology on L2(Q×Q).

Proof: It is enough to show for every α ∈ R,

S(d, α) = {h|h ∈ CΓ,J (h, d) ≤ α}

is closed in the weak topology of L2(Q × Q). Let d ∈ CΓ and α ∈ R be fixed
such that

J (cn, d) ≤ α

and

cn → ĉ weakly in L∞(Q×Q).

Using the state systems, un(cn, d), vn(cn, d) satisfy

‖un‖V , ‖vn‖V ≤ C.

Then, using compactness results [7, Chapter 4, Prop. 4.2] , we can find subse-
quences such that

un → u weakly in V, strongly in L2(Q)

vn → v weakly in V, strongly in L2(Q).

Standard continuity arguments show that

u = u(ĉ, d) v = v(ĉ, d).

Also using a generalization of Fatou’s lemma,

lim inf J (cn, d) ≥ J (ĉ, d).

♦

Theorem 3.1 If c0 is large enough, there exists a unique saddle point (c
∗, d∗).

Proof: Combining Propostion 3.6 and Proposition 3.7 and the existence of
saddle point result from Ekeland and Temam [1, Chap.6, Propositions 1.5 and
2.1], we conclude that the cost functional admits a unique saddle point. ♦

4 The Optimality System

The solution of the optimality system, consisting of the two state equations and
two suitably chosen adjoint equations, will be used to characterize the saddle
point of the game.



EJDE–1999/50 Sanjay Chawla 15

Theorem 4.1 If (c, d) ∈ [CΓ]2 is the saddle point and c0 is sufficiently large,
then there exists (u, v, p, q) ∈ V 4 satisfying:

L1u+ u
∫
Q
cv = f

L2v + v
∫
Q
du = g

L∗1p+ p
∫
Q
cv −

∫
Q
dT vq = K(u− ũ)

L∗2q + q
∫
Q
du −

∫
Q
cTup = −L(v − ũ) in Q

(4.39)

u(x, t) = u0, v(x, t) = v0 on Ω× {0}

u(x, t) = v(x, t) = 0 on Σ

p(x, T ) = q(x, T ) = 0 on Ω× T

p(x, t) = q(x, t) = 0 onΣ,

(4.40)

where
L∗ku = −ut − (a

k
ijuxj)xi − (b

k
i u)xi + c

ku, k = 1, 2.

Moreover on Q,

c(x, y, t, τ) = min(
p+(x, t)u(x, t)v(y, τ)

N
,Γ),

d(x, y, t, τ) = min(
q+(x, t)u(y, τ)v(x, t)

M
,Γ),

where p+ = max(p, 0).

Proof: Let (c, d) ∈ [CΓ]2 be a saddle point. Choose c ∈ L∞(Q×Q) in such
a way that for β > 0 arbitrarily small, c+ βc lies in the set CΓ. Since (c, d) is
a saddle point,

lim
β→0

J (c+ βc, d)− J (c, d)

β
≥ 0. (4.41)

Substituting the explicit form of the cost functional in (4.41), dividing by β,
and noting

uβ−u
β
→ ζ strongly in L2(Q), and uβ → u, we get

∫
Q

(K(u− ũ)ζ − L(v − ṽ)χ) dx dt+

∫
Q

∫
Q

Ncc dxdy dtdτ ≥ 0. (4.42)

We introduce a new notation:

dT (x, y, t, τ) := d(y, x, τ, t), cT (x, y, t, τ) := c(y, x, τ, t).

Now we define an operator L∗ such that formally

(p, q)L

(
ζ
χ

)
= (ζ, χ)L∗

(
p
q

)
.
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We define the adjoint functions (p, q) as the solutions in V of

L∗1p+ p
∫
Q
cv −

∫
Q
dT vq = K(u− ũ), in Q

L∗2q + q
∫
Q
du−

∫
Q
cTup = −L(v − ṽ),

p(x, T ) = q(x, T ) = 0, on Ω× T
p(x, t) = q(x, t) = 0, on Σ.

(4.43)

The solution of the above system, after a change of variable p̂(x, t) = p(x, T−
t) and q̂(x, t) = q(x, T − t), is constructed in a manner similar to that of the
solution of the original state system. Substituting (4.43) in (4.42), we get∫

Q

(ζ, χ)L∗
(
p
q

)
+

∫
Q

∫
Q

Ncc ≥ 0

Now, from (3.27)∫
Q

(p, q)L

(
ζ
χ

)
+

∫
Q

∫
Q

Ncc̄ =

∫
Q

(p, q)

(
−u
∫
Q
cv

0

)
+

∫
Q

∫
Q

Ncc ≥ 0

This implies ∫
Q

∫
Q

(Nc− puv)c ≥ 0. (4.44)

Since we can choose c̄ non-negative and arbitrary, this implies

Nc− puv ≥ 0.

On the set {(x, y, t, τ)|c(x, y, t, τ) = 0} we get puv ≤ 0 which gives

p+ = 0.

On the set {(x, y, t, τ)|0 < c(x, y, t, τ)Γ}, c̄ has arbitrary sign, which implies
p ≥ 0 and

c =
p+uv

N
.

On the set {(x, y, t, τ)|c(x, y, t, τ) = Γ}, c̄ must be non-positive, which gives

Nc− puv ≤ 0.

Combining these results we get

c(x, y, t, τ) = min(
p+(x, t)u(x, t)v(y, τ)

N
,Γ)

.
Similarly,

d(x, y, t, τ) = min(
q+(x, t)u(y, τ)v(x, t)

M
,Γ).

♦
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Theorem 4.2 For c0 sufficiently large, bounded solutions of the optimality sys-
tem:

L1u+ u
∫
Q
min(p

+uv
N

,Γ)v = f

L2v + v
∫
Q
min( q

+uv
M

,Γ)u = g

L∗1p+ p
∫
Q
min(p

+uv
N ,Γ)v −

∫
Q
min( q

+uv
M ,Γ)T vq = K(u− ũ)

L∗2q + q
∫
Q
min( q

+uv
M ,Γ)u−

∫
Q
min(p

+uv
N ,Γ)Tup = −L(v − ũ) in Q

(4.45)
u(x, t) = u0, v(x, t) = v0 on Ω× 0

u(x, t) = v(x, t) = 0 on Σ

p(x, T ) = q(x, T ) = 0 on Ω× T

p(x, t) = q(x, t) = 0 on Σ.

(4.46)

exist and are unique in the solution space [V ]4 .

Proof: The existence of the saddle point implies the existence of u, v and
then the existence of p, q. The optimality system for a strictly convex-concave
functional completely characterizes its saddle points ♦

5 Summary

We have proved that a two person zero sum game described by a system of
parabolic equations with competitive interactions can be controlled via the non-
local kernels of the interacting terms, and the saddle point can be represented
in terms of the optimality system.
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