ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. 2000(2000), No. 05, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

Nonlinear perturbations of systems of partial differential equations with constant coefficients *

C. J. Vanegas

Abstract

In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

1 Introduction

Let $G \subset \mathbb{R}^n$ be a bounded region with smooth boundary, and let $(B(G), \|.\|)$ be a Banach space of functions defined on G. For each natural number n, let $B^n(G)$ denote the space of functions f satisfying $D^m f \in B(G)$ for all multiindex m with $|m| \leq n$. Then under the norm $||f||_n = \max_{|m| \leq n} ||D^m f||$, the space $B^n(G)$ becomes a Banach space.

We consider the system

$$D_0\omega = f(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_1}, \dots, \frac{\partial \omega}{\partial x_n})$$
 in G , (1)

where D_0 is a linear differential operator of first order with respect to the real variables x_1, \ldots, x_n , the vector **x** has components (x_1, \ldots, x_n) , and the unknown ω

and the right-hand side f are vectors of m components, with $m \ge n$. To this system of differential equations, we add the boundary condition

$$Aw = g \quad \text{on } \partial G \,, \tag{2}$$

where g is a given m-dimensional vector-valued function that belongs to the Banach space $B^1(\partial G)$. The operator A is chosen so that (2) leads to a wellposed problem on $B^1(G) \cap \ker D_0$.

For finding a solution to this nonlinear problem, we use a right inverse of the operator D_0 and a fix point argument [9, 8]. First, we construct the right inverse

^{*1991} Mathematics Subject Classifications: 35F30, 35G30, 35E20.

Key words and phrases: Right inverse, nonlinear differential equations, fixed point theorem. ©2000 Southwest Texas State University and University of North Texas. Submitted April 6, 1999. Published Janaury 8, 2000.

for a first order differential operator of constant coefficients. Then using that the operator D_0 , in its matrix form, commutes with the elements of the formal adjoint matrix, we obtain the right inverse. In fact, we obtain a formal algebraic inversion through the associated operators determinant and adjoint matrix of D_0 . In the last section of this article, we describe a natural generalization to high order systems, and show two applications of this method.

2 The Right Inverse of D_0 .

The operator D_0 in (1) is represented in a matrix form as

$$D_0 = \begin{pmatrix} D_{11} & \dots & D_{1m} \\ \vdots & & \\ D_{m1} & \dots & D_{mm} \end{pmatrix},$$

where D_{ij} is the differential operator of first order with respect to the real variables $x_1 \dots x_n$.

The determinant of D_0 is computed formally, and is a scalar linear differential operator with constant coefficients. Note that det D_0 maps the space $B^m(G)$ into the space B(G). As a general hypothesis, we assume that the differential operator det D_0 possesses a continuous right inverse:

$$T_{\det D_0}: B(G) \to B^m(G) \tag{3}$$

which is an operator that improves the differentiability of functions in B(G) by m orders.

The adjoint matrix associated with D_0 , in algebraic sense, is computed formally, resulting a linear matrix differential operator, denotes by $\operatorname{adj} D_0$, with constant coefficients and of order m-1 respect to the real variables $x_1 \dots x_n$, i.e., m-1 is the order of the highest derivative that appears in the coefficients of the matrix. We observe that $\operatorname{adj} D_0$ maps the space $B^m(G)$ into the space $B^1(G)$. Under the assumptions above, we obtain the following result.

Theorem 2.1 The differential operator

$$\operatorname{adj} D_0(T_{\det D_0}) : B(G) \to B^1(G)$$

is a right inverse operator for D_0 .

Proof. Note that $D_0 \operatorname{adj} D_0 = \det D_0 I$, which is satisfied due to the fact that D_0 is a differential operator with constant coefficients. From this remark and (3) the proof follows. \Box

EJDE-2000/05

3 First-Order Nonlinear Systems

We define the fitting operator

 $\Omega: B^1(\partial G) \to B^1(G) \cap \ker D_0$

by the relation

$$A(\Omega\phi) = A(\phi) \quad \text{for each } \phi \in B^1(\partial G). \tag{4}$$

i.e., to each $\phi \in B^1(\partial G)$ we associate the unique $B^1(G)$ -solution to (4) in ker D_0 .

Theorem 3.1 The boundary-value problem (1)-(2) is equivalent to the fixed point problem for the operator

$$T(\omega, h_1, \dots, h_n) = (W, H_1, \dots, H_n), \qquad (5)$$

where

$$W = \Omega g + (I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I) f(\boldsymbol{x}, \omega, h_1, \dots, h_n)$$
(6)

$$H_j = \frac{\partial}{\partial x_j} (\Omega g + (I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I)) f(\boldsymbol{x}, \omega, h_1, \dots, h_n),$$
(7)

with j = 1, ..., n.

Proof. Let $\omega \in B^1(G)$ be a solution to (1)-(2). To the function

$$\Psi = w - \operatorname{adj} D_0(T_{\det D_0}I)f(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_1}, \dots, \frac{\partial \omega}{\partial x_n})$$
(8)

we apply the operator D_0 to obtain

$$D_0 \Psi = D_0 \omega - D_0 \operatorname{adj} D_0(T_{\det D_0} I) f(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_1}, \dots, \frac{\partial \omega}{\partial x_n}) = 0.$$

Thus, $\Psi \in \ker D_0$. To Ψ we apply the operator A and obtain

$$A\Psi = A\omega - A \operatorname{adj} D_0(T_{\det D_0}I)f(\mathbf{x}, \omega, \frac{\partial\omega}{\partial x_1}, \dots, \frac{\partial\omega}{\partial x_n})$$

= $g - A \operatorname{adj} D_0(T_{\det D_0}I)f(\mathbf{x}, \omega, \frac{\partial\omega}{\partial x_1}, \dots, \frac{\partial\omega}{\partial x_n}).$

According to the definition of the operator Ω , we have

$$\Psi = \Omega g - \Omega \operatorname{adj} D_0(T_{\det D_0}I)f(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_1}, \dots, \frac{\partial \omega}{\partial x_n}).$$

Substituting this expression in (8) and differentiating with respect to x_j , we conclude that $(\omega, \frac{\partial \omega}{\partial x_1}, \ldots, \frac{\partial \omega}{\partial x_n})$ is a fixed point of (5). On the other hand if $(\omega, h_1, \ldots, h_n)$ is a fixed point of (5), we can carry out

On the other hand if $(\omega, h_1, \ldots, h_n)$ is a fixed point of (5), we can carry out the differentiation of (6) with respect to x_j for each $j = 1, \ldots, n$. Because ω is in $B^1(G)$, we obtain

$$\frac{\partial w}{\partial x_j} = \frac{\partial}{\partial x_j} (\Omega g + (I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I)) f(\mathbf{x}, \omega, h_1, \dots, h_n).$$

Comparing these equations with (7), it follows that $\frac{\partial \omega}{\partial x_j} = h_j$ for $j = 1, \ldots, n$. Substituting these equations in (6) and then applying the operator D_0 we obtain $D_0\omega = f(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_1}, \ldots, \frac{\partial \omega}{\partial x_n})$. Applying Ω to (6) we conclude that

$$\Omega \omega = \Omega \Omega g + \Omega (I - \Omega) \operatorname{adj} D_0 (T_{\det D_0} I) f(\mathbf{x}, \omega, h_1, \dots, h_n) = \Omega g.$$

By the definition of the operator Ω , it follows that $A(\omega) = g$, and hence, ω is a solution of (1)-(2). \Box

Consider the polycylinder

$$M = \{(\omega, h_1, \dots, h_n) \in \prod_{i=1}^{n+1} B(G) : \|\omega - \omega_0\| \le a_0, \\ \|h_j - h_{j_0}\| \le a_j, j = 1, \dots, n\}$$

where $\omega_0 \in B^1(G)$ and $h_{j_0} \in B(G)$ are taken as the coordinates of the polycylinder mid-point, and a_0, a_1, \ldots, a_n are positive real numbers.

From the definition of the operators $T_{\det D_0}$, $\operatorname{adj} D_0$, and Ω , it follows that the operators

$$(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I) : B(G) \to B(G) \quad \text{and}$$

$$\tag{9}$$

$$\frac{\partial}{\partial x_j}(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I) : B(G) \to B(G)$$
 (10)

are continuous and hence bounded. Therefore, for all $(\omega, h_1, \ldots, h_n) \in M$ we have

$$\begin{split} \|W - \omega_0\| &= \|\Omega g + (I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I) f(\mathbf{x}, \omega, h_1, \dots, h_n) - \omega_0\| \\ &= \|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I) [f(\mathbf{x}, \omega, h_1, \dots, h_n) - D_0 \omega_0] \\ &+ (I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I) D_0 \omega_0 + \Omega g - \omega_0\| \\ &\leq \|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I) \| \|f(\mathbf{x}, \omega, h_1, \dots, h_n) - D_0 \omega_0\| + K_0 \end{split}$$

and

$$\begin{split} \|H_j - h_{j_0}\| \\ &= \|\frac{\partial}{\partial x_j}[\Omega g + (I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)]f(\mathbf{x}, \omega, h_1, \dots, h_n) - h_{j_0}\| \\ &\leq \|\frac{\partial}{\partial x_j}(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)\| \|f(\mathbf{x}, \omega, h_1, \dots, h_n) - D_0\omega_0\| + K_j \,, \end{split}$$

where

$$K_0 = \|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)D_0\omega_0 + \Omega g - \omega_0\|$$

$$K_j = \|\frac{\partial}{\partial x_j}(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)D_0\omega_0 + \frac{\partial}{\partial x_j}\Omega g - h_{j_0}\|,$$

for j = 1, ..., n.

C. J. Vanegas

For a positive real number R and $j = 1, 2, \ldots n$, we set

$$a_0 = \|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)\|R + K_0$$

$$a_j = \|\frac{\partial}{\partial x_j}(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)\|R + K_j$$

For the rest of this article, we will denote by M_R the polycylinder M with the parameters a_0, a_1, \ldots, a_n as defined above.

Theorem 3.2 Let R be a positive real number such that f maps the polycylinder M_R into B(G) and satisfies the growth condition

$$\|f(\boldsymbol{x},\omega,h_1,\ldots,h_n) - D_0\omega_0\| \le R, \quad \forall (\omega,h_1,\ldots,h_n) \in M_R.$$

Then the operator T maps continuously the polycylinder M_R into itself.

Proof. Let $(\omega, h_1, \ldots, h_n)$ be an element in M_R and (W, H_1, \ldots, H_n) its image under T. Since $(\omega, h_1, \ldots, h_n) \in M_R$, by the definitions of the operators $T_{\det D_0}$, adj D_0 and Ω , it follows that $W \in B^1(G) \subset B(G)$. Since $\frac{\partial}{\partial x_j}$: $B^1(G) \to B(G)$, it follows that $H_j \in B(G)$ for all $j = 1, \ldots, n$. Therefore, $T: M_R \to \prod_{i=1}^{n+1} B(G)$. That (W, H_1, \ldots, H_n) is in M_R follows from the boundedness of the operators (9)-(10), the hypotheses on f, and the definition of M_R . \Box

Theorem 3.3 Suppose f maps the polycylinder M_R into the space B(G), and that f is Lipschitz continuous with constant L satisfying

$$L < \min\{\|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)\|^{-1}, \|\frac{\partial}{\partial x_j}(I - \Omega) \operatorname{adj} D_0(T_{\det D_0}I)\|^{-1}\},\$$

for j = 1, ..., n. Then T is a contraction.

Proof. Let $(\omega, h_1, \ldots, h_n)$, $(\omega', h'_1, \ldots, h'_n)$ be elements of M_R , and (W, H_1, \ldots, H_n) , (W', H'_1, \ldots, H'_n) be their images under T. Since the operators (9) and (10) are bounded and f is Lipschitz with constant L, it follows that

$$\begin{aligned} \|W - W'\| &\leq \|(I - \Omega) \operatorname{adj} D_0(T_{\det D_0} I)\| L\|(\omega, h_1, \dots, h_n) - (\omega', h'_1, \dots, h'_n)\| \\ &\leq \|(\omega, h_1, \dots, h_n) - (\omega', h'_1, \dots, h'_n)\|. \end{aligned}$$

Similarly,

$$||H_j - H'_j|| \le ||(\omega, h_1, \dots, h_n) - (\omega', h'_1, \dots, h'_n)||$$

for j = 1, ..., n. Therefore, T is a contraction. \Box

With the aid of Theorems 3.1, 3.2 and 3.3, we obtain existence and uniqueness of a solution for Problem (1)-(2).

Theorem 3.4 Suppose that f satisfies the hypotheses of Theorems 3.2 and 3.3. Then Problem (1)-(2) possesses exactly one solution in the polycylinder M_R . **Proof.** By definition M_R is a closed subset in the space B(G). Applying Theorems 3.2 and 3.3, we realize that T maps M_R into itself, and it is a contraction; therefore, according to the Fixed Point Theorem there exists a unique fixed point in M_R . As a consequence of Theorem 3.1 this fixed point is a solution to Problem (1)-(2). \Box

4 High-Order Systems

In this section we apply the method developed in the above section to high-order equations. Consider the system of differential equations

$$D_0\omega = f(\mathbf{x}, D^r\omega) \tag{11}$$

where D^r is a differential operator of order r, and D_0 is a linear differential operator of order r. The unknown ω and the right-hand side f are vector-valued functions of m components, with $m \geq n$.

We will assume that the associated differential operator det D_0 has a continuous right inverse, $T_{\det D_0} : B(G) \to B^{rm}(G)$.

To system (11) we add the boundary condition

$$A\omega = g \quad \text{on } \partial G \,, \tag{12}$$

where g is a vector-valued function with m components in $B^r(\partial G)$. The operator A is chosen so that (12) becomes a well-posed problem on $B^r(G) \cap \ker D_0$.

We define the fitting operator $\Omega: B^r(\partial G) \to B^r(G) \cap \ker D_0$ as follows: For each function $\phi \in B^r(\partial G)$, $\Omega(\phi)$ is the unique $B^r(G)$ -solution in ker D_0 to the equation $A(\Omega(\phi)) = A(\phi)$.

The results established in section 3 are also valid for systems of order r > 1. However, (6) and (7) need to be increased to include equations corresponding to the higher-order derivatives. We will analyze the case when D_0 is a diagonal operator. Let D_0 be a linear differential operator of order r, which can be represented as $D_0 = PI$, where P is a linear differential operator of order rwith a continuous right inverse $T_P : B(G) \to B^r(G)$. Let us assume that the operator T_P satisfies homogeneous boundary condition $A(T_P\phi) = 0$ for all $\phi \in B(G)$; thus the identity $(I - \Omega)$ adj $D_0(T_{\det D_0}I) = T_PI$ holds. Under these conditions, the equivalent system (6)-(7) can be simplified. Furthermore, we need only the continuity T_P for homogeneous conditions, and an estimate on Ω for non-homogeneous conditions. As a consequence of this we have the following result

Theorem 4.1 Suppose that

$$D_0\omega = PI\omega = f \tag{13}$$

$$A(\omega) = 0 \tag{14}$$

is a well-posed problem in the sense of

$$T_P: B(G) \to B^r(G), \tag{15}$$

where \tilde{f} is a vector-valued function of dimension m, depending only on the coordinates x_1, \ldots, x_n .

If the right-hand side in (11) satisfies a certain growth condition, and is Lipschitz with a constant sufficiently small, then Problem (11)-(12) is well-posed in the sense of (15).

5 Examples.

Example 1: Helmholtz type equations.

Let $G = G_1 \times G_2$ be a bounded simply connected region in \mathbb{R}^3 with smooth boundary ∂G . Here G_1 is the region containing the component x_1 , and G_2 is the region containing the components x_2 and x_3 .

On the domain G, we consider the system

$$D_0\omega = f(\mathbf{x}, \omega, \frac{\partial\omega_1}{\partial x_2}, \frac{\partial\omega_1}{\partial x_3}, \frac{\partial\omega_2}{\partial x_1}, \frac{\partial\omega_2}{\partial x_3}, \frac{\partial\omega_3}{\partial x_1}, \frac{\partial\omega_3}{\partial x_2}),$$
(16)

where $\mathbf{x} = (x_1, x_2, x_3)$ is a vector in \mathbb{R}^3 , $\omega = (\omega_1, \omega_2, \omega_3)$ and $f = (f_1, f_2, f_3)$ are vector-valued functions, and the right-hand side f does not dependent on $\frac{\partial \omega_i}{\partial x_i}$, i = 1, 2, 3.

For $\lambda > 0$, let

$$D_0 = \begin{pmatrix} \lambda & -\frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} & \lambda & -\frac{\partial}{\partial x_1} \\ -\frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_1} & \lambda \end{pmatrix}.$$

From (16) it follows that for $i \neq j$,

$$\operatorname{curl} \omega + \lambda \omega = \begin{pmatrix} f_1(x, \omega, \frac{\partial \omega_1}{\partial x_2}, \dots, \frac{\partial \omega_i}{\partial x_j}, \dots) \\ f_2(x, \omega, \frac{\partial \omega_1}{\partial x_2}, \dots, \frac{\partial \omega_i}{\partial x_j}, \dots) \\ f_3(x, \omega, \frac{\partial \omega_1}{\partial x_2}, \dots, \frac{\partial \omega_i}{\partial x_j}, \dots) \end{pmatrix}.$$

To the system (16) we add the Dirichlet boundary condition

$$\omega_1 = g_1 \quad \text{on } \partial G \tag{17}$$
$$\omega_2 = g_2 \quad \text{on } \partial G_1 \times \partial G_2 \,,$$

where g_1 and g_2 are given real-valued functions in the space of α -Hölder continuous and differentiable functions $C^{1,\alpha}$. We look for solutions to Problem (16)-(17) in the space of α -Hölder continuous functions $C^{\alpha}(G)$.

After some calculations, we obtain det $D_0 = \lambda(\lambda^2 + \Delta)$, where Δ denotes the Laplace operator, and λ^2 is not an eigenvalue for the Helmholtz operator $\Delta + \lambda^2$. Therefore, this operator possesses a continuous right inverse $T_{\Delta+\lambda^2}$: $C^{\alpha}(G) \to C^{\alpha,2}(G)$. Similarly, we obtain the associated adjoint matrix

$$\operatorname{adj} D_0 = \begin{pmatrix} \lambda^2 + \frac{\partial^2}{\partial x_1^2} & \frac{\partial^2}{\partial x_2 \partial x_1} + \lambda \frac{\partial}{\partial x_3} & \frac{\partial^2}{\partial x_1 \partial x_3} - \lambda \frac{\partial}{\partial x_2} \\ \frac{\partial^2}{\partial x_1 \partial x_2} - \lambda \frac{\partial}{\partial x_3} & \lambda^2 + \frac{\partial^2}{\partial x_2^2} & \frac{\partial^2}{\partial x_2 \partial x_3} + \lambda \frac{\partial}{\partial x_1} \\ \frac{\partial^2}{\partial x_3 \partial x_1} + \lambda \frac{\partial}{\partial x_2} & \frac{\partial^2}{\partial x_3 \partial x_2} - \lambda \frac{\partial}{\partial x_1} & \lambda^2 + \frac{\partial^2}{\partial x_3^2} \end{pmatrix}.$$

Note that the operator $T_{\Delta+\lambda^2}I$ improves the differentiability properties of a function by two, not by three orders. The operator $\operatorname{adj} D_0$ decreases the differentiability properties by two orders only in the *ii* components with respect to x_i . However, it was assumed that the derivatives $\frac{\partial \omega_i}{\partial x_i}$, i = 1, 2, 3 do not appear in the right-hand side f of (16). Therefore, $\operatorname{adj} D_0(T_{\Delta+\lambda^2}I)$ improves the properties of differentiability by one order, and we can consider all the equations except those associated with $\frac{\partial \omega_i}{\partial x_i}$, i = 1, 2, 3 in Problem (6)-(7).

Now, we study the kernel of D_0 . Let $(\omega_1, \omega_2, \omega_3)$ be a solution of the homogeneous problem

$$D_0\omega = 0. \tag{18}$$

When we apply the operator $\operatorname{adj} D_0$ on the left in the above equation, it follows that $(\Delta + \lambda^2)\omega_i = 0$ for i = 1, 2, 3. Due to (18), the three components are linearly dependent. Therefore, we will assume w_1 as an arbitrary given function which satisfies the equation $(\lambda^2 + \Delta)w_1 = 0$ and is also defined on ∂G .

In view of (18), we obtain

$$\lambda w_1 - \frac{\partial \omega_2}{\partial x_3} + \frac{\partial \omega_3}{\partial x_2} = 0$$

$$\frac{\partial \omega_1}{\partial x_3} + \lambda w_2 - \frac{\partial \omega_3}{\partial x_1} = 0$$

$$\frac{\partial \omega_1}{\partial x_2} + \frac{\partial \omega_2}{\partial x_1} + \lambda w_3 = 0.$$
(19)

When we differentiate the first equation respect to x_1 , the second respect to x_2 , and the third respect to x_3 , after summing the results, we have

$$\frac{\partial \omega_1}{\partial x_1} + \frac{\partial \omega_2}{\partial x_2} + \frac{\partial \omega_3}{\partial x_3} = 0.$$
 (20)

Using (19) and (20) we have, in matrix form,

$$D_1 \left(\begin{array}{c} w_2\\ w_3 \end{array}\right) = \left(\begin{array}{c} -\frac{\partial \omega_1}{\partial x_1}\\ -\lambda w_1 \end{array}\right)$$
(21)

and

$$D_2 \begin{pmatrix} w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} -\frac{\partial \omega_1}{\partial x_3} \\ \frac{\partial \omega_1}{\partial x_2} \end{pmatrix}$$
(22)

where

$$D_1 = \begin{pmatrix} \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ -\frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_2} \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} \lambda & -\frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_1} & \lambda \end{pmatrix}.$$

EJDE-2000/05

Since det $D_1 = \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$ and det $D_2 = \lambda^2 + \frac{\partial^2}{\partial x_1^2}$, we can assume the existence of right inverse operators for D_1 and D_2 . Since $(\lambda^2 + \Delta)w_1 = 0$, the integrability condition

$$D_2 \left(\begin{array}{c} -\frac{\partial \omega_1}{\partial x_1} \\ -\lambda w_1 \end{array} \right) = D_1 \left(\begin{array}{c} -\frac{\partial \omega_1}{\partial x_3} \\ \frac{\partial \omega_1}{\partial x_2} \end{array} \right)$$

is fulfilled for the system (21)-(22). Put $w = w_2 + iw_3$ and $z = x_2 - ix_3$. Then from (21), we obtain the non-homogeneous Cauchy-Riemann System

$$\frac{\partial\omega}{\partial\bar{z}} = F(\omega_1, \frac{\partial\omega_1}{\partial x_1}),\tag{23}$$

where F is known. Thus w can be uniquely determined up to a holomorphic function in z. Since ω satisfies $D_2\omega = 0$, we apply the operator $\operatorname{adj} D_2$ on the left to this equation, and obtain

$$(\lambda^2 + \frac{\partial^2}{\partial x_1^2})Iw = 0.$$
(24)

From (24) it follows that $(\lambda^2 + \frac{\partial^2}{\partial x_1^2})w_2 = 0$ and $(\lambda^2 + \frac{\partial^2}{\partial x_1^2})w_3 = 0$. When we prescribe the boundary values on $\partial G_1 \times \partial G_2$, w_2 becomes a uniquely determined function. Finally from the last equation in (19), we obtain $w_3 = \frac{1}{\lambda} (\frac{\partial \omega_1}{\partial x_2} - \frac{\partial \omega_2}{\partial x_1})$, and we cannot require additional values for w_3 .

Since this is a well-posed problem, it follows that (17) is well formulated. Therefore, applying the theory developed in section 3, we assure the existence of an unique solution for Problem (16)-(17).

Example 2: A second order elliptic operator.

Let G be a bounded simply connected region in \mathbb{R}^n with boundary sufficiently smooth. Consider the system

$$D_0\omega = f(x, D^2\omega) \quad \text{in } G, \qquad (25)$$

where D^2 is a second-order differential operator, not necessarily linear, and D_0 is a linear differential operator of second order. The unknown ω and the right-hand side f are vectors of m components.

We assume that D_0 is a diagonal operator of the form $D_0 = PI$, where P is an elliptic differential operator of second order with constant coefficients, $P = \sum_{i,j=1}^{n} a_{i,j} \frac{\partial^2}{\partial x_i \partial x_j}$. In addition to (25) we impose the Dirichlet boundary condition

$$\omega = g \quad \text{on } \partial G,\tag{26}$$

where g is a given vector-valued m-dimensional function belonging to $C^{2,\alpha}(\partial G)$. Then we look for a solution to (25)-(26) in the space $C^{\alpha}(\bar{G})$.

It is known that the operator P possesses a continuous right inverse [7], $T_P: C^{\alpha}(\bar{G}) \to C^{2,\alpha}(\bar{G})$, which satisfies $A(T_P\phi) = 0$ for all $\phi \in C^{\alpha}(\bar{G})$. Since det $D_0 = P^m$, there is a continuous right inverse operator $T_{\det D_0} = T_{P^m}$: $B(G) \to B^{2m}(G)$. We conclude by observing that now all the theory developed in sections 3 and 4 can be applied to this problem.

References

- Fichera C., Linear Elliptic Differential Systems and Eigenvalue Problems, Lecture Notes in Mathematics, Vol. 8, Springer-Verlag, Berlin-Heidelberg-New York (1965).
- [2] Folland G.B., *Introduction to Partial Differential Equations*, Princeton University Press, Princeton, New Jersey (1995).
- [3] Gilbert D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, 224, Springer-Verlag, Berlin-Heidelberg-New York (1977).
- [4] Gilbert R.P., Constructive Methods for Elliptic Equations, Lecture Notes in Mathematics, 365, Berlin (1974).
- [5] Gilbert R.P., Buchanan J.L., First Order Elliptic Systems: A Function Theoretic Approach, Academy Press, New York, London (1983).
- [6] Hörmander L., Linear Partial Differential Operators, third edition, Springer-Verlag (1969).
- Miranda C., Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin-Heidelberg-New York (1970).
- [8] Tutschke W., Partielle Differentialgleichungen. Klassische Funktionalanalytische und Komplexe Methoden, BSB B.G. Teubner-Verlagsgesellschaft, Leipzig (1983).
- [9] Vekua I.N., New Methods for Solving Elliptic Equations, Vol. 1, North-Holland Publ., Amsterdam (1968).

CARMEN J. VANEGAS Department of Mathematics Universidad Simón Bolívar Valle de Sartenejas-Edo Miranda P O Box 89000, Venezuela e-mail address: cvanegas@usb.ve