Nonlinear perturbations of systems of partial differential equations with constant coefficients *

C. J. Vanegas

Abstract

In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

1 Introduction

Let $G \subset \mathbb{R}^{n}$ be a bounded region with smooth boundary, and let $(B(G),\|\cdot\|)$ be a Banach space of functions defined on G. For each natural number n, let $B^{n}(G)$ denote the space of functions f satisfying $D^{m} f \in B(G)$ for all multiindex m with $|m| \leq n$. Then under the norm $\|f\|_{n}=\max _{|m| \leq n}\left\|D^{m} f\right\|$, the space $B^{n}(G)$ becomes a Banach space.

We consider the system

$$
\begin{equation*}
D_{0} \omega=f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right) \quad \text { in } G \tag{1}
\end{equation*}
$$

where D_{0} is a linear differential operator of first order with respect to the real variables x_{1}, \ldots, x_{n}, the vector \mathbf{x} has components $\left(x_{1}, \ldots, x_{n}\right)$, and the unknown ω
and the right-hand side f are vectors of m components, with $m \geq n$. To this system of differential equations, we add the boundary condition

$$
\begin{equation*}
A w=g \quad \text { on } \partial G \tag{2}
\end{equation*}
$$

where g is a given m-dimensional vector-valued function that belongs to the Banach space $B^{1}(\partial G)$. The operator A is chosen so that (2) leads to a wellposed problem on $B^{1}(G) \cap \operatorname{ker} D_{0}$.

For finding a solution to this nonlinear problem, we use a right inverse of the operator D_{0} and a fix point argument $[9,8]$. First, we construct the right inverse

[^0]for a first order differential operator of constant coefficients. Then using that the operator D_{0}, in its matrix form, commutes with the elements of the formal adjoint matrix, we obtain the right inverse. In fact, we obtain a formal algebraic inversion through the associated operators determinant and adjoint matrix of D_{0}. In the last section of this article, we describe a natural generalization to high order systems, and show two applications of this method.

2 The Right Inverse of D_{0}.

The operator D_{0} in (1) is represented in a matrix form as

$$
D_{0}=\left(\begin{array}{ccc}
D_{11} & \ldots & D_{1 m} \\
\vdots & & \\
D_{m 1} & \cdots & D_{m m}
\end{array}\right)
$$

where $D_{i j}$ is the differential operator of first order with respect to the real variables $x_{1} \ldots x_{n}$.

The determinant of D_{0} is computed formally, and is a scalar linear differential operator with constant coefficients. Note that det D_{0} maps the space $B^{m}(G)$ into the space $B(G)$. As a general hypothesis, we assume that the differential operator det D_{0} possesses a continuous right inverse:

$$
\begin{equation*}
T_{\operatorname{det} D_{0}}: B(G) \rightarrow B^{m}(G) \tag{3}
\end{equation*}
$$

which is an operator that improves the differentiability of functions in $B(G)$ by m orders.

The adjoint matrix associated with D_{0}, in algebraic sense, is computed formally, resulting a linear matrix differential operator, denotes by adj D_{0}, with constant coefficients and of order $m-1$ respect to the real variables $x_{1} \ldots x_{n}$, i.e., $m-1$ is the order of the highest derivative that appears in the coefficients of the matrix. We observe that adj D_{0} maps the space $B^{m}(G)$ into the space $B^{1}(G)$. Under the assumptions above, we obtain the following result.

Theorem 2.1 The differential operator

$$
\operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}}\right): B(G) \rightarrow B^{1}(G)
$$

is a right inverse operator for D_{0}.

Proof. Note that D_{0} adj $D_{0}=\operatorname{det} D_{0} I$, which is satisfied due to the fact that D_{0} is a differential operator with constant coefficients. From this remark and (3) the proof follows.

3 First-Order Nonlinear Systems

We define the fitting operator

$$
\Omega: B^{1}(\partial G) \rightarrow B^{1}(G) \cap \operatorname{ker} D_{0}
$$

by the relation

$$
\begin{equation*}
A(\Omega \phi)=A(\phi) \quad \text { for each } \phi \in B^{1}(\partial G) \tag{4}
\end{equation*}
$$

i.e., to each $\phi \in B^{1}(\partial G)$ we associate the unique $B^{1}(G)$-solution to (4) in $\operatorname{ker} D_{0}$.

Theorem 3.1 The boundary-value problem (1)-(2) is equivalent to the fixed point problem for the operator

$$
\begin{equation*}
T\left(\omega, h_{1}, \ldots, h_{n}\right)=\left(W, H_{1}, \ldots, H_{n}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
W=\Omega g+(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\boldsymbol{x}, \omega, h_{1}, \ldots, h_{n}\right) \tag{6}\\
H_{j}=\frac{\partial}{\partial x_{j}}\left(\Omega g+(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right) f\left(\boldsymbol{x}, \omega, h_{1}, \ldots, h_{n}\right) \tag{7}
\end{gather*}
$$

with $j=1, \ldots, n$.
Proof. Let $\omega \in B^{1}(G)$ be a solution to (1)-(2). To the function

$$
\begin{equation*}
\Psi=w-\operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right) \tag{8}
\end{equation*}
$$

we apply the operator D_{0} to obtain

$$
D_{0} \Psi=D_{0} \omega-D_{0} \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right)=0
$$

Thus, $\Psi \in \operatorname{ker} D_{0}$. To Ψ we apply the operator A and obtain

$$
\begin{aligned}
A \Psi & =A \omega-A \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right) \\
& =g-A \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right)
\end{aligned}
$$

According to the definition of the operator Ω, we have

$$
\Psi=\Omega g-\Omega \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right)
$$

Substituting this expression in (8) and differentiating with respect to x_{j}, we conclude that $\left(\omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right)$ is a fixed point of (5).

On the other hand if $\left(\omega, h_{1}, \ldots, h_{n}\right)$ is a fixed point of (5), we can carry out the differentiation of (6) with respect to x_{j} for each $j=1, \ldots, n$. Because ω is in $B^{1}(G)$, we obtain

$$
\frac{\partial w}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\Omega g+(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right) f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)
$$

Comparing these equations with (7), it follows that $\frac{\partial \omega}{\partial x_{j}}=h_{j}$ for $j=1, \ldots, n$. Substituting these equations in (6) and then applying the operator D_{0} we obtain $D_{0} \omega=f\left(\mathbf{x}, \omega, \frac{\partial \omega}{\partial x_{1}}, \ldots, \frac{\partial \omega}{\partial x_{n}}\right)$. Applying Ω to (6) we conclude that

$$
\Omega \omega=\Omega \Omega g+\Omega(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)=\Omega g
$$

By the definition of the operator Ω, it follows that $A(\omega)=g$, and hence, ω is a solution of (1)-(2).

Consider the polycylinder

$$
\begin{gathered}
M=\left\{\left(\omega, h_{1}, \ldots, h_{n}\right) \in \prod_{i=1}^{n+1} B(G):\left\|\omega-\omega_{0}\right\| \leq a_{0}\right. \\
\left.\left\|h_{j}-h_{j_{0}}\right\| \leq a_{j}, j=1, \ldots, n\right\}
\end{gathered}
$$

where $\omega_{0} \in B^{1}(G)$ and $h_{j_{0}} \in B(G)$ are taken as the coordinates of the polycylinder mid-point, and $a_{0}, a_{1}, \ldots, a_{n}$ are positive real numbers.

From the definition of the operators $T_{\operatorname{det} D_{0}}, \operatorname{adj} D_{0}$, and Ω, it follows that the operators

$$
\begin{gather*}
(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right): B(G) \rightarrow B(G) \quad \text { and } \tag{9}\\
\frac{\partial}{\partial x_{j}}(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right): B(G) \rightarrow B(G) \tag{10}
\end{gather*}
$$

are continuous and hence bounded. Therefore, for all $\left(\omega, h_{1}, \ldots, h_{n}\right) \in M$ we have

$$
\begin{aligned}
\left\|W-\omega_{0}\right\|= & \left\|\Omega g+(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)-\omega_{0}\right\| \\
= & \|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\left[f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)-D_{0} \omega_{0}\right] \\
& +(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) D_{0} \omega_{0}+\Omega g-\omega_{0} \| \\
\leq & \left\|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\|\left\|f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)-D_{0} \omega_{0}\right\|+K_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|H_{j}-h_{j_{0}}\right\| \\
& \quad=\left\|\frac{\partial}{\partial x_{j}}\left[\Omega g+(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right] f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)-h_{j_{0}}\right\| \\
& \quad \leq\left\|\frac{\partial}{\partial x_{j}}(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\|\left\|f\left(\mathbf{x}, \omega, h_{1}, \ldots, h_{n}\right)-D_{0} \omega_{0}\right\|+K_{j}
\end{aligned}
$$

where

$$
\begin{gathered}
K_{0}=\left\|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) D_{0} \omega_{0}+\Omega g-\omega_{0}\right\| \\
K_{j}=\left\|\frac{\partial}{\partial x_{j}}(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right) D_{0} \omega_{0}+\frac{\partial}{\partial x_{j}} \Omega g-h_{j_{0}}\right\|,
\end{gathered}
$$

for $j=1, \ldots, n$.

For a positive real number R and $j=1,2, \ldots n$, we set

$$
\begin{aligned}
& a_{0}=\left\|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\| R+K_{0} \\
& a_{j}=\left\|\frac{\partial}{\partial x_{j}}(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\| R+K_{j} .
\end{aligned}
$$

For the rest of this article, we will denote by M_{R} the polycylinder M with the parameters $a_{0}, a_{1}, \ldots, a_{n}$ as defined above.

Theorem 3.2 Let R be a positive real number such that f maps the polycylinder M_{R} into $B(G)$ and satisfies the growth condition

$$
\left\|f\left(\boldsymbol{x}, \omega, h_{1}, \ldots, h_{n}\right)-D_{0} \omega_{0}\right\| \leq R, \quad \forall\left(\omega, h_{1}, \ldots, h_{n}\right) \in M_{R}
$$

Then the operator T maps continuously the polycylinder M_{R} into itself.

Proof. Let $\left(\omega, h_{1}, \ldots, h_{n}\right)$ be an element in M_{R} and $\left(W, H_{1}, \ldots, H_{n}\right)$ its image under T. Since $\left(\omega, h_{1}, \ldots, h_{n}\right) \in M_{R}$, by the definitions of the operators $T_{\operatorname{det} D_{0}}$, adj D_{0} and Ω, it follows that $W \in B^{1}(G) \subset B(G)$. Since $\frac{\partial}{\partial x_{j}}$: $B^{1}(G) \rightarrow B(G)$, it follows that $H_{j} \in B(G)$ for all $j=1, \ldots, n$. Therefore, $T: M_{R} \rightarrow \prod_{i=1}^{n+1} B(G)$. That $\left(W, H_{1}, \ldots, H_{n}\right)$ is in M_{R} follows from the boundedness of the operators (9)-(10), the hypotheses on f, and the definition of M_{R}.

Theorem 3.3 Suppose f maps the polycylinder M_{R} into the space $B(G)$, and that f is Lipschitz continuous with constant L satisfying

$$
L<\min \left\{\left\|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\|^{-1},\left\|\frac{\partial}{\partial x_{j}}(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\|^{-1}\right\}
$$

for $j=1, \ldots, n$. Then T is a contraction.
Proof. Let $\left(\omega, h_{1}, \ldots, h_{n}\right),\left(\omega^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)$ be elements of M_{R}, and $\left(W, H_{1}, \ldots, H_{n}\right),\left(W^{\prime}, H_{1}^{\prime}, \ldots, H_{n}^{\prime}\right)$ be their images under T. Since the operators (9) and (10) are bounded and f is Lipschitz with constant L, it follows that

$$
\begin{aligned}
\left\|W-W^{\prime}\right\| & \leq\left\|(I-\Omega) \operatorname{adj} D_{0}\left(T_{\operatorname{det} D_{0}} I\right)\right\| L\left\|\left(\omega, h_{1}, \ldots, h_{n}\right)-\left(\omega^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)\right\| \\
& \leq\left\|\left(\omega, h_{1}, \ldots, h_{n}\right)-\left(\omega^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)\right\|
\end{aligned}
$$

Similarly,

$$
\left\|H_{j}-H_{j}^{\prime}\right\| \leq\left\|\left(\omega, h_{1}, \ldots, h_{n}\right)-\left(\omega^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)\right\|
$$

for $j=1, \ldots, n$. Therefore, T is a contraction.
With the aid of Theorems 3.1, 3.2 and 3.3, we obtain existence and uniqueness of a solution for Problem (1)-(2).

Theorem 3.4 Suppose that f satisfies the hypotheses of Theorems 3.2 and 3.3. Then Problem (1)-(2) possesses exactly one solution in the polycylinder M_{R}.

Proof. By definition M_{R} is a closed subset in the space $B(G)$. Applying Theorems 3.2 and 3.3 , we realize that T maps M_{R} into itself, and it is a contraction; therefore, according to the Fixed Point Theorem there exists a unique fixed point in M_{R}. As a consequence of Theorem 3.1 this fixed point is a solution to Problem (1)-(2).

4 High-Order Systems

In this section we apply the method developed in the above section to high-order equations. Consider the system of differential equations

$$
\begin{equation*}
D_{0} \omega=f\left(\mathbf{x}, D^{r} \omega\right) \tag{11}
\end{equation*}
$$

where D^{r} is a differential operator of order r, and D_{0} is a linear differential operator of order r. The unknown ω and the right-hand side f are vector-valued functions of m components, with $m \geq n$.

We will assume that the associated differential operator det D_{0} has a continuous right inverse, $T_{\operatorname{det} D_{0}}: B(G) \rightarrow B^{r m}(G)$.

To system (11) we add the boundary condition

$$
\begin{equation*}
A \omega=g \quad \text { on } \partial G \tag{12}
\end{equation*}
$$

where g is a vector-valued function with m components in $B^{r}(\partial G)$. The operator A is chosen so that (12) becomes a well-posed problem on $B^{r}(G) \cap \operatorname{ker} D_{0}$.

We define the fitting operator $\Omega: B^{r}(\partial G) \rightarrow B^{r}(G) \cap \operatorname{ker} D_{0}$ as follows: For each function $\phi \in B^{r}(\partial G), \Omega(\phi)$ is the unique $B^{r}(G)$-solution in ker D_{0} to the equation $A(\Omega(\phi))=A(\phi)$.

The results established in section 3 are also valid for systems of order $r>1$. However, (6) and (7) need to be increased to include equations corresponding to the higher-order derivatives. We will analyze the case when D_{0} is a diagonal operator. Let D_{0} be a linear differential operator of order r, which can be represented as $D_{0}=P I$, where P is a linear differential operator of order r with a continuous right inverse $T_{P}: B(G) \rightarrow B^{r}(G)$. Let us assume that the operator T_{P} satisfies homogeneous boundary condition $A\left(T_{P} \phi\right)=0$ for all $\phi \in B(G)$; thus the identity $(I-\Omega)$ adj $D_{0}\left(T_{\operatorname{det} D_{0}} I\right)=T_{P} I$ holds. Under these conditions, the equivalent system (6)-(7) can be simplified. Furthermore, we need only the continuity T_{P} for homogeneous conditions, and an estimate on Ω for non-homogeneous conditions. As a consequence of this we have the following result

Theorem 4.1 Suppose that

$$
\begin{gather*}
D_{0} \omega=P I \omega=\tilde{f} \tag{13}\\
A(\omega)=0 \tag{14}
\end{gather*}
$$

is a well-posed problem in the sense of

$$
\begin{equation*}
T_{P}: B(G) \rightarrow B^{r}(G) \tag{15}
\end{equation*}
$$

where \tilde{f} is a vector-valued function of dimension m, depending only on the coordinates x_{1}, \ldots, x_{n}.

If the right-hand side in (11) satisfies a certain growth condition, and is Lipschitz with a constant sufficiently small, then Problem (11)-(12) is well-posed in the sense of (15).

5 Examples.

Example 1: Helmholtz type equations.

Let $G=G_{1} \times G_{2}$ be a bounded simply connected region in \mathbb{R}^{3} with smooth boundary ∂G. Here G_{1} is the region containing the component x_{1}, and G_{2} is the region containing the components x_{2} and x_{3}.

On the domain G, we consider the system

$$
\begin{equation*}
D_{0} \omega=f\left(\mathbf{x}, \omega, \frac{\partial \omega_{1}}{\partial x_{2}}, \frac{\partial \omega_{1}}{\partial x_{3}}, \frac{\partial \omega_{2}}{\partial x_{1}}, \frac{\partial \omega_{2}}{\partial x_{3}}, \frac{\partial \omega_{3}}{\partial x_{1}}, \frac{\partial \omega_{3}}{\partial x_{2}}\right) \tag{16}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is a vector in $\mathbb{R}^{3}, \omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ and $f=\left(f_{1}, f_{2}, f_{3}\right)$ are vector-valued functions, and the right-hand side f does not dependent on $\frac{\partial \omega_{i}}{\partial x_{i}}$, $i=1,2,3$.

For $\lambda>0$, let

$$
D_{0}=\left(\begin{array}{ccc}
\lambda & -\frac{\partial}{\partial x_{3}} & \frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{3}} & \lambda & -\frac{\partial}{\partial x_{1}} \\
-\frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}} & \lambda
\end{array}\right)
$$

From (16) it follows that for $i \neq j$,

$$
\operatorname{curl} \omega+\lambda \omega=\left(\begin{array}{c}
f_{1}\left(x, \omega, \frac{\partial \omega_{1}}{\partial x_{2}}, \ldots, \frac{\partial \omega_{i}}{\partial x_{j}}, \ldots\right) \\
f_{2}\left(x, \omega, \frac{\partial \omega_{1}}{\partial x_{2}}, \ldots, \frac{\partial \omega_{i}}{\partial x_{j}}, \ldots\right) \\
f_{3}\left(x, \omega, \frac{\partial \omega_{1}}{\partial x_{2}}, \ldots, \frac{\partial \omega_{i}}{\partial x_{j}}, \ldots\right)
\end{array}\right)
$$

To the system (16) we add the Dirichlet boundary condition

$$
\begin{gather*}
\omega_{1}=g_{1} \quad \text { on } \partial G \tag{17}\\
\omega_{2}=g_{2} \quad \text { on } \partial G_{1} \times \partial G_{2}
\end{gather*}
$$

where g_{1} and g_{2} are given real-valued functions in the space of α-Hölder continuous and differentiable functions $C^{1, \alpha}$. We look for solutions to Problem (16)-(17) in the space of α-Hölder continuous functions $C^{\alpha}(G)$.

After some calculations, we obtain $\operatorname{det} D_{0}=\lambda\left(\lambda^{2}+\Delta\right)$, where Δ denotes the Laplace operator, and λ^{2} is not an eigenvalue for the Helmholtz operator $\Delta+\lambda^{2}$. Therefore, this operator possesses a continuous right inverse $T_{\Delta+\lambda^{2}}$: $C^{\alpha}(G) \rightarrow C^{\alpha, 2}(G)$.

Similarly, we obtain the associated adjoint matrix

$$
\operatorname{adj} D_{0}=\left(\begin{array}{ccc}
\lambda^{2}+\frac{\partial^{2}}{\partial x_{1}^{2}} & \frac{\partial^{2}}{\partial x_{2} \partial x_{1}}+\lambda \frac{\partial}{\partial x_{3}} & \frac{\partial^{2}}{\partial x_{1} \partial x_{3}}-\lambda \frac{\partial}{\partial x_{2}} \\
\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}-\lambda \frac{\partial}{\partial x_{3}} & \lambda^{2}+\frac{\partial^{2}}{\partial x_{2}^{2}} & \frac{\partial^{2}}{\partial x_{2} \partial x_{3}}+\lambda \frac{\partial}{\partial x_{1}} \\
\frac{\partial^{2}}{\partial x_{3} \partial x_{1}}+\lambda \frac{\partial}{\partial x_{2}} & \frac{\partial^{2}}{\partial x_{3} \partial x_{2}}-\lambda \frac{\partial}{\partial x_{1}} & \lambda^{2}+\frac{\partial^{2}}{\partial x_{3}^{2}}
\end{array}\right)
$$

Note that the operator $T_{\Delta+\lambda^{2}} I$ improves the differentiability properties of a function by two, not by three orders. The operator adj D_{0} decreases the differentiability properties by two orders only in the $i i$ components with respect to x_{i}. However, it was assumed that the derivatives $\frac{\partial \omega_{i}}{\partial x_{i}}, i=1,2,3$ do not appear in the right-hand side f of (16). Therefore, adj $D_{0}\left(T_{\Delta+\lambda^{2}} I\right)$ improves the properties of differentiability by one order, and we can consider all the equations except those associated with $\frac{\partial \omega_{i}}{\partial x_{i}}, i=1,2,3$ in Problem (6)-(7).

Now, we study the kernel of D_{0}. Let $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ be a solution of the homogeneous problem

$$
\begin{equation*}
D_{0} \omega=0 \tag{18}
\end{equation*}
$$

When we apply the operator adj D_{0} on the left in the above equation, it follows that $\left(\Delta+\lambda^{2}\right) \omega_{i}=0$ for $i=1,2,3$. Due to (18), the three components are linearly dependent. Therefore, we will assume w_{1} as an arbitrary given function which satisfies the equation $\left(\lambda^{2}+\Delta\right) w_{1}=0$ and is also defined on ∂G.

In view of (18), we obtain

$$
\begin{align*}
\lambda w_{1}-\frac{\partial \omega_{2}}{\partial x_{3}}+\frac{\partial \omega_{3}}{\partial x_{2}} & =0 \\
\frac{\partial \omega_{1}}{\partial x_{3}}+\lambda w_{2}-\frac{\partial \omega_{3}}{\partial x_{1}} & =0 \tag{19}\\
-\frac{\partial \omega_{1}}{\partial x_{2}}+\frac{\partial \omega_{2}}{\partial x_{1}}+\lambda w_{3} & =0
\end{align*}
$$

When we differentiate the first equation respect to x_{1}, the second respect to x_{2}, and the third respect to x_{3}, after summing the results, we have

$$
\begin{equation*}
\frac{\partial \omega_{1}}{\partial x_{1}}+\frac{\partial \omega_{2}}{\partial x_{2}}+\frac{\partial \omega_{3}}{\partial x_{3}}=0 \tag{20}
\end{equation*}
$$

Using (19) and (20) we have, in matrix form,

$$
\begin{equation*}
D_{1}\binom{w_{2}}{w_{3}}=\binom{-\frac{\partial \omega_{1}}{\partial x_{1}}}{-\lambda w_{1}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}\binom{w_{2}}{w_{3}}=\binom{-\frac{\partial \omega_{1}}{\partial x_{3}}}{\frac{\partial \omega_{1}}{\partial x_{2}}} \tag{22}
\end{equation*}
$$

where

$$
D_{1}=\left(\begin{array}{cc}
\frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
-\frac{\partial}{\partial x_{3}} & \frac{\partial}{\partial x_{2}}
\end{array}\right) \quad \text { and } \quad D_{2}=\left(\begin{array}{cc}
\lambda & -\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{1}} & \lambda
\end{array}\right)
$$

Since $\operatorname{det} D_{1}=\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$ and det $D_{2}=\lambda^{2}+\frac{\partial^{2}}{\partial x_{1}^{2}}$, we can assume the existence of right inverse operators for D_{1} and D_{2}. Since $\left(\lambda^{2}+\Delta\right) w_{1}=0$, the integrability condition

$$
D_{2}\binom{-\frac{\partial \omega_{1}}{\partial x_{1}}}{-\lambda w_{1}}=D_{1}\binom{-\frac{\partial \omega_{1}}{\partial x_{3}}}{\frac{\partial \omega_{1}}{\partial x_{2}}}
$$

is fulfilled for the system (21)-(22). Put $w=w_{2}+i w_{3}$ and $z=x_{2}-i x_{3}$. Then from (21), we obtain the non-homogeneous Cauchy-Riemann System

$$
\begin{equation*}
\frac{\partial \omega}{\partial \bar{z}}=F\left(\omega_{1}, \frac{\partial \omega_{1}}{\partial x_{1}}\right) \tag{23}
\end{equation*}
$$

where F is known. Thus w can be uniquely determined up to a holomorphic function in z. Since ω satisfies $D_{2} \omega=0$, we apply the operator adj D_{2} on the left to this equation, and obtain

$$
\begin{equation*}
\left(\lambda^{2}+\frac{\partial^{2}}{\partial x_{1}^{2}}\right) I w=0 \tag{24}
\end{equation*}
$$

From (24) it follows that $\left(\lambda^{2}+\frac{\partial^{2}}{\partial x_{1}^{2}}\right) w_{2}=0$ and $\left(\lambda^{2}+\frac{\partial^{2}}{\partial x_{1}^{2}}\right) w_{3}=0$. When we prescribe the boundary values on $\partial G_{1} \times \partial G_{2}$, w_{2} becomes a uniquely determined function. Finally from the last equation in (19), we obtain $w_{3}=\frac{1}{\lambda}\left(\frac{\partial \omega_{1}}{\partial x_{2}}-\frac{\partial \omega_{2}}{\partial x_{1}}\right)$, and we cannot require additional values for w_{3}.

Since this is a well-posed problem, it follows that (17) is well formulated. Therefore, applying the theory developed in section 3, we assure the existence of an unique solution for Problem (16)-(17).

Example 2: A second order elliptic operator.

Let G be a bounded simply connected region in \mathbb{R}^{n} with boundary sufficiently smooth. Consider the system

$$
\begin{equation*}
D_{0} \omega=f\left(x, D^{2} \omega\right) \quad \text { in } G, \tag{25}
\end{equation*}
$$

where D^{2} is a second-order differential operator, not necessarily linear, and D_{0} is a linear differential operator of second order. The unknown ω and the right-hand side f are vectors of m components.

We assume that D_{0} is a diagonal operator of the form $D_{0}=P I$, where P is an elliptic differential operator of second order with constant coefficients, $P=\sum_{i, j=1}^{n} a_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$. In addition to (25) we impose the Dirichlet boundary condition

$$
\begin{equation*}
\omega=g \quad \text { on } \partial G, \tag{26}
\end{equation*}
$$

where g is a given vector-valued m-dimensional function belonging to $C^{2, \alpha}(\partial G)$. Then we look for a solution to (25)-(26) in the space $C^{\alpha}(\bar{G})$.

It is known that the operator P possesses a continuous right inverse [7], $T_{P}: C^{\alpha}(\bar{G}) \rightarrow C^{2, \alpha}(\bar{G})$, which satisfies $A\left(T_{P} \phi\right)=0$ for all $\phi \in C^{\alpha}(\bar{G})$. Since $\operatorname{det} D_{0}=P^{m}$, there is a continuous right inverse operator $T_{\operatorname{det} D_{0}}=T_{P^{m}}$: $B(G) \rightarrow B^{2 m}(G)$. We conclude by observing that now all the theory developed in sections 3 and 4 can be applied to this problem.

References

[1] Fichera C., Linear Elliptic Differential Systems and Eigenvalue Problems, Lecture Notes in Mathematics, Vol. 8, Springer-Verlag, Berlin-HeidelbergNew York (1965).
[2] Folland G.B., Introduction to Partial Differential Equations, Princeton University Press, Princeton,New Jersey (1995).
[3] Gilbert D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, 224, SpringerVerlag, Berlin-Heidelberg-New York (1977).
[4] Gilbert R.P., Constructive Methods for Elliptic Equations, Lecture Notes in Mathematics, 365, Berlin (1974).
[5] Gilbert R.P., Buchanan J.L., First Order Elliptic Systems: A Function Theoretic Approach, Academy Press, New York, London (1983).
[6] Hörmander L., Linear Partial Differential Operators, third edition, SpringerVerlag (1969).
[7] Miranda C., Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin-Heidelberg-New York (1970).
[8] Tutschke W., Partielle Differentialgleichungen. Klassische Funktionalanalytische und Komplexe Methoden, BSB B.G. Teubner-Verlagsgesellschaft, Leipzig (1983).
[9] Vekua I.N., New Methods for Solving Elliptic Equations, Vol. 1, NorthHolland Publ., Amsterdam (1968).

Carmen J. Vanegas
Department of Mathematics
Universidad Simón Bolívar
Valle de Sartenejas-Edo Miranda
P O Box 89000, Venezuela
e-mail address: cvanegas@usb.ve

[^0]: * 1991 Mathematics Subject Classifications: 35F30, 35G30, 35E20.

 Key words and phrases: Right inverse, nonlinear differential equations, fixed point theorem.
 © 2000 Southwest Texas State University and University of North Texas.
 Submitted April 6, 1999. Published Janaury 8, 2000.

