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ASYMPTOTIC STABILITY OF NONLINEAR

CONTROL SYSTEMS DESCRIBED BY DIFFERENCE

EQUATIONS WITH MULTIPLE DELAYS

P. Niamsup & V. N. Phat

Abstract. In this paper we study nonlinear control systems with multiple delays on

controls and states. To obtain asymptotic stability, we impose Hölder-type assump-

tions on the perturbing function, and show a Gronwall-type inequality for difference

equations with delay. We prove that a nonlinear control system can be stabilized if

its linear control system can be stabilized. Some examples are included in the last

part of this paper.

1. Introduction

Consider a nonlinear control system described by discrete-time equations, with
multiple delays on the controls and states, of the form

x(k + 1) = Lp,q(xk, uk) + fp,q(k, xk, uk), k ∈ Z
+, (1)

where

Lp,q(xk, uk) =

p∑
j=1

Aj(k)x(k − pj) +
q∑
i=1

Bi(k)u(k − qi),

fp,q(k, xk, uk) = f(k, x(k − p1), x(k − p2), . . . , x(k − pp), u(k − q1), .., u(k − qq)),

Z
+ := {0, 1, 2, . . . }, x(k) ∈ Rn, u(k) ∈ Rm with n ≥ m, Aj(k) and Bi(k) are n× n
and n ×m matrices with k ∈ Z+, f(k, .) : Z+ × Rpn × Rqm → Rn with p, q ≥ 1,
qq ≤ pp, 0 = p1 < p2 < · · · < pp, 0 = q1 < q2 < · · · < qq.
We shall consider system (1) with the initial delay condition

x(k) = x0, k = −pp, . . . , 0 . (2)

Unlike differential equations, discrete control system (1) with initial condition (2)
has always solution for every control sequence u(k), k = −qq,−qq + 1, . . . , 0, 1, . . .
Throughout this paper, we assume that f(k, 0, . . . , 0) = 0, k ∈ Z+. Associated with
control system (1) we consider the delay system without controls

x(k + 1) =

r∑
j=1

Cj(k)x(k − rj) + g(k, x(k − r1), x(k − r2), . . . , x(k − rr)), (3)
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where k ≥ 0, Cj(k) is an n × n matrix, r ≥ 1, 0 = r1 < · · · < rr, g(k, .) :
Z
+ × Rrn → Rn is a given vector function satisfying g(k, 0, . . . , 0) = 0, k ∈ Z+. It
has been shown in [3, 10] that for every x0 ∈ Rn, k0 ∈ Z+, the system (3) has a
solution x(k) with the initial condition x(k) = x0, k = k0 − rr, . . . , k0 given by

x(k) = Pkx0 +
k−1∑
s=k0

Gks+1g(s, x(s − r1), . . . , x(s − rr)), (4)

where the transition matrix Gks , k, s ≥ k0, satisfies

Gk+1s =
r∑
i=1

Ci(k)G
k−ri
s ,

Gkk = I, G
k
s = 0, for k < s .

and

Pk := G
k
0 +

r∑
i=2

ri−1∑
s=0

Gks+1Ci(s) . (5)

Definition 1.1. The zero solution of system (3) is stable if for every ε > 0 and
for every k0 ∈ Z+ there is δ > 0 (depending on ε and k0) such that ‖x(k)‖ <
ε, k ≥ k0, whenever ‖x0‖ < δ. The zero solution is asymptotically stable if it is
stable and there is δ > 0 such that limk→∞ ‖x(k)‖ = 0, whenever ‖x0‖ < δ. If
δ is independent of k0 then the zero solution is said to be uniformly stable and
uniformly asymptotically stable.

Definition 1.2. The zero solution of system (3) is weakly asymptotically sta-
ble if there is a number δ > 0 such that every solution of the system satisfies
limk→∞ ‖x(k)‖ = 0, whenever ‖x0‖ < δ.

Definition 1.3. The control system (1) is stabilizable if there are matrices D(k),
k ≥ −qq, such that the system (1) with u(k) = D(k)x(k) is asymptotically stable.
The control u(k) = D(k)x(k) is a feedback control of the system.

Definition 1.4. The system (1) is weakly stabilizable if there exist controls u(k),
k ≥ −qq and a number δ > 0, such that the solution x(k) according to these controls
of system (1) satisfies limk→∞ ‖x(k)‖ = 0, whenever ‖x0‖ < δ.

Qualitative theory of dynamical systems described by the difference equations
has attracted a good deal of interest in the last decade due to the various appli-
cations of their qualitative properties [3, 6, 7, 10, 15]. Consequently, the stabil-
ity, which is one of the essential qualitative properties, has been widely studied
for discrete-time equations; see, for example, [4, 8, 9, 11, 16]. Most publications
considered the stability of nonlinear discrete systems, whereas the stability and ap-
plications of nonlinear discrete systems with delays have received little attention.
In [4, 5, 13, 17] sufficient conditions for the controllability and stability of discrete
systems with time-delays are developed. In this paper, we extend the system of
discrete delay inequalities of Gronwall type, then study the asymptotic stability of
nonlinear system (3) with multiple delays, and then give new stabilizability condi-
tions for nonlinear control system (1).
This paper is organized as follows. Section 2 gives the Gronwall-type inequality

for difference equations with delays. In Section 3, we establish asymptotic stability
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conditions. In Section 4, we give new conditions for stabilizability for nonlinear
control systems with multiple delays on controls and states. The paper concludes
some illustrative examples.

2. Discrete Gronwall-type inequality

It is well known that the Gronwall integral inequality plays an important role
in the study of qualitative properties of differential systems of various kinds. The
classical integral Gronwall’s inequality claims that if z(t), a(t) : R+ → R+ are non-

negative continuous functions satisfying z(0) ≤ C, and z(t) ≤ C +
∫ t
0
a(s)z(s) ds,

t ≥ 0, then

z(t) ≤ C exp[

∫ t
0

a(s) ds], t ≥ 0.

The first discrete analog of the integral Gronwall inequality (see, e.g. [1] and
references therein) is that if z(k), a(k) : Z+ → R+, C ≥ 0 satisfy the condition
z(0) ≤ C and

z(k) ≤ C +
k−1∑
i=0

a(i)z(i),

then

z(k) ≤ C exp
k−1∑
i=0

a(i), or z(k) ≤ C
k−1∏
i=0

[1 + a(i)].

Later, in [8, 12], the Gronwall-type inequality was extended to the system of discrete
equations of the form

z(k) ≤ C +
k−1∑
i=0

a(i)zm(i).

where m is an arbitrary positive number. Some other discrete versions of the
Gronwall inequality can be found in [7, 13]. In this section, we present some discrete
versions of the Gronwall-type inequality that will be used in studying the stability
properties of nonlinear delay systems. We first need the following technical lemma.

Lemma 2.1. Let a ≥ 0, x ≥ 0. Then (1 + x)a(1− ax) ≤ 1.

Proof. Consider the continuous function f(x) = (1+x)a(1−ax). Note that f(0) = 1
and

d

dx
f(x) = a(1 + x)a−1(1− ax)− a(1 + x)a

= −ax(1 + a)(1 + x)a−1 ≤ 0,

which implies that f(x) is decreasing and hence f(x) ≤ 1, for all x ≥ 0.

Theorem 2.1 (Generalized discrete Gronwall’s inequality). Let z(k) : Z+ →
R
+. Assume that

z(k) ≤ C +
k−1∑
s=0

p∑
j=1

aj(s)z(s − pj)
m1 +

k−1∑
s=0

q∑
i=1

bi(s)z(s− qi)
m2 , (6)
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where m1,m2 > 0; p, q ≥ 1; pp ≥ qq, aj(k), bi(k) : Z+ → R+; z(k) ≤ C ≤ 1,
k = −pp, . . . , 0 and 0 = p1 < p2 < · · · < pp; 0 = q1 < q2 < · · · < qq. Let
m = min{m1,m2}, d(s) =

∑p
j=1 aj(s) +

∑q
i=1 bi(s).

(a) If m1,m2 ≤ 1, then

z(k) ≤ Cm
k
k−1∏
s=0

[1 + d(s)]. (7)

(b) If m1 ≤ 1 < m2, then

z(k) ≤ Cm
k
1

k−1∏
s=0

[1 + d(s)]m
k−s−1
2 . (8)

(c) If m1,m2 > 1, then

z(k) ≤
C

{1− (m− 1)Cm−1
∑k−1
s=0 d(s)}

1/(m−1)
, (9)

whenever

1− (m− 1)Cm−1
k−1∑
s=0

d(s) > 0. (10)

Proof. (a) Case m1,m2 ≤ 1 : We shall prove the theorem by induction on k ∈ Z+.
Letting k = 1, the inequality (6) gives

z(1) ≤ C +
p∑
j=1

aj(0)C
m1 +

q∑
i=1

bi(0)C
m2

Since C ≤ 1, mi ≥ m, Cmi ≤ Cm, i = 1, 2, we have

z(1) ≤ Cm + d(0)Cm ≤ Cm[1 + d(0)],

which implies (7) for k = 1. Let us assume that (7) holds for 1, 2, . . . , k − 1. Using
(6) for the step k we have

z(k) ≤C +
k−2∑
s=0

p∑
j=1

aj(s)z(s − pj)
m1 +

k−2∑
s=0

q∑
i=1

bi(s)z(s − qi)
m2

+

p∑
j=1

aj(k − 1)z(k − 1− pj)
m1 +

q∑
i=1

bi(k − 1)z(k − 1− qi)
m2 .

By the induction assumption, we see that

z(k) ≤Cm
k−1

k−2∏
s=0

[1 + d(s)] +

p∑
j=1

aj(k − 1){C
mk−1−pj

k−2−pj∏
s=0

[1 + d(s)]}m1

+

q∑
i=1

bi(k − 1){C
mk−1−qi

k−2−qi∏
s=0

[1 + d(s)]}m2 .
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Moreover, since C ≤ 1, m ≤ 1, mi ≥ m, i = 1, 2, the following inequalities hold

Cm
k−1

≤ Cm
k

, [1 + d(s)]mi ≤ [1 + d(s)], i = 1, 2,

Cm
k−1−qi .m2 ≤ Cm

k

;Cm
k−1−pj .m1 ≤ Cm

k

, j = 1, 2, . . . , p, i = 1, .., q,

k−2−pj∏
s=0

[1 + d(s)]m1 ≤
k−2∏
s=0

[1 + d(s)], j = 1, 2, . . . , p,

k−2−qi∏
s=0

[1 + d(s)]m2 ≤
k−2∏
s=0

[1 + d(s)], i = 1, 2, . . . , q .

Therefore,

z(k) ≤ Cm
k
k−2∏
s=0

[1 + d(s)]{1 + d(k − 1)} = Cm
k
k−1∏
s=0

[1 + d(s)]

which implies that (7) holds for the step k.

b) Case m1 ≤ 1 < m2 : It is easy to verify (8) for k = 1. Assume that (8) holds for
the steps 1, 2, . . . , k− 1. Using (6) for the step k and by the induction assumption,
we have

z(k) ≤Cm
k−1
1

k−2∏
s=0

[1 + d(s)]m
k−s−2
2

+

p∑
j=1

aj(k − 1){C
m
k−1−pj
1

k−2−pj∏
s=0

[1 + d(s)]m
k−pj−s−2

2 }m1

+

q∑
i=1

bi(k − 1){C
m
k−1−qi
1

k−2−qi∏
s=0

[1 + d(s)]m
k−qi−s−2
2 }m2 .

Similarly to Case a), we see that

Cm1.m
k−pj−1

1 ≤ Cm
k
1 , Cm2.m

k−qi−1
1 ≤ Cm

k
1 , j = 1, . . . , p, i = 1, . . . , q,

[1 + d(s)]m1.m
k−s−2−pj
2 ≤ [1 + d(s)]m

k−s−2
2 ,

[1 + d(s)]m2.m
k−s−2−qi
2 ≤ [1 + d(s)]m

k−s−2
2 .

Therefore,

z(k) ≤Cm
k
1

k−2∏
s=0

[1 + d(s)]m
k−s−2
2 +

p∑
j=1

aj(k − 1){C
mk1

k−2∏
s=0

[1 + d(s)]m
k−s−2
2 }m1

+

q∑
i=1

bj(k − 1){C
mk1

k−2∏
s=0

[1 + d(s)]m
k−s−2
2 }m2

=Cm
k
1

k−2∏
s=0

[1 + d(s)]m
k−s−2
2 [1 + d(k − 1)]

=Cm
k
1

k−1∏
s=0

[1 + d(s)]m
k−s−1
2 ,
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which implies (8) for the step k.
(b) Case m1,m2 > 1 : Using (6) for k = 1, we have

z(1) ≤ C +
p∑
j=1

aj(0)C
m1 +

q∑
j=1

bi(0)C
m2

Since C ≤ 1, mi ≥ m, Cmi ≤ Cm, i = 1, 2, we see that

z(1) ≤ C + d(0)Cm = C[1 + d(0)Cm−1],

where m = min{m1,m2}. Applying Lemma 2.1 for x = d(0)Cm−1, a = m− 1, we
obtain

[1 + d(0)Cm−1]m−1[1− (m− 1)d(0)Cm−1] ≤ 1.

Therefore,

z(1) ≤
C

{1− (m− 1)d(0)Cm−1}1/(m−1)
,

whenever 1− (m− 1)d(0)Cm−1 > 0, which implies (9) for k = 1. Suppose that the
assertion holds for 1, 2, . . . , k − 1. We shall prove (9) for the step k, provided the
condition (10). To see this, we consider the inequality at the step k, and by the
induction assumptions we see that

z(k) ≤ Dk−2 +
p∑
j=1

aj(k − 1)D
m1
k−2−pj

+

q∑
i=1

bi(k − 1)D
m2
k−2−qi

,

where

Dl :=
C

[1− (m− 1)Cm−1
∑l
s=0 d(s)]

1/(m−1)
.

Since Cmi ≤ Cm, i = 1, 2, we have

[1− (m− 1)

k−2−pj∑
s=0

d(s)]
m1
m−1 ≥ [1− (m− 1)

k−2∑
s=0

d(s)]
m
m−1 , j = 1, . . . , p,

[1− (m− 1)
k−2−qi∑
s=0

d(s)]
m2
m−1 ≥ [1− (m− 1)

k−2∑
s=0

d(s)]
m
m−1 , i = 1, . . . , q,

and so

Dm1k−2−pi ≤ D
m
k−2, i = 1, 2, . . . , p, D

m2
k−2−qj

≤ Dmk−2, j = 1, 2, . . . , q .

Therefore,

z(k) ≤ Dk−2 + d(k − 1)D
m
k−2 = Dk−2[1 + d(k − 1)D

m−1
k−2 ] .

Applying Lemma 2.1 for x = d(k − 1)Dm−1k−2 , a = (m− 1), we obtain

z(k) ≤
Dk−2

[1− (m− 1)d(k − 1)Dm−1k−2 ]
1/m−1

,
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whenever
1− (m− 1)d(k − 1)Dm−1k−2 > 0 . (11)

It is easy to verify that the condition (11) is satisfied due to the condition (10). On
the other hand, it is obvious that

Dk−2

[1− (m− 1)d(k − 1)Dm−1k−2 ]
1/m−1

=
C

[1− (m− 1)Cm−1
∑k−1
s=0 d(s)]

1/m−1
,

and hence

z(k) ≤
C

[1− (m− 1)Cm−1
∑k−1
s=0 d(s)]

1/m−1
,

whenever (10) holds. Then the present proof is complete

Theorem 2.1 has a corollary when bi(k) = 0, which will be used in obtaining
asymptotic stability conditions of nonlinear system (3) in the next section.

Corollary 2.1. Let z(k) : Z+ → R+. Assume that

z(k) ≤ C +
k−1∑
s=0

p∑
j=1

aj(s)z(s − pj)
m ,

where m > 0; p ≥ 1; aj(k) : Z+ → R+; z(k) ≤ C ≤ 1, k = −pp, . . . , 0.
(a) If m ≤ 1, then

z(k) ≤ Cm
k
k−1∏
s=0

[1 +

p∑
j=1

aj(s)].

(b) If m > 1, then

z(k) ≤
C

{1− (m− 1)Cm−1
∑k−1
s=0

∑p
j=1 aj(s)}

1/(m−1)
,

whenever

1− (m− 1)Cm−1
k−1∑
s=0

p∑
j=1

aj(s) > 0 .

3. Stability results

In this section we present sufficient conditions for the asymptotic stability of
system (3) without controls. Let x(k) be a solution of system (3) with the initial
condition x(k) = x0, k = −rr, . . . , 0, given by (4), (5), where for simplicity we
assume that k0 = 0. We first need the following lemma.

Lemma 3.1. Assume that there exist numbers K > 0, w ∈ (0, 1) such that

‖Gks‖ ≤ Kw
k−s, ∀ k > s ≥ 0. (12)

Then there is a number K1 > 0 such that ‖Pk‖ ≤ K1wk, k ∈ Z+.

Proof. Let

M = max{‖Ci(k)‖, k = 0, 1, . . . , ri − 1, i = 2, . . . , r}.



8 P. Niamsup & V. N. Phat EJDE–2000/11

We have

‖Pk‖ ≤ ‖G
k
0‖+

r2−1∑
s=0

‖Gks+1‖‖C2(s)‖+ · · ·+
rr−1∑
s=0

‖Gks+1‖‖Cr(s)‖ .

Since for all i = 2, . . . , r,

rj−1∑
s=0

‖Gks+1‖‖Ci(s)‖ ≤MK

rj−1∑
s=0

wk−s−1 =MKwk−rj(1 + · · ·+ wrj−1)

≤
MKwk−rj

1− w
, j = 2, . . . , r .

and since wk−rj ≤ wk−rr , we obtain

‖Pk‖ ≤ Kw
k +MKwk−rr

r − 1

1− w
≤ Kwk +

MK(r − 1)

wrr(1− w)
wk .

Therefore, ‖Pk‖ ≤ K1wk, for all k ∈ Z+, where

K1 = K +
MK(r − 1)

wrr(1− w)
. (13)

It is worth to note that condition (12) is a sufficient condition for the asymptotic
stability of linear discrete-time delay systems of the form

x(k + 1) =

k−1∑
s=1

r∑
i=1

Ci(s)x(s − ri), k ∈ Z
+, (14)

since any solution x(k) of linear system (14) with the initial condition x(k) = x0,
k = −rr, . . . ., 0, is given by x(k) = Pkx0, where Pk is defined by (5).

Theorem 3.1. Assume the condition (12) and suppose that

‖g(k, x1, . . . , xr)‖ ≤
r∑
j=1

aj(k)‖xi‖
m,

where m > 0, aj(k) : Z
+ → R+.

(i) If m < 1, and

lim
k→∞

r∑
j=1

aj(k)

wk(1−m)
= 0,

then the system (3) is weakly asymptotically stable. If m = 1 then the system is
uniformly asymptotically stable if limk→∞

∑r
j=1 aj(k) = 0.

(ii) If m > 1, and
∞∑
k=0

r∑
j=1

wk(m−1)aj(k) < +∞,
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then the system (3) is uniformly asymptotically stable.

Proof. By Lemma 3.1 we obtain that

‖Pk‖ ≤ K1w
k, k ∈ Z+, (15)

where K1 is defined by (13).
(i) Case m < 1 : Let x(k) be any solution of the system (3) given by (4). Taking
(12) and (15) into account, the following estimate holds

‖x(k)‖ ≤ K1w
k‖x0‖+

k−1∑
s=0

Kwk−s−1
r∑
j=1

aj(s)‖x(s − rj)‖
m, k ∈ Z+.

Multiplying both sides of the above inequality with w−k and setting

z(k) = w−k‖x(k)‖, āj(k) = Kw
k(m−1)−1−mrjaj(k),

we obtain

z(k) ≤ K1‖x0‖+
k−1∑
s=0

r∑
j=1

āj(s)z(s − rj)
m. (16)

Let δ > 0 be a chosen number such that ‖x(0)‖ < δ and K1‖x(0)‖ ≤ 1. By
Corollary 2.1, we have

z(k) ≤ Cm
k
k−1∏
s=0

[1 +

r∑
j=1

āj(s)], k ∈ Z
+,

where C = K1‖x0‖. Therefore,

‖x(k)‖ ≤Cm
k

wk
k−1∏
s=0

[1 +Kws(m−1)−1−mrj
r∑
j=1

aj(s)]

≤(K1‖x0‖)
mk
k−1∏
s=0

[w +Kws(m−1)−mrj
r∑
j=1

aj(s)].

On the other hand, by the assumption (i), there are numbers N > 0, l ∈ (0, 1−w)
such that

Kwk(m−1)−mrj
r∑
j=1

aj(k) ≤ l < 1−w, ∀ k ≥ N .

Consequently, for all k ≥ N we have

K1w
k(m−1)−mrj

r∑
j=1

aj(k) +w < l + w = v < 1,

and hence there exists a number M > 0, such that for all k ≥ N we have

‖x(k)‖ ≤Mvk−N ,
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which implies that limk→∞ ‖x(k)‖ = 0, whenever ‖x(0)‖ < δ, i.e., the zero solution
is weakly asymptotically stable. For the case m = 1, as before, we obtain the
following estimate

‖x(k)‖ ≤ Cwk
k−1∏
s=0

[1 +K

p∑
j=1

(s)], k ∈ Z+.

Therefore,
‖x(k)‖ ≤ K1‖x0‖v

k, k ∈ Z+

which implies uniform asymptotic stability of the system.

(ii) Case m > 1. By the same arguments used in case (i) we have arrived at the
inequality (16), where C := K1‖x0‖, āj(k) = Kwk(m−1)−1−mrjaj(k), m > 1. Using
Corollary 2.1 again, we have

z(k) ≤
C

{1− (m− 1)Cm−1
∑k−1
s=0

∑r
j=1 āj(s)}

1
m−1

,

whenever

1− (m− 1)Cm−1
k−1∑
s=0

r∑
i=1

āi(s) > 0, k ∈ Z
+. (17)

Let l ∈ (0, 1) be an arbitrary number. We shall show that the condition (16) holds
for all x0 satisfying

‖x0‖ ≤ {
l

(m− 1)Km−11 γ
}

1
m−1 := R,

where γ :=
∑∞
k=0

∑r
j=1 āj(k), due to the assumption (ii), is finite. Indeed, for all

that x0, we have

(m− 1)Km−11 ‖x0‖
m−1

k−1∑
s=0

r∑
j=1

āj(s) ≤ (m− 1)K
m−1
1 γ‖x0‖

m−1 ≤ l,

and we obtain

1− (m− 1)Km−11 ‖x0‖
m−1

k−1∑
s=0

r∑
i=1

āi(s) ≥ 1− l > 0 ,

as desired. Therefore,

‖x(k)‖ ≤ K2w
k‖x0‖, k ∈ Z

+ ,

where

K2 =
K1

(1− l)1/m−1
.

The last inequality shows that for any ε > 0, we can choose a suitable number
0 < δ < min{R, ε/K2} and a number N > 0 such that ‖x(k)‖ < ε, for all k > N ,
whenever ‖x0‖ < δ, which implies the uniform asymptotic stability of the zero
solution of system (3). The proof is complete.
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4. Stabilizability results

We first consider the nonlinear control system (1), where Bi(k) = 0,

x(k + 1) =

p∑
j=1

Aj(k)x(k − pj) + fp,q(k, xk, uk), k ∈ Z
+. (18)

In the sequel we assume that ∃aj(k), bi(k) : Z+ → R+ such that

‖f(k, x1, . . . , xp, u1, . . . , ur)‖ ≤
p∑
j=1

aj(k)‖xi‖
m1 +

q∑
i=1

bi(k)‖ui‖
m2 , (19)

where m1,m2 > 0, p, q ≥ 1. Associated with the condition (12) we consider the
condition

∃K > 0, w ∈ (0, 1) : ‖Gks‖ ≤ Kw
∑k−1
i=s m

i
2 , (20)

Let

m2(k, s) =

k−1∑
t=s

mt2 ,

lpj (k) = w
m1.m2(k−pj ,0)−m2(k+1,0),

lqi(k) = w
m2.m2(k−qi,0)−m2(k+1,0) .

(21)

Theorem 4.1. Assume that the conditions (12) and (19) are satisfied. Moreover,
suppose that there are (n×m) matrices D(k), k ≥ −qq, such that
(i) if m1,m2 ≤ 1, and

lim
k→∞

[

p∑
j=1

aj(k)

wk(1−m1)
+

q∑
i=1

bi(k)‖D(k − qi)‖m2

wk(1−m2)
] = 0 , (22)

then the system (18) is weakly stabilizable.
(ii) If m1 ≤ 1 < m2, and we assume the condition (20) instead of (12), then the
system (18) is weakly stabilizable whenever

lim
k→∞

[

p∑
j=1

wlpj (k)aj(k) +

q∑
i=1

wlqi (k)bi(k)‖D(k − qi)‖
m2 ] = 0 . (23)

(iii) If m1,m2 > 1, and

∞∑
k=0

{
p∑
j=1

wk(m1−1)aj(k) +

q∑
i=1

wk(m2−1)bi(k)‖D(k − qi)‖
m2} < +∞ , (24)

then the system (18) is stabilizable by feedback control u(k) = D(k)x(k).

Proof. Taking δ > 0 such that ‖x0‖ < δ, K1‖x0‖ ≤ 1, where K1 is defined by (13)
and, as in the proof of Theorem 3.1, we arrived at the estimate

‖x(k)‖ ≤ K1w
k‖x0‖+

k−1∑
s=0

Kwk−s−1{
p∑
j=1

aj(s)‖x(s−pj)‖
m1+

q∑
i=1

bi(s)‖u(s−qi)‖
m2}.
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Setting u(k) = D(k)x(k), k ≥ −qq, and by (19), and multiplying by w−k we obtain

w−k‖x(k)‖ ≤K1‖x0‖+
k−1∑
s=0

Kw−s−1{
p∑
j=1

aj(s)‖x(s − pj)‖
m1+

+

q∑
i=1

Kw−s−1bi(s)‖D(s− qi)‖
m2‖x(s − qi)‖

m2} .

Let

āj(k) = Kw
k(m1−1)−1−m1pjaj(k),

b̄i(k) = Kw
s(m2−1)−1−m2qibi(k)‖D(k − qi)‖

m2 ,

z(k) = w−k‖x(k)‖, C = K1‖x0‖,

d(s) =

p∑
j=1

āj(s) +

q∑
i=1

b̄i(s) .

We have

‖z(k)‖ ≤ C +
k−1∑
s=0

p∑
j=1

āj(s)‖z(s − pj)‖
m1 +

k−1∑
s=0

q∑
i=1

b̄i(s)‖z(s − qi)‖
m2 . (25)

(i) Case m1,m2 ≤ 1 : Applying Theorem 2.1.(a) to the inequality (25), we have

‖z(k)‖ ≤ Cm
k
k−1∏
s=0

[1 + d(s)] ,

and hence

‖x(k)‖ ≤(K1‖x0‖)
mk
k−1∏
s=0

{w +
p∑
j=1

Kws(m1−1)−m1pjaj(s)

q∑
i=1

Kws(m2−1)−m2qibi(s)‖D(s− qi)‖
m2} .

Since w < 1 and by the assumption (i), there exist a number l < 1 − w and an
integer N > 0 such that for all s ≥ N

p∑
j=1

Kws(m1−1)−m1pjaj(s) +

q∑
i=1

Kws(m2−1)−m2qibi(s)‖D(s − qi)‖
m2 ] ≤ l.

Therefore, there is a number M > 0 such that for all k ≥ N , we have

‖x(k)‖ ≤Mvk−N , k ∈ Z+,

where l + w = v < 1, which means that the system is weakly stabilizable by the
feedback control u(k) = D(k)x(k).
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(ii) Case m1 ≤ 1 < m2 : Using the assumption (20) and by the same arguments
that used in the proof of Lemma 3.1 we can find some number K2 > 0 such that

‖Pk‖ ≤ K2w
m2(k,0), k ∈ Z+.

Let

āj(k) = Kaj(k)w
m1.m2(k−pj ,0)−m2(k+1,0),

b̄i(k) = Kbi(k)w
m2.m2(k−qi,0)−m2(k+1,0),

z(k) = w−m2(k,0)‖x(k)‖, C = K2‖x0‖,

d̄(s) =

p∑
j=1

āj(s) +

q∑
i=1

b̄i(s) .

Similarly, we obtain the estimate (25) and hence, applying Theorem 2.1 to the case
m1 ≤ 1 < m2, we have

‖z(k)‖ ≤ Cm
k
1

k−1∏
s=0

[1 + d̄(s)]m
k−s−1
2 .

Therefore,

‖x(k)‖ ≤ (K2‖x0‖)
mk1

k−1∏
s=0

{w +
p∑
j=1

Kaj(s)w
lpj (s)+1 +

q∑
i=1

Kwlqi (s)+1}m
k−s−1
2 ,

where lpj (s), lqi(s) are defined by (21). Then the proof is complete as in Case (i)
above.
(iii) Case m1,m2 > 1 : Taking (25) into account and applying Theorem 2.1 for
m > 1, we have

z(k) ≤
C

{1− (m− 1)Cm−1
∑k−1
s=0 d(s)}

1/(m−1)
,

whenever 1− (m− 1)Cm−1
∑k−1
s=0 d(s) > 0. Therefore, by the same arguments that

used in the proof of Theorem 3.1 for the case m > 1, there exist numbers δ > 0,
K2 > 0 such that

‖x(k)‖ ≤ K2‖x0‖w
k, ∀k ∈ Z+,

whenever ‖x0‖ < δ. This inequality implies the stabilizability of the system with
the feedback control u(k) = D(k)x(k).

We are now in position to give sufficient conditions for the stabilizability of
nonlinear control system (1) based on Theorem 4.1. Let D(k), k ≥ −qq be arbitrary
(n ×m) matrices. Let M = {pj , qi : j = 2, 3, . . . , p, i = 2, 3, . . . , q}. For r1 = 0 =
p1 = q1, we set C1(k) = A1(k) + B1(k)D(k). Let r2 = minM , then there is some
j1 ∈ {2, . . . , p} or i1 ∈ {2, . . . , q}, such that r2 = pj1 or r2 = qi1 . Without loss
of generality we assume that r2 = pj1 and we then set C2(k) = Aj1(k). Denoting
M−1 =M \ j1, we choose r3 = minM−1. Then there is some i2 ∈ {2, . . . , p} \ i1 or
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j2 ∈ {2, . . . , q} such that r3 = qi2 or r3 = pj2 . Without loss of generality, we assume
that r3 = qi2 . We set C3(k) = Bi2(k)D(k − qi2). Continuing the process, we can
define the sequence r1, r2, . . . , rr where r = p + q − 1 and Ci(k), i = 1, 2, . . . , r are
matrices. The system (1) with feedback control u(k) = D(k)x(k), k ≥ −rr is then
reduced to the system (18) of the form

x(k + 1) =
r∑
j=1

Cj(k)x(k − rj) + fp,q(k, xk,D(k)xk).

Let Hks be the transition matrix of the above system defined by

Hk+1s =

r∑
j=1

Cj(k)H
k−rj
s ,

Hkk = I,

Hks = 0 for k < s .

In the sequel we need the following assumptions

∃K > 0, w ∈ (0, 1) : ‖Hks ‖ ≤ Kw
k−s, ∀k > s ≥ 0 , (26)

∃K > 0, m2 > 1, w ∈ (0, 1) : ‖H
k
s ‖ ≤ Kw

m2(k,s), (27)

The theorem below is proved using the same arguments as in Theorem 4.1.

Theorem 4.2. Assume that (19), (26) are satisfied. Suppose that there are (n×m)
matrices D(k), k ≥ −qq, such that if m1,m2 ≥ 1 and (22) holds then the system (1)
is weakly stabilizable. If m1 ≤ 1 < m2, assume the condition (23) and the condition
(27) instead of (26), then the system (1) is weakly stabilizable. If m1,m2 > 1
and we assume (24), then the system (1) is stabilizable by the feedback control
u(k) = D(k)x(k).

Theorem 4.2 has a corollary which gives stabilizability conditions of nonlinear
control system (1) via the stabilizability of its linear control system

x(k + 1) = Lp,q(xk, uk), k ∈ Z
+. (28)

Corollary 4.1. Assume that (19),(26) are satisfied. Suppose that the linear control
system (28) is stabilizable by some feedback control

u(k) = D(k)x(k), k ≥ −qq,

satisfying one of the conditions (22) - (24), then the nonlinear control system (1)
is stabilizable by the same feedback control.

Example 4.1. Consider a control system in R2 of the form

x1(k + 1) =
1

k + 2
x1(k) + 2

−ku1/3(k), k ∈ Z+

x2(k + 1) = −x2(k) +
1

2k+2
x2(k − 2) + ku(k) + 2

−kx
1/3
2 (k − 2),

(29)
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where x1(k), x2(k), u(k) ∈ R. The system (29) is of the form of control system (1),
where

A1(k) =

(
1
k+2

0
0 −1

)
, A2(k) =

(
0 0
0 1/2k+2

)
, B(k) = [0, k]T ,

f(k, x(k), x(k − 2), u(k)) = [2−ku1/3(k), 2−kx1/32 (k − 2)]
T .

We have m1 = 1/3, m2 = 1/3, p = 2, p2 = 2, q = 1, and

‖f(k, x(k), x(k − 2), u(k))‖ ≤ 2−k‖x2(k − 2)‖
1/3 + 2−k‖u(k)‖1/3 .

For the feedback control u(k) = D(k)x(k) with D(k) = (0, 1/k), we have

C1(k) = A1(k) +B1(k)D(k) =

(
1
k+2

0
0 0

)
, C2(k) = A2(k).

Therefore, it is easy to verify that the transition matrix Gks of the system (29)
satisfies (13), where K = 1, w = 1/2. Also conditions (20), (22) of Theorem 4.2,
where a1(k) = 0, a2(k) = 2

−k, b1(k) = 2
−k, m1 = m2 = 1/3, hold for the above

feedback control. Then system (29) is weakly stabilizable.

Example 4.2. Consider the control system

x1(k + 1) =
1

k + 2
x1(k) + k

3u2(k), k ∈ Z+

x2(k + 1) = −x2(k) +
1

2k+2
x2(k − 2) + ku(k) + sin

kπ

3
x32(k − 2) .

(30)

Then we have m1 = 3, m2 = 2, p = 2, p2 = 2, q = 1, and

f(k, x(k), x(k − 2), u(k)) = [k3u2(k), sin
kπ

3
x32(k − 2)]

T .

Therefore,

‖f(k, x(k), x(k − 2), u(k))‖ ≤ ‖ sin
kπ

3
‖‖x2(k − 2)‖

3 + k3‖u(k)‖2.

Let us consider the same feedback control as in Example 4.1. It is easy to verify
that (24) with a1(k) = 0, a2(k) = sin

kπ
3 , b1(k) = k

3 holds for the above feedback
control. Then system (30) is stabilizable.

Example 4.3. Consider the following control system

x1(k + 1) =
1

22k
x1(k) + 2

−kx
1/3
2 (k − 2), k ∈ Z

+

x2(k + 1) = −x2(k) + 2
−
∑k
i=0 2

i

x2(k − 2) + sin
kπ

3
u2(k) + ku(k).

(31)

Then we have m1 = 1/3, m2 = 2, p = 2, p2 = 2, q = 1, and

A1(k) =

(
1

22
k 0
0 −1

)
, A2(k) =

(
0 0
0 2−

∑k
i=0 2

i

)
, B(k) = [0, k]T ,

f(k, x(k), x(k − 2), u(k)) = [2−kx1/32 (k − 2), sin
kπ

3
u2(k)]T .
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Therefore,

‖f(k, x(k), x(k − 2), u(k))‖ ≤ ‖ sin
kπ

3
‖‖u(k)‖2 + 2−k‖x2(k − 2)‖

1/3.

Let us consider the feedback control D(k) = (0, 1/k). It is easy to verify that (27)
holds for K = 2, w = 1/2, and the condition (23) with a1(k) = 0, a2(k) = 2

−k,
b1(k) = sin

kπ
3 holds. Then system (31) is stabilizable.

Acknowledgements: This paper was written while the second author was visiting
the Department of Mathematics at the Chiangmai National University of Thailand.
The first author is supported by the Thailand Research Fund. The authors also
want to thank Professors A. Kananthai and S. Suantai for their interesting discus-
sions, and to the anonymous referee for the valuable remarks that improved our
manuscript.

References

[1] R.P Agarwal, Difference Equations and Inequalities. Marcel Dekker, New York,
1992.

[2] N.S. Bay and V.N. Phat. On the stability of nonlinear nonstationary discrete-
time systems. Vietnam J. of Math., 4(1999), 311-319.

[3] R. Gabasov., F. Kirillova, V. Krakhotko and S. Miniuk. Controllability theory
of linear discrete-time systems. Diff. Equations, 8(1972), 767–773, 1081–1091,
1282–1291 (in Russian).

[4] X. Huimin and L. Yongqing. The stability of linear time-varying discrete systems
with time-delay. J. Math. Anal. Appl., 188(1994), 66–77.

[5] V.S. Kozyakin, A. Bhaya and E. Kaszkurewicz. A global asymptotic stability
result for a class of discrete nonlinear systems. Math. Contr. Sig. Systems,
12(1999), 143-166.

[6] J.P. LaSalle. The Stability and Control of Discrete Processes. Springer-Verlage,
New York, 1986.

[7] V. Lakshmikantham, S. Leela and A. Martyniuk. Stability Analysis of Nonlinear
Systems. Marcel Dekker, New York, 1989.

[8] A.D. Martinyuk. Lectures on Qualitative Theory of Difference Equations. Nauka
Dumka, Kiev, 1972 (in Russian).

[9] R. Naulin and C.J. Vanegas, Instability of discrete systems. Electron. J. of Diff.
Eqns., 1998(1998), No.33, 1-11.

[10] V.N. Phat. Constrained Control Problems of Discrete Processes. World Scien-
tific, Singapore, 1996.

[11] V.N. Phat. Weak asymptotic stabilizability of discrete-time systems given by
set-valued operators. J. Math. Anal. Appl., 202(1996), 363–378.

[12] V.N. Phat. On the stability of time-varying systems. Optimization, 45(1999),
237-254.

[13] V.N. Phat. Controllability of linear discrete-time systems with multiple delays
on controls and states. Int. J. of Control, 5(1989), 1645-1654.

[14] J. Popenda, On the systems of discrete inequalities of Gronwall type. J. Math.
Anal. Appl., 183(1994), 663-669.

[15] E.D. Sontag. Mathematical Control Theory. Springer-Verlag, New York, 1990.
[16] T. Taniguchi. On the estimate of solutions of perturbed nonlinear difference

equations. J. Math. Anal. Appl., 149(1994), 599–610.



EJDE–2000/11 Stability of nonlinear control systems 17

[17] X. Yang and Y. Stepanenko. A stability criterion for discrete nonlinear systems
with time delayed feedback. IEEE Trans. on AC, 39(1994), 585–588.

Piyapong Niamsup

Department of Mathematics, Chiangmai National University,

Chiangmai 50200, Thailand

E-mail address: scipnmsp@cmu.chiangmai.ac.th

Vu Ngoc Phat

Institute of Mathematics, National Center for Sciences and Technology,

P.O. Box 631 Bo Ho, 10.000 Hanoi, Vietnam.

E-mail address: vnphat@hanimath.ac.vn


