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A singular ODE related to

quasilinear elliptic equations ∗

Luka Korkut, Mervan Pašić, & Darko Žubrinić

Abstract

We consider a quasilinear elliptic problem with the natural growth
in the gradient. Existence, non-existence, uniqueness, and qualitative
properties of positive solutions are obtained. We consider both weak and
strong solutions. All results are based on the study of a suitable singular
ODE of the first order. We also introduce a comparison principle for a
class of nonlinear integral operators of Volterra type that enables to obtain
uniqueness of weak solutions of the quasilinear equation.

0.1 Introduction

In this paper we consider a quasilinear elliptic problem and its spherically sym-
metric, positive solutions in a ball, both in the weak and strong sense. The
main difficulty represents the presence of the natural growth in the gradient on
the right-hand side. We study existence, non-existence, uniqueness and quali-
tative properties of solutions. The quasilinear problem is studied by means of a
suitable singular ODE of the first order. To prove uniqueness of weak solutions
of quasilinear problem, we use a new type of comparison principle for integral
operators of Volterra type, recently introduced by the second author. To our
knowledge this seems to be the first uniqueness result for quasilinear elliptic
equations with the natural growth in the gradient. Our existence proofs are
constructive in the sense that solutions possess explicit integral representation,
obtained by means of isoperimetric equalities and monotone rearrangements.
Nonexistence results are obtained by constructing an unbounded sequence of
subsolutions. The results seem to be new even in the case of p = 2.
Relatively simple methods developed in this paper enable numerous general-

izations and variations. First, our existence results can be used to study general
quasilinear elliptic equations in divergence form on arbitrary open and bounded
set Ω, see [15]. These methods can be exploited in the study of quasilinear ellip-
tic systems with strong dependence in the gradient, in the study of biharmonic
equations, and even polyharmonic equations. It is also possible to study the
corresponding variational inequalities.
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Our basic model is the following class of quasilinear elliptic equations with
the natural growth in the gradient:

−∆pv = g̃0|x|m + f̃0|∇v|p in B \ {0},

v = 0 on ∂B, (1)

v(x) spherically symmetric and decreasing.

Here B = BR(0) is the ball of radius R in R
N , N ≥ 1, 1 < p < ∞, ∆pv =

div(|∇v|p−2∇v). We shall also need the conjugate exponent p′ = p
p−1 . Also, we

denote R+ = [0,∞). We assume that the constants f̃0 and g̃0 are positive real
numbers, and m ∈ R can also be negative, i.e. the right hand side of (1) may
be singular.
We can interpret solutions of equation (1) in three ways. We say that v(x)

is

(i) a strong solution of (1) if v ∈ C2(B \ {0}) ∩ C(B);

(ii) a classical solution of (1) if v ∈ C2(B);

(iii) a weak solution of (1) if v ∈W 1,p
0 (B)∩L

∞(B), and equation (1) is satisfied
in the weak sense:∫

B

|∇v|p−2∇v · ∇ϕdx = g̃0

∫
B

|x|mϕ(x) dx + f̃0

∫
B

|∇v|pϕ(x) dx (2)

for all ϕ ∈ W 1,p
0 (B) ∩ L

∞(B).

In Section 1 we show that the study of (1) can be related to the study of the
following ordinary differential equation:

dω(t)
dt
= g0γt

γ−1 + f0
ω(t)δ

tε
, t ∈ (0, T ), (3)

ω(0) = 0,

where the constants g0, f0, δ, γ, T are assumed to be positive, and ε ∈ R. Note
that for ε > 0 problem (3) is singular. In Section 1.2 we study weak solutions
of (1), where we exploit techniques of isoperimetric equalities and monotone
rearrangements.
In Section 2 we are interested in finding sufficient conditions on pairs (f0, g0)

of positive real numbers that ensure existence of at least one solution ω of (3),
i.e. of (5). While for δ ∈ (0, 1) the problem is solvable for all (f0, g0), the case
of δ > 1 is strikingly different. Namely, in the latter case we always have an
unbounded set of pairs (f0, g0) for which the problem is not solvable. More
precisely, we obtain two explicit positive constants C1 < C2 depending only on
δ, γ, ε, and T , such that if

f0 ≤
C1

gδ−10
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then ODE (3) is solvable, while for

f0 ≥
C2

gδ−10

problem (3), and even problem (22) below, is not solvable. We know (almost)
nothing about solvability of (3) in the case when

C1

gδ−10
< f0 <

C2

gδ−10

See Theorems 4, 5, 6 for solvability results related to (3), and Theorem 7 for
a nonsolvability result. In Section 2.4 we show a regularity result for solutions
of (3) at singular point t = 0.
It is interesting that in the case when (f0, g0) belongs to existence region

described above, we can also prove uniqueness of the solution, but only in the
set of the form (7). An important tool in obtaing uniqueness result is played by
a pointwise comparison principle for general operators of Volterra type, that we
introduce in Theorem 3, see Section 2.1. Its first version has appeared in Pašić
[14].
In Section 3 we apply existence and non-existence results from Section 2

to study the problem of existence, qualitative properties, and non-existence
of solutions of (1). Using the above results it is easy to obtain two positive
constants C̃1 < C̃2 depending only on m, p, N , and R, such that if

f̃0 ≤
C̃1

g̃p
′−1
0

then PDE (1) possesses a strong solution generated by a solution of the corre-
sponding singular ODE (3), that we call ω-solution. In fact, we obtain that these
strong solutions coincide with weak solutions, and furthermore, (1) is uniquely
solvable in the weak sense, see Theorem 9. On the other hand, for

f̃0 ≥
C̃2

g̃p
′−1
0

problem (1) has neither weak nor strong solutions. Again, we know (almost)
nothing about solvability of (1) in the case when

C̃1

g̃p
′−1
0

< f̃0 <
C̃2

g̃p
′−1
0

Existence results are supplied with constructive proofs, and, as we have said,
we have even uniqueness of weak solutions. See our main results in Theorem 8
and Theorem 9 for precise statements. The non-existence result represents a
refinement of the corresponding result in Pašić [16]. Aplying regularity result
from Section 2.4 we are able to describe the behaviour of solutions of (1) at
x = 0 and on the boundary of B.
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It is worth noting that the phenomenon of having existence and non-existence
regions with respect to (f̃0, g̃0) for (1) is due to the presence of the term f̃0|∇v|p

with f̃0 > 0, on the right-hand side. Namely, if we have f̃0 = 0, we have no
more this effect with respect to parameter g̃0.

1 Connection between ODE and PDE

1.1 Strong solutions

Here we want to describe the connection between strong solutions of quasilinear
elliptic problem (1) and solutions of the corresponding singular ODE (3). We
obtain solutions of (3) as fixed points of the following singular nonlinear integral
operator of Volterra type:

K : D(K) ⊂ C([0, T ])→ C([0, T ]), Kϕ(t) = g0t
γ + f0

∫ t

0

ϕ(s)δ

sε
ds. (4)

A domain D(K) will be chosen so that the corresponding fixed point equation

ω ∈ D(K), ω = Kω (5)

is solvable. We shall deal with two types of domains. When we apply Banach’s
contraction method or Schauder’s fixed point theorem, then we shall use the
domain

D(K) = {ϕ ∈ C([0, T ]) : 0 ≤ ϕ(t) ≤Mtγ}, (6)

with a suitable constant M > 0 independent of ϕ, which ensures that R(K) ⊆
D(K), see Theorems 4 and 5 (by R(K) we denote the range of K). In the case
of monotone iterations we take much larger domain, see Theorem 6:

D(K) = {ϕ ∈ C([0, T ]) : ∃Mϕ ≥ 0, 0 ≤ ϕ(t) ≤Mϕt
γ}. (7)

It will be convenient to introduce an auxiliary function V : [0, |B|] → R,
where |B| is the Lebesgue measure of B, such that

v(x) = V (CN |x|
N ), (8)

where CN is the volume of the unit ball in R
N . In fact, (8) will have two rôles:

if a function v(x) is given, then it will serve to define V (s), and if V (s) is given,
it will define v(x). If V (s) is decreasing, then (8) implies that

−∆pv = C
p/N
N Np d

ds

(
sp(1−1/N)

∣∣∣∣dVds
∣∣∣∣
p−1
)

(9)
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From solutions of ODE to strong solutions of PDE. Let ω : [0, T ]→ R
be a solution of (3). In order to obtain a strong solution of (1) via (8), we define
the function

V (s) =

∫ T

s

ω(σ)β

σα
dσ, T = |B|, (10)

with α and β specified below. We shall always have that 0 ≤ ω(s) ≤Msγ with
some γ > 0 and M > 0, so that V (0) <∞ provided α < βγ + 1. Using (10) we
obtain

−∆pv(x) = C
p/N
N Np d

ds

(
sp(1−

1
N )−α(p−1)ω(s)β(p−1)

)
, s = CN |x|

N . (11)

An easy computation shows that we have the following relation between ω(s)
and |∇v|, see (8) and (10):

ω(s) = N−1/βC
α−1
β

N |x|
Nα−N+1

β |∇v(x)|1/β , s = CN |x|
N . (12)

In the following lemma we generate strong solutions of (1) starting from
solutions of the corresponding ODE (3), so that the coefficients α, β, γ, δ, ε are
defined by f̃0, g̃0, m, p, N using (14), (15) and (16).

Lemma 1 Let f̃0 and g̃0 be given positive real numbers. Assume that 1 < p <
∞,

m > max{−p,−N}. (13)

Let the constants α, β, γ, δ, and ε be defined by

α = p′(1−
1

N
), β =

p′

p
, (14)

and

γ = 1 +
m

N
, δ = p′, ε = p′(1−

1

N
), (15)

and let

g0 =
g̃0

C
m+p
N

N Np−1(m+N)
, f0 = f̃0. (16)

Then we have α < βγ + 1, δ > ε−1
γ
+ 1, γ > 0, and for any solution ω of

(3) with T = |B|, such that 0 ≤ ω(t) ≤ Mtγ for some M > 0, we have that
the corresponding function v(x) defined by (8) and (10) is a strong solution of
quasilinear problem (1). Furthermore, the following relation holds:

u′(r) = −
N

C
p′

p (1−
p
N )

N

r−
p′

p (N−1) ω(CNr
N )p

′/p, (17)

where u : [0, R]→ R is defined by u(r) = v(x), r = |x|.
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Proof. Note that both the integrability condition α < βγ + 1 of σ−αω(σ)β

in (10) and the condition δ > ε−1
γ + 1 are equivalent to m > −p. Also, since

m > −N , then γ = 1 + m
N
> 0.

Using (14) we see that (11) reduces to

−∆pv = C
p/N
N Np dω

ds
. (18)

Now let us take into account our singular ordinary differential equation (3) with
the values of γ, δ, and ε defined in (15). Substituting into (18) and using (12)
we obtain that v(x) is a strong solution of (1):

−∆pv = C
p/N
N Np[g0γs

γ−1 + f0s
−εω(s)δ]

= C
p/N
N Np[g0γ(CN |x|

N )γ−1 + f0(CN |x|
N )−εω(CN |x|

N )δ] (19)

= g̃0|x|
m + f̃0|∇v|

p.

Relation (17) follows from (12) and the fact that |∇v(x)| = −u′(r). ♦

We say that v(x) is ω-solution of PDE (1), if it is a strong solution which
can be obtained as in Lemma 1, using the solution ω(t) of ODE (3) such that
0 ≤ ω(t) ≤Mtγ for some M > 0.
Note that our ODE (3) is singular only for ε > 0. For ε as in (15) this

condition corresponds to the case when N ≥ 2 in (1); if N = 1 in (1), then
ε = 0 in equation (3). On the other hand, the right-hand side of our PDE
(1) has singularity at x = 0 provided m < 0, which means that γ < 1 in the
corresponding ODE (3).

From strong solutions of PDE to solutions of ODE. It is not difficult
to show that a strong solution v of (1) generates a solution of a suitable ODE
defined by (22), without any initial condition. We seek for solutions contained
in the set

D+ = {ϕ ∈ C([0, T ]) : ϕ(t) ≥ 0, ϕ nondecreasing}. (20)

Lemma 2 Let v be a strong solution of (1), where f̃0 > 0, g̃0 > 0, and m, p,
N satisfy (13). Define V (s) by (8), and let

ω(s) = sp(1−
1
N )

∣∣∣∣dVds
∣∣∣∣
p−1

, s ∈ (0, T ), T = |B|. (21)

Then ω satisfies the following ODE:

dω(t)
dt = g0γt

γ−1 + f0
ω(t)δ

tε , t ∈ (0, T ), (22)

ω ∈ D+.

where g0, f0 are defined by (16), and constants γ, δ, ε are defined by (15). Also,
V (s) can be represented by (10), where α and β are defined by (14).
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Proof. From V (s) = v(x), s = CN |x|N we obtain |∇v| = NC
1/N
N s1−

1
N

∣∣dV
ds

∣∣.
Using (1), (18), and (16) it is easy to show that ω satisfies (3). From (21), and
using the fact that V (s) is decreasing, we see that dV

ds
= −s−αω(s)β . Integrating

from s to T we obtain (10). ♦

1.2 Weak solutions

Theorem 2 below shows that every weak solution of (1) is ω-solution of (1). In
fact, we consider a more general problem than (1):

−∆pv = g̃(|x|, v) + f̃0|∇v|p in B \ {0},

v = 0 on ∂B, (23)

v(x) spherically symmetric and decreasing.

We define the notion of weak solution of this equation as a function v ∈
W 1,p
0 (B) ∩ L

∞(B) satisfying integral identity analogous to (2). In what fol-
lows we assume g̃ : R+ × R+ → R+ is a Carathéodory function such that

∫ |B|
0

g̃

((
s

CN

)1/N
, ϕ(s)

)
ds <∞, ∀ϕ ∈ C([0, |B|]), ϕ ≥ 0. (24)

Theorem 1 Assume that (24) holds, and let v be a weak solution of (23). Let
us define V (s), s ∈ [0, T ], T = |B| by (8) and the function w : [0, T ]→ R by

ω(s) =
1

NpC
p/N
N

e−f̃0V (s)
∫ s

0

g̃

((
σ

CN

)1/N
, V (σ)

)
ef̃0V (σ)dσ. (25)

Then the functions ω and V satisfy the following system of ODE’s:

dω
ds =

1

NpC
p/N
N

g̃

((
s
CN

)1/N
, V (s)

)
+ f̃0

ω(s)p
′

sp
′(1− 1

N
)

a.e. s ∈ (0, T ),

dV
ds = −s

p′(−1+ 1
N )ω(s)p

′/p a.e. s ∈ (0, T ) (26)

ω(0) = 0, ω ∈ AC+([0, T ]),

V (T ) = 0, V ∈ AC+([a, T ]), ∀a > 0 .

Furthermore, we have

ω(s) ≤
ef̃0V (0)

NpC
p/N
N

∫ s

0

g̃

((
σ

CN

)1/N
, V (σ)

)
dσ, (27)

and v ∈ C∞(B \ {0}). If there exists M > 0 such that ω(s) ≤ Ms1+m/N ,
s ∈ [0, T ], and m > −p, then also v ∈ C(B), and v is the strong solution of
(23).
We have a partial converse: if ω and V are solutions of (26) such that

0 ≤ ω(s) ≤ Ms1+m/N for some M > 0, then the corresponding function v(x)
defined by (8) is a strong solution of (23).
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In the special case of g̃(r, η) = g̃0r
m, for some fixed m ∈ R and g̃0 > 0, we

obtain problem (1).

Theorem 2 Assume that m > −N , and let v(x) be a weak solution of (1). If
we define V (s), s ∈ [0, T ], T = |B|, by (8), then the function ω : [0, T ]→ R+

defined by

ω(s) =
g̃0

NpC
m+p
N

N

e−f̃0V (s)
∫ s

0

σ
m
N ef̃0V (σ)dσ, (28)

satisfies equation (3), where the constants γ, δ, ε are defined by (15), and f0,
g0 by (16). Also, we have that for all s ∈ [0, T ]

ω(s) ≤Msγ , M = g0 · e
f̃0V (0). (29)

We have v ∈ C∞(B \ {0}) ∩ C(B). If in addition to the above hypotheses we
assume m > −p, then v ∈ C(B) and the weak solution of (1) is also ω-solution.

Proof of Theorem 2. This theorem follows easily from Theorem 1. Con-
cerning the continuity of v on B, note that (29) and (10) imply that V (s) is
continuous at s = 0, and therefore v(x) is continuous at x = 0. The partial
converse can be proved similarly as in Lemma 1. ♦

Before proceeding to proof of Theorem 1 we compare Lemma 2 with the
above theorem. On the one hand, it should be noted that the function ω(s)
defined by (28) satisfies the same ODE (3) as the one defined by (21) in Lemma 2.
On the other hand, in Theorem 1 we have that weak solutions of (1) yield
w ∈ AC+([0, T ]) and the estimate (29), while in Lemma 2 strong solutions yield
only ω ∈ D+. As we see from Theorem 2, any weak solution of (1) is ω-solution,
while for strong solutions this is an open problem.
Before proving Theorem 1 we recall some very well known results on Schwartz

symmetrization.

Lemma 3 Let v ∈W 1,p
0 (B)∩L

∞(B) be a spherically symmetric and decreasing
function and let V (s), s ∈ [0, |B|], be defined by (8). Then we have:
(i) V (s) = v∗(s), where by definition v∗(s) = |{t ≥ 0 : µ(t) > s}|, µ(t) =

|{x ∈ B : v(x) > t}|; also µ(s) = V −1(s), where V −1 denotes the inverse
function of V ;
(ii) V ∈W 1,p

loc (0, |B|) ∩ C([0, |B|]), and V ∈ AC([a, |B|]) for all a > 0.

Proof. (i) follows easily from the fact that v is decreasing. For the proof of
(ii) see for example Rakotoson, Temam [17]. ♦

Proof of Theorem 1. We define the function

ϕ(x) = ef̃0V (CN |x|
N)St,h(v(x)) (30)

where t ∈ (0, T ), h > 0, and

St,h(τ) =



0, for τ ≤ t,
1
h
(τ − t), for t < τ ≤ t+ h,
1, for τ > t+ h.

(31)
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It is easy to see that ϕ ∈W 1,p
0 (B)∩L

∞(B). Now if we test (23) with ϕ and let
h→ 0 we obtain

−
d

dt

∫
{v>t}

|∇v|pdx = e−f̃0t
∫
{v>t}

g̃(|x|, v) ef̃0v(x)dx. (32)

Let us show that

−
d

dt

∫
{v>t}

|∇v|pdx = NpC
p/N
N µ(t)p(1−

1
N )|µ′(t)|1−p (33)

∫
{v>t}

g̃(|x|, v) ef̃0vdx =

∫ µ(t)

0

g̃

((
σ

CN

)1/N
, V (σ)

)
ef̃0V (σ)dσ. (34)

(a) To prove relation (33), we start with:

−
d

dt

∫
{v>t}

|∇v|pdx = lim
h→0

1

h

∫
{t<v≤t+h}

|∇v|pdx.

Now use (8) and pass to the generalized spherical coordinates:∫
{t<v≤t+h}

|∇v|pdx (35)

= CpNN
p

∫
{t<v≤t+h}

|x|p(N−1)
∣∣∣∣dVds (CN |x|N )

∣∣∣∣
p

dx

= Cp+1N Np+1

∫
{t<V (CNrN)≤t+h}

rp(N−1)
∣∣∣∣dVds (CNrN )

∣∣∣∣
p

rN−1dr

= NpCpN

∫ µ(t)

µ(t+h)

sp(1−
1
N )

∣∣∣∣dVds
∣∣∣∣
p

ds

= NpC
p/N
N

∫ t+h

t

µ(σ)p(1−
1
N )|µ′(σ)|1−pdσ,

where we used the change of variables V (s) = σ, dV
ds
= 1

µ′(s) , and µ
−1 = V , see

Lemma 3(i). This proves (33). Relation (34) is proved in the same way.
(b) Using (32), (33), (34), and (25) we obtain

1 = µ(t)p(−1+
1
N )|µ′(t)|p−1ω(µ(t)).

This implies

dV

ds
= lim

h→0

1

h

∫ V (s+h)

V (s)

1p
′/p dt

= lim
h→0

1

h

∫ V (s+h)

V (s)

µ(t)p
′(−1+ 1

N )|µ′(t)|ω(µ(t))p
′/pdt

= − lim
h→0

1

h

∫ s+h

s

τp
′(−1+ 1

N )ω(τ)p
′/pdτ

= −sp
′(−1+ 1

N )ω(s)p
′/p.
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Here we have used the change of variables µ(t) = τ , and the fact that µ−1(τ) =
V (τ).

It is now easy to verify that the function ω(t) defined by (25) satisfies the
first ODE in (26). Note that the second ODE in (26) implies that V (s) has
the form (10). From this it is easy to conclude that ω ∈ C∞((0, T ]), and then
also v ∈ C∞(B \ {0}). If ω(s) ≤ Msγ , then (10), (8) and m > −p imply that
v ∈ C(B). ♦

2 Singular ODE

2.1 Comparison principle and uniqueness of solutions

Let (X,≤) be a partially ordered set, and assume that K : D(K) ⊂ X → X is
an operator. We say that u is a subsolution of K if

u ∈ D(K) and u ≤ Ku. (36)

We say that v is a supersolution of K if

v ∈ D(K) and v ≥ Kv. (37)

Also, the operator K is said to be nondecreasing if for any ϕ, ψ ∈ D(K) the
assumption ϕ ≤ ψ implies that Kϕ ≤ Kψ.
We say that an operator K : D(X) ⊂ X → X has (weak) comparison

property if for any subsolution u and any supersolution v of K we necessarily
have u ≤ v (Ku ≥ Kv). Now we formulate the following very simple uniqueness
lemma.

Lemma 4 Let K : D(K) ⊂ X → X have (weak) comparison property. Then
the fixed point equation ω = Kω possesses at most one solution in D(K).

Proof. Let ω1, ω2 ∈ D(K) be such that ω1 = Kω1, ω2 = Kω2. Since ω1 is a
subsolution, and ω2 is a supersolution of K, then ω1 ≤ ω2. Similarly ω2 ≤ ω1,
that is ω1 = ω2.

If K has weak comparison property then we obtain Kω1 ≤ Kω2 and Kω2 ≤
Kω1, that is ω1 = Kω1 = Kω2 = ω2. ♦

Let us describe our basic example of operators having (weak) comparison
property. Let X = C([0, T ]) with pointwise partial ordering, and assume that
k(s, η) : [0, T ] × R → R is a Carathéodory function (measurable with respect
to s for all η and continuous with respect to η for a.e. s) such that the integral
operator of Volterra type

K : D(K) ⊂ C([0, T ])→ C([0, T ]), Kϕ(t) =

∫ t

0

k(s, ϕ(s)) ds (38)
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is well defined on a nonempty domain D(K). We say that the operator K has
property (m) if for all ϕ, ψ ∈ D(K), for all a ∈ [0, T ) and for all c ∈ (a, T ),
there exist b ∈ (a, c) and m(a, b, ϕ, ψ) ∈ [0, 1) such that

‖k(·, ϕ(·)) − k(·, ψ(·))‖L1(a,b) ≤ m(a, b, ϕ, ψ) · ‖ϕ− ψ‖L∞(a,b). (39)

We shall also say that the function k(s, η) has property (m).
It is easy to see that our (m)-condition for operator K will be satisfied if

we can obtain the last inequality in (39) so that the following property on the
coefficient m(a, b, ϕ, ψ) is satisfied:

∀ϕ, ψ ∈ D(K), ∀a ∈ [0, T ), lim
b→a+

m(a, b, ϕ, ψ) = 0. (40)

This will be the situation in all applications that follow, see Lemma 5 below. In
fact, even more general condition suffices for (m)-condition to be fulfilled:

∀ϕ, ψ ∈ D(K), ∀a ∈ [0, T ), lim inf
b→a+

m(a, b, ϕ, ψ) ∈ [0, 1). (41)

However, we do not know any example of operator K satisfying property (41)
which does not satisfy (40).
The following comparison principle will play basic rôle in obtaining unique-

ness results for the fixed point problem ω = Kω using monotone iterations
method.

Theorem 3 (comparison principle) Let K : D(K) ⊂ C([0, T ])→ C([0, T ]) be
an integral operator of Volterra type given by (38), satisfying property (m), and
such that R(K) ⊆ D(K).

(a) If k(s, ·) is nondecreasing for a.e. s then the operator K has comparison
property, that is, if u, v ∈ D(K) are such that u ≤ Ku, v ≥ Kv, then
necessarily u ≤ v.

(b) If k(s, ·) is nonincreasing for a.e. s then K has weak comparison property,
that is, if u, v ∈ D(K) are such that u ≤ Ku, v ≥ Kv, then necessarily
K(u) ≥ K(v).

In both cases the fixed point equation ω = Kω possesses at most one solution
in D(K).

Proof. (a) Let u and v be a subsolution and supersolution of K respectively.
Denote θ = Ku and ω = Kv. Then we have θ, ω ∈ D(K) ∩ AC([0, T ]), and
u ≤ θ, v ≥ ω on [0, T ]. Since k(s, ·) is nondecreasing for a.e. s we obtain the
following two differential inequalities

dθ
dt
≤ k(t, θ(t)) a.e. t ∈ [0, T ], (42)

dω
dt
≥ k(t, ω(t)) a.e. t ∈ [0, T ].
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Let us first prove that

θ(t) ≤ ω(t) for all t ∈ [0, T ]. (43)

It suffices to show that

∀a ∈ [0, T ) such that θ(a) = ω(a) there is no c ∈ (a, T ]
such that ∀t ∈ (a, c] θ(t) > ω(t).

(44)

We argue by contradiction. Assume, contrary to (44), that there exists a ∈ [0, T )
such that θ(a) = ω(a) and let there exist c ∈ (a, T ] satisfying θ(t) > ω(t) for all
t ∈ (a, c]. Integrating (42) over [a, t] with t ∈ [a, c] and using property (m) we
obtain

|θ(t)− ω(t)| = θ(t)− ω(t) ≤

∫ t

a

k(s, θ(s)) ds −

∫ t

a

k(s, ω(s)) ds

≤

∫ t

a

|k(s, θ(s))− k(s, ω(s))| ds ≤ ‖k(·, θ(·))− k(·, ω(·))‖L1(a,c)

≤ m(a, c, θ, ω) ‖θ − ω‖L∞(a,c).

Taking the maximum over t ∈ [a, c] we obtain ‖θ−ω‖L∞(a,c) ≤ m(a, c, θ, ω) ‖θ−
ω‖L∞(a,c), and from this θ ≡ ω on [a, c], which is a contradiction. This proves
(43).
Now using (43), (36), and (37) we have that

u ≤ Ku = θ ≤ ω = Kv ≤ v (45)

The case (b) is treated in the same way as (a). The uniqueness claim follows
from Lemma 4. ♦

Note that in case (a) the operator K is monotone, while in case (b) the
operator −K is monotone.
It is clear that if a subsolution u and a supersolution v of K are given in

advance in the above theorem, then we can replace the condition R(K) ⊆ D(K)
with Ku,Kv ∈ D(K) only.
Now we would like to describe our basic example of operators satisfying

property (m). We shall need the following elementary inequality which will be
useful in the sequel:

|ϕδ − ψδ| ≤ δmax{ϕδ−1, ψδ−1}|ϕ− ψ|, (46)

where ϕ, ψ ≥ 0 and δ > 0. This follows immediately from the mean value
theorem applied to F (t) = tδ, t ≥ 0.

Lemma 5 Assume that δ > ε−1
γ + 1, δ > 0, γ > 0, ε ∈ R, f0 ∈ R, and

g0 ∈ R. Let the Volterra type operator K be defined by (4), with its domain
D(K) contained in the set {ϕ ∈ C([0, T ]) : ∃Mϕ ≥ 0, 0 ≤ ϕ(t) ≤Mϕt

γ}. Then
the operator K has property (m). In particular, the equation ω = Kω possesses
at most one solution in D(K).
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Proof. Here we have

k(s, η) = γg0s
γ−1 + f0

ηδ

sε
.

For any ϕ, ψ ∈ D(K), 0 ≤ a < b ≤ T , we have:

‖k(·, ϕ(·))− k(·, ψ(·))‖L1(a,b) ≤ |f0|

∫ b

a

|ϕ(s)δ − ψ(s)δ|

sε
ds

≤ |f0|δM
δ−1

∫ b

a

sγ(δ−1)−ε|ϕ(s)− ψ(s)| ds

≤ m(a, b, ϕ, ψ)‖ϕ− ψ‖L∞(a,b) (47)

where we have denoted

M = max{Mϕ,Mψ},

m(a, b, ϕ, ψ) =
|f0|δM δ−1

γ(δ − 1)− ε+ 1
[bγ(δ−1)−ε+1 − aγ(δ−1)−ε+1]. (48)

The condition (40) is clearly satisfied. The uniqueness claim follows from The-
orem 3. ♦

The following lemma provides some sufficient conditions for R(K) ⊆ D(K)
to hold.

Lemma 6 Let the operator K be defined by (4), where f0 and g0 are given
positive real numbers, δ ≥ ε−1

γ + 1, γ > 0, and ε ∈ R. (a) Assume that the

domain D(K) is defined by (6), and let M > 0 be such that

g0 ≤M − f0
M δT γ(δ−1)−ε+1

γδ − ε+ 1
. (49)

Then R(K) ⊆ D(K), and the function v(t) =Mtγ is a supersolution of K.
(b) If D(K) is defined by (7), then R(K) ⊆ D(K).

Proof. (a) Let us take any ϕ ∈ D(K). Then

Kϕ(t) ≤ g0t
γ + f0M

δ

∫ t

0

sγδ−εds ≤ g0t
γ +

f0M
δ

γδ − ε+ 1
tγδ−ε+1. (50)

Since γδ − ε+ 1 ≥ γ and t/T ≤ 1, we have
(
t
T

)γδ−ε+1
≤
(
t
T

)γ
, and therefore

0 ≤ Kϕ(t) ≤

(
g0 + f0

M δT γ(δ−1)−ε+1

γδ − ε+ 1

)
tγ ≤Mtγ ,

that is, Kϕ ∈ D(K). The proof that v(t) = Mtγ is a supersolution, that is,
Kv ≤ v, can be obtained in the same way.



14 A singular ODE EJDE–2000/12

(b) For any ϕ ∈ D(K) we have in the same way as in (a),

0 ≤ Kϕ(t) ≤

(
g0 + f0M

δ
ϕ

T γ(δ−1)−ε+1

γδ − ε+ 1

)
tγ .

and therefore there existsM > 0 such that Kϕ(t) ≤Mtγ , that is, Kϕ ∈ D(K).
♦

2.2 Existence and uniqueness of solutions

2.2.1 Contraction method

In this section we present a constructive proof of existence (and uniqueness) of
solutions of (3) based on the method of contraction. It will be convenient to
introduce the vector space Xγ of all functions ϕ ∈ C([0, T ]) such that

‖ϕ‖γ = sup
t∈(0,T ]

|ϕ(t)|

tγ
<∞, (51)

where γ > 0 is given. This norm is equal to ‖ϕ‖γ = inf{M > 0 : |ϕ(t)| ≤Mtγ}.
It is not difficult to see that (Xγ , ‖ · ‖γ) is a Banach space which is continuously
imbedded into C([0, T ]).

Theorem 4 Let δ ≥ ε−1
γ + 1, δ > 0, γ > 0, ε ∈ R.

(a) Let M > 0 be given, and assume that f0 and g0 are positive real numbers
satisfying conditions (49) and

f0 <
γδ − ε+ 1

δM δ−1T γ(δ−1)−ε+1
. (52)

Then the operator K : D(K) → D(K) given by (4) and (6) is well defined
and Xγ-contractive. There exists a unique ω ∈ D(K) such that ω = Kω.
Furthermore, if δ > ε−1

γ
+ 1, then the solution ω is unique in the set defined by

(7).
(b) Let δ > 1. The set of all pairs (f0, g0) of positive real numbers for

which there exists M > 0 satisfying conditions (49) and (52) is described by the
following inequality:

f0 <
γδ − ε+ 1

δT γ(δ−1)−ε+1(δ′g0)δ−1
, (53)

where δ′ = δ
δ−1 . Problem (4) is solvable for all such (f0, g0).

Proof. (a) By Lemma 6 we have that R(K) ⊆ D(K). To show that K is
contraction, let ϕ, ψ ∈ D(K). Then using inequality (46) we obtain

1

tγ
|Kϕ(t)−Kψ(t)| =

f0

tγ

∫ t

0

|ϕ(s)δ − ψ(s)δ|

sε
ds
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≤
f0

tγ
δ

∫ t

0

(Msγ)δ−1

sε−γ
·
|ϕ(s)− ψ(s)|

sγ
ds

≤
f0

tγ
δM δ−1‖ϕ− ψ‖γ

∫ t

0

sγδ−εds (54)

≤ c(f0)‖ϕ− ψ‖γ ,

where

c(f0) = f0δM
δ−1 Tγ(δ−1)−ε+1

γδ−ε+1 < 1 (55)

because of (52). Taking the supremum in (54) over t ∈ (0, T ] we obtain that
‖Kϕ−Kψ‖γ ≤ c(f0)‖ϕ− ψ‖γ , which proves that K is contraction. The claim
follows from Banach’s fixed point theorem. The uniqueness claim in the set
defined by (7) follows from Lemma 5.

(b) Let us fix any M > 0, and consider the set QM of all pairs (f0, g0) of
positive real numbers satisfying conditions (49) and (52). Owing to claim (a)
that we have just proved, it suffices to show that the set

Mb =
⋃
M>0

QM (56)

is described by (53). It is not difficult to see that for any (f0, g0) ∈ Mb there
exists M > 0 such that

g0 =M − f0
M δT γ(δ−1)−ε+1

γδ − ε+ 1
(57)

and

f0 =
γδ − ε+ 1

δM δ−1T γ(δ−1)−ε+1
. (58)

Namely, the envelope of the family of lines (57) in (f0, g0)-plain is the convex
curve defined by (64) below, as we shall see in the proof of Theorem 5. The
union of its tangents obviously containsMb. Substituting (58) into (57) we get
M = δ

δ−1g0. Inserting this into (58) we obtain

f0 =
γδ − ε+ 1

δT γ(δ−1)−ε+1(δ′g0)δ−1
, (59)

which proves the claim. Note that we have strict inequality in (53) because of
the strict inequality in (52). Although the sets QM are not open, their union
Mb is open. ♦

This result extends the corresponding result in Pašić [14]. Note that we
could also have used contraction method in the larger space C([0, T ]) instead
of Xγ , but in this case we obtain a weaker result. Namely in this case we
need δ > ε−1

γ + 1, and the numerator of the right-hand side of (52) should be
γδ − ε+ 1− γ instead of γδ − ε+ 1.
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2.2.2 Schauder’s method

In this section we apply Schauder’s fixed point theorem to obtain existence
result for solutions of our singular ODE (3).

Lemma 7 Let f0 and g0 be positive real numbers. Assume that δ >
ε−1
γ
, γ > 0,

ε ∈ R, and let the operator K be defined by (4), with domain (6) for some fixed
M > 0. Then then the operator K is compact with respect to uniform topology.

Proof. It suffices to show that R(K) is relatively compact in C([0, T ]). We
use Ascoli’s theorem. To show equicontinuity of the family R(K) take any
Kϕ ∈ R(K). Then for any a, b such that 0 ≤ a < b ≤ T we have

|Kϕ(b)−Kϕ(a)| ≤ g0(b
γ − aγ) + f0

∫ b

a

M δsγδ−εds

≤ g0(b
γ − aγ) +

f0M
δ

γδ − ε+ 1
[bγδ−ε+1 − aγδ−ε+1]. (60)

The last expression is equal to h(b)− h(a), where h(t) = g0tγ +
f0M

δ

γδ−ε+1 t
γδ−ε+1

is uniformly continuous on [0, T ]. Therefore |Kϕ(b) − Kϕ(a)| tends to zero
uniformly as b−a→ 0. Also, the the family of functions from R(K) is uniformly
bounded, see (50):

0 ≤ Kϕ(t) ≤ g0T
γ +

f0M
δ

γδ − ε+ 1
T γδ−ε+1.

This proves that the operator K is compact. ♦

The following theorem shows that (3) is solvable also in the case when we
have equality in (53).

Theorem 5 Assume that δ ≥ ε−1
γ
+ 1, δ > 0, γ > 0, and ε ∈ R.

(a) Let f0 and g0 be positive real numbers and let M > 0 satisfy (49). Then
there exists at least one ω ∈ D(K) such that ω = Kω, where D(K) is defined
by (6).
(b) Assume that also δ > 1. The set of all pairs (f0, g0) of positive real

numbers for which there existsM > 0 satisfying (49) is described by the following
inequality:

f0 ≤
γδ − ε+ 1

δT γ(δ−1)−ε+1(δ′g0)δ−1
. (61)

In particular, equation (3) is solvable for all such (f0, g0).
(c) If we assume that δ < 1, then for each pair (f0, g0) of positive real

numbers there exists a solution ω ∈ D(K) of the fixed point equation ω = Kω,
where D(K) is defined by (6) with M large enough.
(d) If δ > ε−1

γ + 1, then the solution ω in (a), (b), and (c) is unique in the

domain D(K) defined by (7).
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Proof. (a) Note that the domain D(K) is bounded, closed, and convex. By
Lemma 7 the operator K is compact, and by Lemma 6 we have R(K) ⊆ D(K).
Existence of at least one solution ω ∈ D(K) of equation ω = Kω follows from
Schauder’s fixed point theorem. For δ > ε−1

γ
+ 1 we can give a constructive

proof of this result based on the method of monotone iterations, see the remark
after the proof.
(b) Let us denote the set of all (f0, g0) satisfying (49) by TM . We have to

show that the union of these sets

Ms =
⋃
M>0

TM (62)

is described by (61). Consider the family of lines

g0 =M − f0
M δT γ(δ−1)−ε+1

γδ − ε+ 1
, M > 0. (63)

in the (f0, g0)–plane. To find the envelope of this family, we differentiate with
respect to M :

0 = 1− f0
δM δ−1T γ(δ−1)−ε+1

γδ − ε+ 1
.

Eliminating M from the last two equations we obtain after some elementary
computation that

f0 =
γδ − ε+ 1

δT γ(δ−1)−ε+1(δ′g0)δ−1
. (64)

Since the corresponding set of (f0, g0) satisfying (61) is convex, we obviously
have that it is equal toMs.
(c) First, let us define D(K) by (6), withM to be chosen later. The operator

K : D(K)→ C([0, T ]) is compact, see Lemma 7. For any ϕ ∈ D(K) we have

Kϕ(t)

tγ
= g0 +

f0

tγ

∫ t

0

ϕ(s)δ

sε
ds ≤ g0 +

f0M
δ

tγ

∫ t

0

sγδ−εds

≤ g0 + f0
T γ(δ−1)−ε+1

γδ − ε+ 1
M δ.

If δ < 1, we conclude that the last expression is ≤M for M large enough, that
is, Kϕ ∈ D(K). This shows that R(K) ⊂ D(K). The set D(K) is bounded,
closed, and convex in C([0, T ]), and the existence of a solution follows from
Schauder’s fixed point theorem.
(d) The uniqueness claim follows from Lemma 5. ♦

Note that the existence (and uniqueness!) result that we obtained via
Schauder’s theorem is not constructive. However, if δ > ε−1

γ
+ 1 it is possi-

ble to give a constructive proof. Namely, if we take v(t) = Mtγ , with M as
in (49), then v is a supersolution of K, see Lemma 6, and the corresponding
operator K has (m)-property, see Lemma 5. This implies the existence of the
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solution of ω = Kω using the method of monotone iterations in the same way
as in the proof of Theorem 6 below.
Note that if we have strict inequality in (61), then we are in the situation of

Theorem 4. It is clear thatMb ⊂Ms, the closure being taken in (0,∞)2. Here
Mb andMs are defined by (53) and (61).

2.2.3 Monotone iterations

In this section we apply the method of monotone iterations to obtain existence
of solutions of (3). First of all, note that since f0 and g0 are positive, then the
zero function u = 0 is a subsolution of integral operator K defined by (4).

Theorem 6 Assume that δ > ε−1
γ
+ 1, δ ≥ max{1, ε/γ}, δ > ε, γ > 0, ε ∈ R,

and let us define

z(t) = γg0e
h0t

1−ε/δ
∫ t

0

sγ−1e−h0s
1−ε/δ

ds, h0 =
f0

1− ε/δ
. (65)

If f0 and g0 are positive real numbers such that

g0 ≤ T
ε
δ−γe−h0T

1−ε/δ

, (66)

then z ∈ D(K), where D(K) is defined by (7), and z is a supersolution of K:
z ≥ Kz.
There exists the unique solution ω ∈ D(K) of ω = Kω. It can be obtained

constructively using the method of monotone iterations, and the following esti-
mate holds:

g0t
γ + f0g

δ
0

tγδ−ε+1

γδ − ε+ 1
≤ ω(t) ≤ z(t), ∀t ∈ [0, T ]. (67)

Proof. (a) We have that v(t) ≤ C1
∫ t
0 s

γ−1 ds, where C1 is a positive constant,
which implies that z ∈ D(K). To prove that z is a supersolution of K, note

that it satisfies the following linear ODE: z′(t) = g0γt
γ−1 + f0

z(t)
tε/δ
, z(0) = 0,

that is,

z(t) = g0t
γ + f0

∫ t

0

z(s)

sε/δ
ds.

Therefore, to achieve z ≥ Kz it suffices to have

z(s)

sε/δ
≥
z(s)δ

sε
=

(
z(s)

sε/δ

)δ
, ∀s ∈ [0, T ].

Since δ ≥ 1, this is equivalent to

z(s)

sε/δ
≤ 1.
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Now this inequality can be proved using the following easy consequence of (65)

z(t) ≤ γg0e
h0t

1−ε/δ
∫ t

0

sγ−1ds,

and (66):
z(t)

tε/δ
≤ g0t

γ−ε/δeh0t
1−ε/δ

≤ g0T
γ−ε/δeh0T

1−ε/δ

≤ 1.

(b) To prove existence, we proceed with the usual monotone iterations
scheme. Let the sequence (uk) in D(K) be defined by uk = Kuk−1, u0 = 0,
where we note that R(K) ⊆ D(K) by Lemma 6. Since 0 ≤ z, K is nonde-
creasing, and z is a supersolution, it is easy to conclude that the sequence uk is
monotone and bounded in C([0, T ]):

u ≤ uk ≤ z, uk−1 ≤ uk.

Therefore, applying Dominated Convergence Theorem we conclude that there
exists ω ∈ L∞(0, T ) such that uk → ω in L1(0, T ) as k → ∞. Now using the
continuity property of the integral operator (that is, the Lebesgue Dominated
Convergence Theorem again) we easily see that

Kω = K( lim
k→∞

uk) = lim
k→∞

Kuk = lim
k→∞

uk+1 = ω,

with the limits being taken in L1(0, T ). The integral equality ω = Kω implies
that ω ∈ C([0, T ]), and the claim is proved. It is clear that uk ≤ ω ≤ z for all
k. The estimate (67) is obtained for k = 2.
(c) The uniqueness result follows immediately from Lemma 5. ♦

As we have seen in Lemma 6, the operatorK possesses another supersolution
z(t) = Mtγ for (f0, g0) ∈ Ms. If δ >

ε−1
γ + 1, then as in the proof of the

preceding theorem, see step (b), we can show that the solution in Theorem 5 can
be obtained constructively using monotone iterations. Note that we obtained
in fact two solutions of ω = Kω, using Schauder’s method and the method of
monotone iterations. They coincide due to Lemma 5, and therefore we have
that the a priori estimate (67) holds also for the solution that we have obtained
in Theorem 5.
It is clear that the setMs \Mm is always nonempty, whereMs is defined

as the set of all pairs (f0, g0) of positive numbers satisfying (61), and Mm is
defined by (66). It is interesting that in some cases the setMm \Ms can also
be nonempty. Indeed, let us fix f0 > 0. Denote by gs the maximum of all g0
satisfying (61), and denote the right-hand side of (66) by gm. Then we obtain
that (

gs

gm

)δ−1
=
(δ − 1)δ−1

δδ
(γδ − ε+ 1)

exp
(

δ−1
1−ε/δ f0T

1−ε/δ
)

f0T 1−ε/δ
.

Using the following elementary inequality ex ≥ ex with x = δ−1
1−ε/δf0T

1−ε/δ (the

equality is achieved only for x = 1), we get(
gs

gm

)δ−1
≥ e

(
1−
1

δ

)δ
γδ − ε+ 1

1− ε/δ
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Note that e(1 − 1/δ)δ < 1 for all δ > 1. The remaining fraction on the right
hand side is > 1, but it can be made as close to 1 as we wish by fixing δ > 1,
taking γ > 0 small enough, and then by taking ε ≥ 0 small enough, so that
all conditions of Theorem 6 still hold. The above equality condition x = 1 is

equivalent to T =
(

δ−ε
δ(δ−1)

)δ/(δ−ε)
. Using this T we can therefore achieve that

(
gs

gm

)δ−1
= e

(
1−
1

δ

)δ
γδ − ε+ 1

1− ε/δ
< 1,

that is, gm > gs in this case.

2.3 Nonexistence of solutions

The aim of this section is to show that problem (3), and even (22), is not solvable
provided f0 and g0 are sufficiently large.

Theorem 7 Assume that δ > ε−1
γ + 1, δ > 1, γ > 0, and ε ∈ R. Let f0 and g0

be positive real numbers. Assume that

f0 ≥




[γ(δ − 1)− ε+ 1]δδ
′

(δ − 1)T γ(δ−1)−ε+1gδ−10
for ε < 1,

γ δδ
′

T γ(δ−1)−ε+1gδ−10
for ε ≥ 1.

(68)

Then problem (3), and even (22), has no solutions in D+, see (20). Fur-
thermore, there exists a sequence of subsolutions of K which is unbounded in
C([0, T ]).

To prove this non-existence result, we state two auxiliary propositions.

Proposition 1 Let δ > ε−1
γ
+ 1, δ > 1, γ > 0, and ε ∈ R, and let us define a

sequence of functions zm(t) inductively by

zm+1(t) = f0

∫ t

0

zm(s)
δ

sε
ds, z0(t) = g0t

γ . (69)

Then for each solution ω ∈ D+ of (22) we have

ω(t) ≥
n∑

m=0

zm(t), t ∈ [0, T ], ∀n ∈ N. (70)

Furthermore,

zm(t) =
gδ
m

0 f
∑m−1
k=0 δ

k

0 t(1−ε)
∑m−1
k=0 δ

k+γδm∏m
k=1[(1− ε)

∑k−1
j=0 δ

j + γδk]δm−k
≥ 0, (71)

and zm ∈ D(K), with D(K) defined by (7). The function ωn defined as the
right-hand side of (70) is a subsolution of K for each n = 0, 1, 2 . . .
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Proposition 2 Let δ > ε−1
γ
+ 1, δ > 1, γ > 0, ε ∈ R, and let zm be defined by

(71). Assume that condition (68) is fulfilled, and let us define

t∗ :=




(
[γ(δ − 1)− ε+ 1]δδ

′

(δ − 1)f0g
δ−1
0

)1/[γ(δ−1)−ε+1]
for ε < 1,

(
γ δδ

′

f0g
δ−1
0

)1/[γ(δ−1)−ε+1]
for ε ≥ 1.

(72)

Then t∗ ≤ T and
∑∞
m=0 zm(t) =∞ for all t ∈ [t

∗, T ].

Proof of Theorem 7. We argue by contradiction. Assume that there exists
a solution ω ∈ D+ of (3). Using Proposition 1 and inequality (70) we obtain
that

∑∞
m=0 zm(t) ≤ ω(t) < ∞ for all t ∈ [0, T ] and all m. But this contradicts

Proposition 2. Propositions 1 and 2 imply that ωn is an unbounded sequence
of subsolutions of K. ♦

Proof of Proposition 1. We proceed by induction with respect to n. Since
ω(t) = Kω(t) ≥ g0tγ , we can use (3) to obtain

dω

dt
≥ g0γt

γ−1 + f0g
δ
0t
γδ−ε.

Integrating over (0, t), t ∈ (0, T ], we get (recall a well known fact that for ω

nondecreasing we have ω(t)− ω(0) ≥
∫ t
0
dω
dt
dt):

ω(t) ≥ z0(t) + z1(t),

which proves the claim for n = 1.
Assume the claim holds for some n ∈ N and let us prove that it holds also

for n+ 1. From (3), ω ∈ D+ and using (a + b)δ ≥ aδ + bδ, a ≥ 0, b ≥ 0, δ > 1,
we obtain:

dω

dt
= g0γt

γ−1 + f0t
−εωδ(t) ≥ g0γt

γ−1 + f0t
−ε

(
n∑

m=0

zm(t)

)δ
≥

≥ g0γt
γ−1 + f0t

−ε
n∑

m=0

zδm(t).

Integrating the preceding inequality over (0, t), we obtain

ω(t) ≥ z0(t) +
n∑

m=0

zm+1(t) =

n+1∑
m=0

zm(t), t ∈ [0, T ].

This proves (70). Formula (71) can be checked easily by induction using (69).

To show that zm ∈ D(K), note that δ > 1 and
∑m

k=0 δ
k = δm+1−1

δ−1 imply:

zm(t) =
gδ
m

0 f
δm−1
δ−1

0 t
[γ(δ−1)−ε+1]δm+ε−1

δ−1 (δ − 1)
∑m
k=1 δ

m−k∏m
k=1[(γ(δ − 1)− ε+ 1)δ

k + ε− 1]δm−k
(73)
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Since γ(δ − 1)− ε+ 1 > 0 and δm > 1, we see that the exponent at t is ≥ γ.
To show that ωn(t) are subsolutions of K, note that δ > 1 implies:

Kωn(t) = z0(t) + f0

∫ t

0

[z0(s) + z1(s) + . . .+ zn(s)]
δ

sε
ds

≥ z0(t) + f0

∫ t

0

z0(s)
δ + z1(s)

δ + . . .+ zn(s)
δ

sε
ds

= z0(t) + z1(t) + z2(t) + . . .+ zn+1(t) = ωn+1(t) ≥ ωn(t).

♦

Proof of Proposition 2. (a) Assume that ε < 1. Using (73) we have

zm(t) ≥
gδ
m

0 f
δm−1
δ−1

0 t
[γ(δ−1)−ε+1]δm+ε−1

δ−1 (δ − 1)
∑m
k=1 δ

m−k

[γ(δ − 1)− ε+ 1]
δm−1
δ−1 δ

∑
m
k=1 kδ

m−k
,

where we have used
∑m

k=1 δ
m−k = δm−1

δ−1 . Now we use

m∑
k=1

kδm−k =
(2δ − 1)(δm − 1)

(δ − 1)2
−
δm +m− 1

δ − 1

to obtain

zm(t) ≥

(
[γ(δ − 1)− ε+ 1]δδ

′

tε−1

f0(δ − 1)

) 1
δ−1

(δm)
1
δ−1

×

(
gδ−10 f0t

γ(δ−1)−ε+1(δ − 1)

δδ′ [γ(δ − 1)− ε+ 1]

) δm

δ−1

Note that condition (68) implies that t∗ ≤ T . Since the inequality t ≥ t∗ is
equivalent to

gδ−10 f0t
γ(δ−1)−ε+1(δ − 1)

δδ
′ [γ(δ − 1)− ε+ 1]

≥ 1,

we obtain zm(t) ≥ A(t) · (δm)
1
δ−1 , where A(t) does not depend on m. Using

δ > 1 we have that δm →∞ asm→∞, and we conclude that
∑∞
m=0 zm(t) =∞

as m→∞ for all t ∈ [t∗, T ].
(b) Assume that ε ≥ 1. Since [γ(δ − 1)− ε+ 1]δk + ε− 1 ≤ γ(δ − 1)δk, we

obtain similarly as in (a):

zm(t) ≥

(
γδδ

′
tε−1

f0

) 1
δ−1

(δm)
1
δ−1

(
gδ−10 f0t

γ(δ−1)−ε+1

γδδ
′

) δm

δ−1

for all t ∈ [0, T ] and all m ∈ N. The rest of the proof is analogous to (a). ♦
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Comparison of existence and non-existence regions. Let us denote the
non-existence set of all (f0, g0) satisfying the conditions of Theorem 7 byMn.
Of course, we assume that the constants δ, γ, and ε are fixed. As we already saw,
we have existence of solutions of ω = Kω for (f0, g0) ∈Ms∪Mm, see Theorems
5 and 6. We do not know anything about solvability or nonsolvability of (5)
when

(f0, g0) ∈ (0,∞)
2 \ (Ms ∪Mm ∪Mn).

If we denote the set of all positive real numbers (f0, g0) for which (5) is solvable
by S, and the set of all (f0, g0) for which the fixed point equation is not solvable
by N , then we haveMs ∪Mm ⊆ S andMn ⊆ N . We do not know whether
any of the sets S or N is closed or open in (0,∞)2. However, we conjecture
that these two sets are separated by a curve of the form f0 = c/g

δ−1
0 , with some

constant c > 0.

Now we would like to discuss how large is the region in (0,∞)2 where we
do not know anything about existence or non-existence. First, we compare the
sets Ms and Mn. It will be convenient to fix f0 and see the quotient of the
corresponding values of gn and gs defined as the minimal possible value of g0 in
(68) and the maximal possible value of g0 in (61) respectively. It is not difficult
to see that both for ε < 1 and ε ≥ 1 we obtain the same estimate

gn

gs
≥ δ′δ

δ′

δ−1 > eδ
′−1, (74)

where e = 2.71828 . . . The last inequality follows from the fact that δδ
′
(δ′)δ−1

is increasing for δ > 1 and tends to e as δ → 1. To show the first inequality in
(74), let ε < 1. Then

(
gn

gs

)δ−1
=
γ(δ − 1)− ε+ 1

γδ − ε+ 1
δδ
′

(δ′)δ,

and the infimum of the fraction on the right-hand side over ε < 1 is equal to
δ−1
δ
. Similarly for ε ≥ 1.
Now let us compare the sets Mm and Mn. Let us fix f0 > 0 again and

denote the right-hand side (66) by gm. We obtain

gn

gm
> (e δδ

′

)δ
′−1. (75)

Indeed, let ε < 1. Using ex ≥ ex with x = δ−1
1−ε/δf0T

1−ε/δ we obtain

(
gn

gm

)δ−1
≥
γ(δ − 1)− ε+ 1

1− ε
δ

e δδ
′

.

The desired inequality follows using γ > ε/δ. Similarly we can prove that (74)
holds also for ε ≥ 1.
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2.4 Qualitative properties of solutions

The following result will be important in obtaining regularity of solutions of (1),
see Proposition 6 below.

Proposition 3 Assume that δ > ε−1
γ
+ 1, γ > 0, ε ∈ R, and let ω ∈ D(K) be

such that ω = Kω, where K is defined (4) and D(K) by (6) or (7). Then

lim
t→0

ω(t)

tγ
= lim
t→0

ω′(t)

γ tγ−1
= g0. (76)

We have ω ∈ C∞((0, T ]), and if γ ≥ 1 then also ω ∈ C1([0, T ]).

Proof. Due to L’Hospital’s rule it suffices to prove only the second equality.
From (3) we have

ω′(t)

γ tγ−1
= g0 +

ω(t)δ

tε+γ−1
.

Since 0 ≤ ω(t) ≤ Mtγ for some M > 0, the second term on the right-hand
side tends to zero as t → 0. The fact that ω ∈ C∞((0, T ]) follows easily from
ω = Kω. The continuity of ω′(t) at t = 0 for γ ≥ 1 follows immediately from
(3). ♦

Now we give a partial answer to the question of continuous dependence of
solutions of (3) on (f0, g0) ∈Ms ∪Mm, whereMs is defined by (61) andMm

by (66). Recall thatMb ⊂Ms.

Proposition 4 Assume that δ > ε−1
γ
+ 1, δ > 0, γ > 0, ε ∈ R. Assume that

(f1, g1) ∈ Mb, and let ω1(t) be the unique solution obtained via Theorem 4.
Let I(f1) and I(g1) be closed neighbourhoods of f1 and g1 respectively such that
I(f1)× I(g1) ⊂Mb, and let f0 = max I(f1), A := [1− c(f0)]−1, where c(f0) is
defined by (55). Then for all f2 ∈ I(f1), g2 ∈ I(g1) we have

‖ω1 − ω2‖γ ≤ A[ |g1 − g2|+ |f1 − f2|B(ω1) ], (77)

with

B(ω1) = sup
t∈(0,T ]

1

tγ

∫ T

0

ω1(s)
δ

sε
ds.

In particular, if f2 → f1 and g2 → g1, then ω2 → ω1 uniformly on [0, T ].

Proof. Since (f2, g2) is contained in a convex, open neighbourhood of (f1, g1)
in Mb, there exists M > 0 such that (fi, gi) ∈ QM , see (56). Therefore the
corresponding operators Ki, i = 1, 2 have a common domain D(K) defined by
(6) with the same M > 0. Since ωi = Kiωi, we have for any t ∈ [0, T ] (see the
proof of Theorem 4):

1

tγ
|ω1(t)− ω2(t)| ≤

1

tγ
|K1ω1 −K2ω1|+ ‖K2ω1 −K2ω2‖γ

≤ |g1 − g2|+ |f1 − f2|B(ω1) + c(f2)‖ω1 − ω2‖γ , (78)

≤ |g1 − g2|+ |f1 − f2|B(ω1) + c(f0)‖ω1 − ω2‖γ ,
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Taking supremum over t ∈ (0, T ] in (78) and using c(f0) < 1 we obtain the
claim. ♦

Note that we have established continuous dependence of solutions only in
Mb, i.e. in the proper subset ofMs. We do not know anything about continuous
dependence of solutions of (3) with respect to (f0, g0) ∈ (Ms ∪Mm) \Mb.

Also note that for any given (f0, g0) ∈ Ms there exist the minimal value of
M > 0 such that (f0, g0) ∈ TM , see (62). This value, that we denote by Me,
appears in an a priori bound of ω(t).

Proposition 5 Assume that δ > ε−1
γ
+ 1, δ > 0, γ > 0, and ε ∈ R. Let

(f0, g0) ∈ Ms, see (62), and let ω be the solution of (4) from Theorem 5.
Assume that Me is the smaller of two positive solutions of equation (63).

(a) We have the following estimate:

0 ≤ ω(t) ≤Met
γ . (79)

Furthermore, this solution of (3) is unique in the set defined by (7).

(b) If (f0, g0) ∈ Ms, see (62), then

|ω(b)− ω(a)| ≤ g0|b
γ − aγ |+ f0M

δ
e

|bγδ−ε+1 − aγδ−ε+1|

γδ − ε+ 1
, ∀a, b ∈ (0, T ). (80)

In particular,

|ω′(t)| ≤ g0γt
γ−1 + f0M

δ
e t
γδ−ε. (81)

Proof. (a) Note that ω ∈ D(K), with D(K) as in (6) and M = Me. The
uniqueness claim follows from Lemma 5.

(b) We have that 0 ≤ ω(t) ≤ Met
γ , and there holds (49). Hence, similarly

as in the proof of equicontinuity in Lemma 7 we get that for all a, b ∈ [0, T ],
a < b:

|ω(b)−ω(a)| = |Kω(b)−Kω(a)| ≤ g0|b
γ −aγ |+

f0M
δ
e

γδ − ε+ 1
[ bγδ−ε+1−aγδ−ε+1 ]

(82)
Relation (81) follows if we divide (80) by |b− a| and let b→ a. ♦

It is possible to effectively compute Me. For example, if δ = 2 it is easy to
see that

Me =
1−
√
1− 4ag0
2a

, a =
f0T

γ−ε+1

2γ − ε+ 1
. (83)

Note that in the case of monotone iterations method (see Theorem 6), that is,
when (f0, g0) ∈ Mm, we have uniqueness of the corresponding solution in a
much larger domain, which is defined by (7).
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3 Quasilinear PDE

3.1 Existence and non-existence of solutions

The main results of this paper are Theorem 8 and Theorem 9 below. Recall
that by ω-solutions of (1) we mean strong solutions that can be obtained via
ODE (3), as described in Lemma 1.

Theorem 8 Assume that 1 < p < ∞, m > max{−p,−N}, and let f̃0 and g̃0
be positive real numbers.
(a) If

f̃0 ≤

(
m+ 1 +

N

p′

)(
m+N

pRm+pg̃0

)p′−1
, (84)

then there exists ω-solution of (1) which can be obtained constructively using
the method of monotone iterations, see the remark after the proof of Theorem
6, and Lemma 1. If we have strict inequality in (84) then the same sequence of
monotone iterations can be obtained also by contraction method via Theorem 4
and Lemma 1. Any ω-solution of (1) is unique in the set

{w ∈ C2(B \ {0}) ∩ C(B) : ∃Mw > 0, |∇w(x)| ≤Mw|x|
p′

p (m+1)}. (85)

and satisfies the following estimate:

|∇v(x)| ≤ NC
(m+p)p′

Np

N Mp′/p
e |x|

p′

p (m+1), (86)

where Me =Me(f0, g0) is defined in Proposition 5 for f0 and g0 as in (16). In
particular, in the case of p = 2 and m = 0 we have that

|∇v(x)| ≤ |x|
N + 2

2f̃0R2


1−

√
1−

4f̃0g̃0R2

N(N + 2)


 . (87)

(b) If m ≥ −1 and

g̃0 ≤ N
p−1C

m+p
N

N (m+N)|B|−
m+1
N e−N |B|

1/N f̃0 , |B| = CNR
N , (88)

then there exists ω-solution of (1) that can be obtained constructively using the
method of monotone iterations via Theorem 6 and Lemma 1, and which is unique
in the set (85). If (f̃0, g̃0) satisfies also the condition in (a), then the solution
in (b) coincides with the one in (a).
(c) If

f̃0 ≥



(m+ p)(p′)p

(
m+N

Rm+pg̃0

)p′−1
for p > N ,

(m+N)(p′)p
(
m+N

Rm+pg̃0

)p′−1
for p ≤ N ,

(89)

then (1) has neither strong nor weak solutions.
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Proof. It suffices to use Lemma 1 together with: (a) Theorem 5, Theorem
4 and Proposition 5, (b) Theorem 6. (c) To show non-existence, we proceed
by contradiction. Assume that v is a strong or weak solution of (1). Using
Lemma 2 or Theorem 2 respectively, in both cases we obtain a solution ω ∈ D+

of (22). This contradicts Theorem 7.
Coincidence of solutions in (a) and (b) follows easily from the fact that the

uniqueness domain in (b) equals the uniqueness domain in (a). ♦

In Theorem 9 we will show that ω-solutions, whose existence we have proved
in the above theorem, see (a) and (b), are in fact unique weak solutions of (1).
It is natural to define the sets M̃s, M̃m, and M̃n of all (f̃0, g̃0) ∈ (0,∞)2

satisfying conditions in (a), (b), and (c) respectively. If

(f̃0, g̃0) ∈ (0,∞)
2 \ (M̃s ∪ M̃m ∪ M̃n),

we do not know anything about existence or non-existence of weak and strong
solutions of (1). Also, let us denote by S̃ and Ñ the existence and non-existence
sets of all (f̃0, g̃0) in (0,∞)2. We do not know anything about geometrical
properties of these sets, except that

S̃ ⊇ M̃s ∪ M̃m, Ñ ⊇ M̃n.

3.2 Qualitative properties of solutions

First we study the behaviour of the gradient of ω-solutions of (1) near the origin
x = 0 and near the boundary of ball B.

Lemma 8 Let m > max{−p,−N}, and let v(x) be ω-solution of (1). Let us
define u(r) = v(x), r = |x|. Then
(a) v ∈ C∞(B \ {0}) ∩C(B);
(b)

lim
r→0

u′(r)

r
p′

p (m+1)
= −

(
g̃0

m+N

)p′/p
(90)

lim
r→0

u′′(r)

r
p′

p (m−p+2)
= −

m+ 1

p− 1

(
g̃0

m+N

)p′/p
, (91)

(c) if (f̃0, g̃0) ∈ M̃s, see (84), then

|u′(R)| ≤ D1R
p′

p (m+1) +D2R
2p′

p (m+1)+1, (92)

where

D1 =
g̃0N

2Mp′−2
e

m+N
C
m(p′−2)+p′−p

N

N , D2 =
f̃0pN

2M
2(p′−1)
e

p′(2m+N + 1) + p
C
p′

p
m+p
N +

p′(m+1)−m
N

N .

Here Me =Me(f0, g0) is defined in Proposition 5 with f0, g0 from (16).
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Proof. (a) This follows easily from (8), (10) and Proposition 3.
(b) It suffices to use (17). The first relation is immediate, while the sec-

ond relation follows after differentiating (17) and using Proposition 3 with

t = CNr
N . Indeed, we have that ω(t)

tγ → g0,
ω′(t)
γ tγ−1 → g0 as t → 0. Denot-

ing c = −NC
p′

p (
p
N−1)

N and γ = 1 + m
N
we obtain after an easy computation

that

u′′(r)

c r
p′

p (m−p+2)
= −(N − 1)C

γp′

p

N

p′

p

[
ω(CN r

N )

(CN rN )γ

]p′/p
+

+γNC
p′γ
p

N

p′

p

[
ω(CN r

N )

(CN rN )γ

]p′
p −1 ω′(CN r

N )

γ(CNrN )γ−1

→ −(N − 1)C
γp′

p

N

p′

p
g
p′/p
0 + γNC

p′γ
p

N

p′

p
g
p′

p −1

0 g0

=
p′

p
g
p′/p
0 C

γp′/p
N (γN −N + 1) as r → 0.

Now we use (16) to obtain the desired result.

(c) To prove (92) we first use (17):

r
p′

p (N−1)|u′(r)| = |c| · ω(CNr
N )p

′/p.

Now we differentiate this equality with respect to r:

d

dr
(r
p′

p (N−1)|u′(r)|) = |c|
p′

p
ω(CN r

N )
p′

p −1ω′(CNr
N ) · CN N rN−1,

and then use estimates 0 ≤ ω(t) ≤Mtγ and (81). The desired inequality follows
after a short computation upon integration over (0, R):

R
p′

p (N−1)|u′(R)|− lim
r→0

r
p′

p (N−1)|u′(r)| =

∫ R

0

[E1r
p′

p (m+N)−1+E2r
p′

p (2m+N+1)]dr,

where E1, E2 are positive constants depending on m, p, N , g̃0, and f̃0. Note
that the function under the integral sign is integrable since m > max{−N,−p}
implies that the exponents at r are > −1. We also need (90) to obtain that

lim
r→0

r
p′

p (N−1)|u′(r)| = |A| lim
r→0

r
p′

p (m+N) = 0,

where A is the right-hand side of (90). ♦

A priori bound (92) is a refinement of (86) for |x| = R. Relations (90) and
(91) immediately imply the following qualitative properties of the gradient of
ω-solutions of (1) at x = 0.
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Proposition 6 Assume that m > max{−p,−N}, and let v(x) be ω-solution of
(1). Then we have the following regularity results at x = 0:
(a) If m < −1 then limr→0 u′(r) = −∞. In particular, v /∈ C1(B).
(b) If m = −1 then

lim
r→0

u′(r) = −

(
g̃0

m+N

)p′/p
(93)

As in case (a), we have v /∈ C1(B).
(c) If −1 < m < p− 2, then

lim
r→0

u′(r) = 0, lim
r→0

u′′(r) = −∞. (94)

In particular, v ∈ C1(B) and v /∈ C2(B).
(d) If m ≥ p− 2, then limr→0 u′(r) = 0 and

lim
r→0

u′′(r) =


 −m+1p−1

(
g̃0

m+N

)p′/p
for m = p− 2,

0 for m > p− 2.
(95)

In particular, v is classical solution, v ∈ C2(B).

The above proposition shows that we have precise information on the gra-
dient of ω-solutions at x = 0. With larger values of m we can have even more
regularity of ω-solutions, and it is possible to study Hölder continuity as well,
see [19]. On the other hand, we are not able to obtain precise information about
v(0). We can obtain only upper and lower estimates for v(0).

Proposition 7 (a priori estimate of v(0)) (a) Let m > max{−p,−N} and let
v(x) be ω-solution of (1) corresponding to (f̃0, g̃0) ∈ M̃s, see Theorem 5, and
let Me = Me(f0, g0) be defined as in Proposition 5, where f0, g0 are given by
(16). Then

v(0) ≤ N
p− 1

m+ p
· C

m+p
N · p

′

p

N R
p′

p (m+p)Mp′/p
e . (96)

In particular, for p = 2 and m = 0 we have

v(0) ≤
N + 2

4f̃0


1−

√
1−

4f̃0g̃0R2

N(N + 2)


 (97)

(b) For any weak solution v(x) of (1) we have the following lower bound:

v(0) ≥




1

(2p)p
′

(
Rm+pg̃0

2N − 1

)p′−1
for m < 0,

(
c(m, p,N)Rm+pg̃0

pp

)p′−1
for m ≥ 0,

(98)
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where

c(m, p,N) = sup
t∈(0, 12 )

tp[(1− t)N − tN ](1− t)m

1 + tN − (1− t)N
. (99)

If m > max{−p,−N} then the above estimate holds also for any ω-solution of
(1).

In particular, when p = 2, N = 2, m ≥ 0, we obtain the following lower
bound for weak solutions of (1):

v(0) ≥
1

4
c(m)Rm+2g̃0, (100)

where

c(m) =
1

2
t(1 − 2t)(1− t)m, t =

m+ 5−
√
m2 + 2m+ 9

4(m+ 2)
.

If in addition to this we assume that m = 0, we obtain v(0) ≥ 1
64R

2g̃0.

(c) If m ≥ −1 and (f̃0, g̃0) ∈ M̃m, see (88), then for the corresponding
ω-solution v(x) of (1) we have

c(p)
p− 1

m+ p

[(
g̃0

m+N

)p′/p
Rp

′(m+1)−m+

+

(
f̃0g̃

p′

0

[p′(m+ 1) +N ](m+N)p′

)p′/p
(p′)−1Rp

′[p′(m+1)−m]


 ≤ (101)

≤ v(0) ≤
p− 1

m+ p

(
g̃0 · ef̃0N |B|

1/N

Rm+p

m+N

)p′/p
,

where c(p) = 1 for p ∈ (1, 2) and c(p) = 2p
′−2 for p ≥ 2. The same lower bound

holds also for (f̃0, g̃0) ∈ M̃s, see (84).

Proof. (a) We obtain the upper bound using (17) and v(0) ≤
∫ R
0 |u

′(r)| dr.
(b) This lower bound is obtained using lower oscillation estimate for general

quasilinear elliptic problems studied in [9]. In the case of m < 0 the estimate
follows immediately from [9, Corollary 12]. If m ≥ 0, we use the following
version of oscillation estimate, see [9, Theorem 9]:

osc
Ar

v ≥
1

pp′

(
rp|A|

|Ar \A|

)p′/p
ess inf
x∈A

(g̃0|x|
m)p

′/p, (102)

for any open subset A ⊂ B and r > 0 such that Ar ⊂ B, where Ar denotes
open r-neighbourhood of A. Note that oscB v = v(0). We consider the family of
sub-rings A of B such that Ar = B \ {0}, r ∈ (0, R2 ). Then substituting t =

r
R
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we obtain

v(0) ≥
g̃
p′/p
0

pp′
sup

r∈(0,R2 )

(
rp[(R− r)N − rN ]

RN + rN − (R− r)N

)p′/p
(R − r)mp

′/p

=
g̃
p′/p
0

pp′

(
sup

r∈(0,R2 )

rp[(R − r)N − rN ](R − r)m

RN + rN − (R− r)N

)p′/p
(103)

=
g̃
p′/p
0

pp′
R
p′

p (m+p)

(
sup

t∈(0, 12 )

tp[(1 − t)N − tN ](1 − t)m

1 + tN − (1− t)N

)p′/p
.

It will be shown in Proposition 11 that for m > max{−p,−N} any ω-solution
is also weak solution.

(c) The claim follows from estimate (67) in Theorem 6 and from Lemma 1,
similarly as in (a); see also the remark after the proof of Theorem 6. We use
the fact that (a+ b)q ≥ d(q)(aq + bq), where d(q) = 2q−1 for q ∈ (0, 1), d(q) = 1
for q ≥ 1, a ≥ 0, b ≥ 0, with q = p′/p. ♦

Note that in particular, under the assumptions of (a), we have that for any
ω-solution v(x) of (1) we have

if R→ 0 then v(0)→ 0. (104)

Property (b) implies that for any weak solution v(x) we have

if R→∞ or g̃0 →∞, then v(0)→∞. (105)

Under the assumptions of (c) we have that all these implications hold for ω-
solutions. Furthermore, from (101) we also see that

if f̃0g̃
p′

0 →∞ then v(0)→∞. (106)

It is possible to obtain even better constant than c(m, p,N) in (98), if in the
proof we consider the family of sub-annuli A such that Ar ⊂ B \ {0}, and not
only Ar = B \ {0}.

In formulating our problem (1) we imposed the condition that v(x) be de-
creasing. Let us consider the corresponding problem without this condition:

−∆pv = g̃0|x|m + f̃0|∇v|p,

v|∂B = 0 , v ∈ C2(B \ {0}) ∩ C(B), (107)

v(x) spherically symmetric.

The following proposition shows that if v(x) is a strong solution of (107) which
belongs to C1(B), or p > 2, then u(r) is necessarily decreasing, where u(r) =
v(x), r = |x|.
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Proposition 8 Let f̃0 and g̃0 be positive real numbers. Let v(x) be a strong
solution of (1).
(a) Then u|(0,R) can have at most one local maximum r0, and u(r) is de-

creasing on (r0, R).
(b) If v ∈ C1(B), then u(r) is decreasing on [0, R].
(c) If p > 2 then u(r) is decreasing on [0, R].

Proof. (a) Let us define V (s), s ∈ (0, |B|) by V (CN rN ) = u(r). It suffices to
show that if r0 ∈ [0, R] is such that V ′(s0) = 0, s0 = CNrN0 , then V

′(s) < 0 for
s = CNr

N ∈ (s0, CNRN ). Let x ∈ B be such that s = CN |x|N for some given
s > s0. We have

−NpC
p
N

N

d

ds

(
sp(1−

1
N )

∣∣∣∣dVds
∣∣∣∣
p−2

dV

ds

)
= −∆pv = g̃0|x|

m + f̃0|∇v|
p

≥ g̃0

(
s

CN

)m
N

. (108)

Integrating from s0 to s we obtain

−sp(1−
1
N )

∣∣∣∣dVds (s)
∣∣∣∣
p−2

dV

ds
(s) + s

p(1− 1
N )

0

∣∣∣∣dVds (s0)
∣∣∣∣
p−2

dV

ds
(s0) > 0.

Since dV
ds (s0) = 0 we arrive to

dV
ds < 0, which proves that du

dr < 0 for all
r ∈ (r0, R), see (8).
(b) If v ∈ C1(B), then u′(0) = 0, and we can proceed as in (a) with r0 = 0.
(c) Assume that u(r) is not decreasing. Then there exists r0 ∈ (0, R) such

that u′(r0) = 0. From (108) we obtain

p(1−
1

N
)sp(1−

1
N )−1|V ′(s)|p−2V ′(s)+(p−1)sp(1−

1
N )|V ′(s)|p−2V ′′(s) ≤ −c·sm/N ,

where c > 0. Substituting s = s0 we obtain a contradiction: 0 ≤ −c · s
m/N
0 .

Assume that u is decreasing on (0, a), but is not decreasing on [a,R]. Then
there exists a point r0 ∈ [r0, R) such that u′(r0) = 0, which implies a contradic-
tion in the same way as above. ♦

In (92) we obtained an upper estimate of |u′(R)|, that is, of the outward
normal derivative on the boundary of B for any ω-solution v(x) of (1). Now we
want to obtain the lower bound of |u′(R)| for any solution of (1).

Proposition 9 Let m > −N . For any strong solution v(x) of (1) such that
u′(r)→ 0 as r → 0 we have the following lower bound:

|u′(R)| ≥

(
g̃0R

m+1

m+N

)p′−1
. (109)

In particular, if m > −1 this estimate holds for any ω-solution of (1).
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Proof. Let s = CNr
N , and let us integrate (108) from 0 to |B|. We obtain

NpC
p
N

N |B|
p(1− 1

N )|V ′(|B|)|p−1 ≥
Ng̃0|B|

m+N
N

C
m/N
N (m+N)

.

On the other hand, after differentiating V (CN r
N ) = u(r) with respect to r, we

get V ′(|B|) = u′(R)
NCNRN−1

, and the result follows easily. The claim for ω-solutions
follows from Proposition 6. ♦

We can also state a continuous dependence result for ω-solutions of (1),
which follows easily from Theorem 8(a) and Lemma 1.

Proposition 10 Assume that 1 < p < ∞, m > max{−p,−N} and (f̃1, g̃1) ∈
M̃b, where M̃b is defined by (56). Let I(f̃1) and I(g̃1) be closed neighbourhoods
of f̃1 and g̃1 respectively, f0 = max I(f1) and g0 = max I(g1), where f1, g1
and the corresponding intervals I(f1), I(g1) are defined by (16), A > 0, B(ω1)
as in Proposition 4. If f̃2 ∈ I(f̃1) and g̃2 ∈ I(g̃1), then for the corresponding
ω-solutions v1, v2 from Theorem 8(a) we have that for all r ∈ [0, R]:

|u′1(r) − u
′
2(r)| ≤ C r

p′

p (m+1)[ |g1 − g2|+B(ω1)|f1 − f2| ], (110)

|u1(r) − u2(r)| ≤ C
Rp

′(m+1)−m − rp
′(m+1)−m

p′(m+ 1)−m

×[ |g1 − g2|+B(ω1)|f1 − f2| ] , (111)

where

C = (p′ − 1)NC
m+p
N(p−1)

N Mp′−2
e A . (112)

Here f ’s, g’s, u’s, and ω1 are defined analogously as in Lemma 1, and Me =
Me(f0, g0), see Proposition 5, with f0 and g0 as in Proposition 4. In particular,
if f̃2 → f̃1 and g̃2 → g̃1, then v2 → v1 in C

1(B). If p = 2, then v2 → v1 in
C2(B).

Proof. (a) We have

|u′1(r) − u
′
2(r)| = cr

−(N−1) p
′

p |ω1(CNr
N )

p′

p − ω2(CNr
N )

p′

p |, (113)

where c = NC
p′

p (
p
N−1)

N . We can use (46) and ω(t) ≤Mtγ , t = CNr
N , γ = 1+m

N
,

together with

|ω1(t)− ω2(t)| ≤ t
γA[ |g1 − g2|+B(ω1)|f1 − f2| ],

see Proposition 4. (113).
(b) To prove (111) note that the zero boundary condition implies

|u1(r) − u2(r)| ≤

∫ R

r

|u′1(ρ)− u
′
2(ρ)| dρ.

It suffices to use (110).
(c) The convergence in C2(B) for p = 2 follows from standard L2-regularity

for elliptic equations. ♦
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3.3 Uniqueness of weak solutions

Here we study the problem of existence of unique weak solution of (1).

Proposition 11 Assume that m > max{−p,−N}. (a) Then any ω-solution
of (1) is weak solution, and conversely, any weak solution of (1) is ω-solution.
(b) There exists at most one weak solution of (1). In particular, under condi-
tions (a) or (b) of Theorem 8 problem (1) possesses the unique weak solution.

Proof. (a1) Let us show that the pointwise derivative ∂v
∂xi
of ω-solution v is

also the weak derivative. First, since v is continuous, it is integrable on B. We
can write ∫

B

v
∂ϕ

∂xi
dx = lim

ε→0

∫
Ωε

v
∂ϕ

∂xi
dx,

where ϕ ∈ C∞0 (Ω). Using Green’s formula we have that∫
Ωε

v ·
∂ϕ

∂xi
dx = −

∫
Ωε

∂v

∂xi
· ϕdx+

∫
Sε

v ϕ νi dS,

where ν is the outward unit normal vector at x, |x| = ε, with respect to domain
Ωε = B \ Bε(0), and Sε is the inner bounding sphere of Ωε whose radius is ε.
The last integral tends to zero as ε → 0 since v is bounded. From this we can
easily see that ∫

B

v ·
∂ϕ

∂xi
= −

∫
B

∂v

∂xi
· ϕdx,

i.e. the pointwise derivative of v is also the weak derivative of v.
(a2) Let us prove that the ω-solution v of (1) is also weak solution. Since v

is of class C∞ on Ωε, see Lemma 8(c), we have that it satisfies (1) pointwise on
Ωε. This together with Green’s formula yields:

g̃0

∫
Ωε

|x|mϕdx+ f̃0

∫
Ωε

|∇v|pϕdx = −

∫
Ωε

∆pv ϕ dx =

=

∫
Ωε

|∇v|p−2∇v · ∇ϕdx−

∫
Sε

N∑
i=1

|∇v|p−2
∂v

∂xi
ϕνi dS.

To show that the last integral tends to zero we use the fact that there exists a
constant C > 0 such that

|u′(r)| ≤ C · r(m+1)
p′

p

for all r ∈ [0, R], see Lemma 8(b). Therefore the last integral does not exceed

C

∫
Sε

|∇v|p−1dS ≤ C|u′(ε)|p−1 · εN−1 ≤ C · εm+N → 0 as ε→ 0, (114)

where C > 0 is a generic constant. Passing to the limit in the above integral
equality we obtain that −∆pv = g̃0|x|m + f̃0|∇v|p in the weak sense.
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It remains to check that v ∈ W 1,p
0 (B), that is,∫

B

|∇v|pdx ≤ C

∫ R

0

r(m+1)p
′+N−1dr <∞.

This is equivalent to (m+ 1)p′ +N > 0, and this inequality follows easily from
m > max{−p,−N}.
(b) Since any weak solution is ω-solution, uniqueness of weak solutions fol-

lows from Lemma 5. ♦

Theorem 9 Assume that 1 < p <∞, m > max{−p,−N}, and

(f̃0, g̃0) ∈ M̃s ∪ M̃n,

where M̃s and M̃n are subsets of (0,∞)2 defined by (84) and (88) respectively.
Then there exists a unique weak solution v ∈ W 1,p

0 (B) ∩ L
∞(B) of (1). Fur-

thermore, we have v ∈ C∞(B \ {0}) ∩ C(B), and v is ω-solution. It has all
qualitative properties described in Section 3.2.

Proof. By Proposition 11 we know that for m > max{−p,−N} any ω-solution
is also weak solution of (1). Therefore it suffices to show that there exists a
unique ω-solution. The existence of ω-solutions has been proved in Theorem 8(a)
and (b). Now by Theorem 2 we know that weak solutions of (1) are in fact ω-
solutions. Assume that there exist two different weak solutions v1 and v2 of
(1). Then this implies the existence of two different functions ω1 and ω2 both
satisfying equation ω = Kω, where K is defined by (4) on domain (7). The fact
that ω1 6= ω1 follows easily from (8). But this contradicts Proposition 11. This
proves unique solvability of (1). For regularity of v see Lemma 8(a). ♦

As we see from Theorem 2 and Proposition 11, the notions of weak solution
and ω-solution coincide provided m > max{−p,−N}.
Using a slight modification it is also possible to obtain existence and unique-

ness results for (1) with a weaker notion of strong solution: v ∈ C2(B \ {0})
instead of v ∈ C2(B)∩C(B), that is, for solutions allowing singularity at 0 ∈ B.
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les sciences et les techniques, 2, L’Opérateur de Laplace,” Masson, Paris,
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[17] Rakotoson J. M., Temam R., A co-area formula with applications to mono-
tone rearrangement and to regularity, Arch. Rat. Mech. Anal. 109 (1990),
213-238.

[18] Talenti G., Elliptic equations and rearrangements, Ann. Scuola Norm.
Sup. Pisa 3 (1976), 697-718.
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