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Oscillation of solutions to delay differential

equations with positive and negative coefficients ∗

El M. Elabbasy, A. S. Hegazi, & S. H. Saker

Abstract

In this article we present infinite-integral conditions for the oscillation
of all solutions of first-order delay differential equations with positive and
negative coefficients.

1 Introduction

Consider the first-order delay differential equation

ẋ(t) + P (t)x(t− σ) −Q(t)x(t− τ) = 0 , (1.1)

where P (t) and Q(t) are positive continuous real functions and σ, τ are positive
constants. Equation (1.1) has the following general form

ẋ(t) +

n∑
i=1

Pi(t)x(t − σi)−
m∑
j=1

Qj(t)x(t − τj) = 0 , (1.2)

where Pi(t), Qj(t) ∈ C([t0,∞), R+) and σi, τj ∈ [0,∞), for i = 1, . . . , n and j =
1, . . . ,m. By a solution of (1.1) or (1.2), we mean a function x(t) ∈ C([t0−ρ), R)
that for some t0 satisfies (1.1) (or (1.2)) for all t ≥ t0, where ρ = max{σ, τ} (or
ρ = max{max1≤i≤n σi,max1≤j≤m τj}).
As usual a function x(t) is called oscillatory if it has arbitrarily large zeros.

Otherwise the solution is called non-oscillatory.
Qian and Ladas [1] obtained for (1.1) the well-known oscillation criterion

lim inf
t→∞

∫ t
t−ρ
[P (s)−Q(s+ τ − σ)] ds >

1

e
. (1.3)

Elabbasy and Saker [32] obtained the oscillation criterion for the generalized
equation,

lim inf
t→∞

∫ t
t−ρ

p∑
i=1

[Pi(s)−
∑
k∈Ji

Qk(s+ τk − σi)] ds >
1

e
. (1.4)
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It is easy to see that (1.3) is given by (1.4) when putting n = m = 1.

Many authors have considered the delay differential equation, with positive
coefficient,

ẋ(t) + P (t)x(τ(t)) = 0 . (1.5)

The first systematic study of oscillation for all solutions of (1.5) was made by
Myshkis [3]. He proved that every solution of (1.5) oscillates if

lim sup
t→∞

[t− τ(t) <∞, lim inf
t→∞

[t− τ(t)] lim inf
t→∞

P (t) >
1

e
. (1.6)

In 1972, Ladas, Laksmikatham and Papadakis [4] proved that the same conclu-
sion holds if

lim sup
t→∞

∫ t
τ(t)

P (s) ds > 1 . (1.7)

In 1979, Ladas [5] and, in 1982, Kopltadaze and Canturija [2] replaced (1.7) by

lim inf
t→∞

∫ t
τ(t)

P (s) ds >
1

e
. (1.8)

Concerning the constant 1/e in (1.8), if the inequality

∫ t
τ(t)

P (s) ds ≤
1

e
(1.9)

holds eventually, then according to a result in [2], (1.5) has a non-oscillatory
solution.
It is obvious that there is a gap between the conditions (1.7) and (1.8) when

the limit

lim
t→∞

∫ t
τ(t)

P (s) ds (1.10)

does not exist.
In 1995 Elbert and Stavrolakis [6] established infinite-integral conditions for

oscillation (1.5) in the case where

∫ t
τ(t)

P (s) ds ≥
1

e
and lim

t→∞

∫ t
τ(t)

P (s) ds =
1

e
. (1.11)

They proved that if
∞∑
i=1

[ ∫ ti
ti−1

P (s)−
1

e

]
ds =∞ , (1.12)

then every solution of (1.5) oscillates.

In 1996, Li [7] showed that if
∫ t
τ(t)
P (s) ds > 1/e for some t0 > 0 and

∫ ∞
t0

P (t)
[ ∫ t
τ(t)

P (s) ds−
1

e

]
dt =∞ , (1.13)
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then every solution of (1.5) oscillates.
Domshlak and Stavrolakis [8] established sufficient conditions for the oscil-

lation, in the critical case where

lim
t→∞

P (t) =
1

eτ
,

of the delay differential equation

ẋ(t) + P (t)x(t− τ) = 0 . (1.14)

Recently Domshlak and Stavrolakis [9] and Jaros and Stavrolakis [10] considered
the delay differential equation

ẋ(t) + a1(t)x(t− τ) + a2(t)x(t − σ) = 0 (1.15)

and established sufficient conditions for the oscillation of all solutions in the
critical state that the corresponding limiting equation admits a non-oscillatory
solution.
The oscillatory properties of various functional differential equations have

been employed by many authors. For some contribution to the oscillation theory
of delay differential equations we refer to the articles by Zhang and Goplsamy
[11], Gyori and Ladas [12], Li [13], Arino, Ladas and Sficas [14], Ladas and Sficas
[15], Ladas, Qian and Yan [16], Arino, Gyori and Jawhari [17], Hunt and Yorke
[18], Gyori [19], Cheng [20], Kwang [21], Kulenovic, Ladas and Meimardou [22],
Kulenovic and Ladas [23, 24, 25], Goplsamy, Kulenovic and Ladas [26], Ladas
and Qian [27, 28], Elabbasy, Saker and Al-Shemas [29], Elabbasy and Saker [30]
and Elabbasy, Saker and Saif [31], Elabbasy and Saker [32].
To a large extent, the study of functional differential equations is motivated

by having many applications in Physics [33], Biology [34], Ecology [35], and the
study of spread of infectious diseases [36].
Our aim in this paper is to give an infinite-integral conditions for oscillation

of all solutions of (1.1) and (1.2) by using the generalized characteristic equation

and the function of the form x(t)
x(t−σi)

.

In section 2, we present an infinite-integral condition for oscillation of (1.1)
which indicates that condition (1.3) is no longer necessary. In section 3, we
extended the results in section 2 to establish infinite sufficient conditions for
oscillation of (1.2) which indicates that condition (1.4) is no longer necessary.
As far as we known, there are no other results for differential equations with
positive and negative coefficients with more than one delay.
In the sequel, when we write a functional inequality we will assume that it

holds for all sufficiently large values of t.

Lemma 1.1 ([12]) Let a ∈ (−∞, 0), τ ∈ (0,∞), t0 ∈ R and suppose that
x(t) ∈ C[[t0,∞), R] satisfies the inequality

x(t) ≤ a+ max
t−τ≤s≤t

x(s) for t ≥ t0 .

Then x(t) cannot be a non-negative function.
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Lemma 1.2 ([12]) Assume that Pi and τi ∈ C[[t0,∞), R+] for i = 1, . . . , n.
Then the differential inequality

ẋ(t) +

n∑
i=1

Pi(t)x(t− τi(t)) ≤ 0, t ≥ t0 (1.16)

has an eventually positive solution if and only if the equation

ẏ(t) +

n∑
i=1

Pi(t)y(t− τi(t)) = 0, t ≥ t0 (1.17)

has an eventually positive solution.

Lemma 1.3 ([13]) Consider the delay differential equation

ẋ(t) +

n∑
i=1

Ri(t)x(t− τi) = 0, t ≥ t0 (1.18)

and assume that lim supt→∞
∫ t+τi
t

Ri(s) ds > 0 for some i and x(t) is an even-
tually positive solution of (1.18), then for the same i,

lim inf
t→∞

x(t − τi)

x(t)
<∞ (1.19)

Lemma 1.4 ([13]) If (1.18) has an eventually positive solution, then
∫ t+τi
t

Ri(s) ds < 1 , i = 1, . . . , n (1.20)

eventually.

2 Oscillation of solutions to (1.1)

Now we obtain an infinite-integral conditions for oscillation of all solutions of
(1.1). We need the following Lemma.

Lemma 2.1 Assume that:

(h1) P,Q ∈ C([t0,∞), R+), σ, τ ∈ [0,∞) and τ ≤ σ

(h2) P (t) ≥ Q(t+ τ − σ), for t ≥ t0 + σ − τ

(h3)
∫ t−τ
t−σ Q(s) ds ≤ 1 for t ≥ t0 + σ

Let x(t) be an eventually positive solution of (1.1) and set

z(t) = x(t)−

∫ t−τ
t−σ

Q(s+ τ)x(s) ds, t ≥ t0 + σ − τ . (2.1)

Then z(t) is a non-increasing positive function and satisfies the inequality

ż(t) + [P (t)−Q(t+ τ − σ)] z(t− σ) ≤ 0 . (2.2)
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The proof of this lemma can be found as Lemma 2.6.1 in [12].

Theorem 2.2 Assume that (h1), (h2) and (h3) from Lemma 2.1 are satisfied.
Also assume that for R(t) = P (t)−Q(t+ τ − σ),

(h4)
∫ t+σ
t
R(s) ds > 0 for t ≥ t0 for some t0 > 0.

(h5)
∫∞
t0
R(t) ln

[
e
∫ t+σ
t
R(s) ds

]
dt =∞.

Then every solution of (1.1) oscillates.

Proof. On the contrary assume that 1.1) has an eventually positive solution
x(t). By Lemma 2.1 it follows that the function z(t) is positive and satisfies
(2.2). So Lemma 1.2 yields that the delay differential equation

ẏ(t) + [P (t)−Q(t+ τ − σ)] y(t− σ) = 0 (2.3)

has an eventually positive solution. Let λ(t) = −ẏ(t)/y(t). Then λ(t) is non-
negative and continuous, then there exists t1 ≥ t0 such that y(t1) > 0 and

y(t) = y(t1) exp (−
∫ t
t1
λ(s) ds). Furthermore, if λ(t) satisfies the generalized

characteristic equation

λ(t) = R(t) exp (

∫ t
t−σ
λ(s) ds) ,

we can show that

erx ≥ x+
ln(er)

r
for r > 0 . (2.4)

Define A(t) =
∫ t+σ
t
R(s) ds. By using (2.4) we find that

λ(t) = R(t) exp (A(t)
1

A(t)

∫ t
t−σ
λ(s) ds)

≥ R(t)[
1

A(t)

∫ t
t−σ
λ(s) ds+

ln(eA(t)

A(t)
]

or

(

∫ t+σ
t

R(s) ds)λ(t)− R(t)

∫ t
t−σ
λ(s) ds ≥ R(t)(ln e

∫ t+σ
t

R(s) ds) (2.5)

Then for N > T ,

∫ N
T

λ(t)(

∫ t+σ
t

R(s) ds) dt−

∫ N
T

R(t)

∫ t
t−σ
λ(s) ds dt (2.6)

≥

∫ N
T

R(t)(ln e

∫ t+σ
t

R(s) ds) dt .
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By interchanging the order of integration, we find that

∫ N
T

R(t)(

∫ t
t−σ
λ(s) ds) dt ≥

∫ N−σ
T

(

∫ s+σ
s

R(t)λ(s)dt) ds .

Hence ∫ N
T

R(t)(

∫ t
t−σ
λ(s) ds) dt ≥

∫ N−σ
T

λ(s)(

∫ s+σ
s

R(t)dt) ds .

Then ∫ N
T

R(t)(

∫ t
t−σ
λ(s) ds) dt ≥

∫ N−σ
T

λ(t)(

∫ t+σ
t

R(s) ds) dt

Hence

∫ N
T

λ(t)(

∫ t+σ
t

R(s) ds) dt−

∫ N−σ
T

λ(s)(

∫ s+σ
s

R(t)dt) ds (2.7)

≥

∫ N
T

λ(t)(

∫ t+σ
t

R(s) ds) dt−

∫ N
T

R(t)

∫ t
t−σ
λ(s) ds dt .

From (2.6) and (2.7), it follows that

∫ N
N−σ

λ(t)(

∫ t+σ
t

R(s) ds)dt ≥

∫ N
T

(R(t))(ln e

∫ t+σ
t

R(s) ds)dt . (2.8)

On the other hand, by Lemma 1.4, we have

∫ t+σ
t

R(s) ds < 1 (2.9)

eventually. Then by (2.8) and (2.9), we find

∫ N
N−σ

λ(t)dt ≥

∫ N
T

(R(t)) ln(e

∫ t+σ
t

R(s) ds)dt

or

ln
y(N − σ)

y(N)
≥

∫ N
T

R(t) ln (e

∫ t+σ
t

R(s) ds)dt . (2.10)

In view of (h5)

lim
t→∞

y(t− σ)

y(t)
=∞ . (2.11)

However, by Lemma 1.3,

lim inf
t→∞

y(t− σ)

y(t)
<∞ (2.12)

which contradicts (2.11), and this completes the present proof. Therefore, every
solution of (1.1) oscillates.
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3 Oscillation of solutions to (1.2)

Our objective in this section is to establish infinite-integral conditions for oscil-
lation of all solutions of (1.2). We need the following theorem for the proof of
the main results in this section.

Theorem 3.1 Assume that:

(H1) Pi, Qj ∈ C([t0,∞), R+), σi, τj ∈ [0,∞) for i = 1, . . . , n and j = 1, . . . ,m

(H2) There exist a positive number p ≤ n and a partition of the set {1, . . . ,m}
into p disjoint subsets J1, J2, J3, . . . ,Jp, such that j ∈ Ji implies that
τj≤σi

(H3) Pi(t) ≥
∑
k∈Ji
Qk(t+ τk − σi) for t ≥ t0 + σi − τk, and i = 1, . . . , p,

(H4)
∑p
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s) ds ≤ 1 for t ≥ t0 + σi.

Let x(t) be an eventually positive solution of (1.2) and set

z(t) = x(t)−
p∑
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s+ τk)x(s) ds, t ≥ t0 + σi − τk . (3.1)

Then z(t) is a non-increasing and positive function.

Proof Assume that t1 ≥ t0 + ρ is such that x(t) is positive for t ≥ t1 − ρ
ρ = max1≤i≤n{σi}. From (2.1) we have

ż(t) = ẋ(t)−
p∑
i=1

∑
k∈Jj

Qk(t)x(t − τk) +
p∑
i=1

∑
k∈Jj

Qk(t+ τk − σi)x(t− σi) .

Hence

ż(t) = ẋ(t)−
m∑
j=1

Qj(t)x(t − τj) +
p∑
i=1

∑
k∈Jj

Qk(t+ τk − σi)x(t − σi) .

From (1.2), we have

ż(t) = −
p∑
i=1

Pi(t)x(t−σi)+
p∑
i=1

∑
k∈Jj

Qk(t+τk−σi)x(t−σi)−
n∑

i=p+1

Pi(t)x(t−σi) .

As we know that
n∑

i=p+1

Pi(t)x(t − σi) > 0 ,

we have

ż(t) ≤ −


 p∑
i=1

[Pi(t)−
∑
k∈Jj

Qk(t+ τk − σi)]x(t − σi)


 (3.2)
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By using (H3) we have

ż(t) ≤ 0 for t ≥ t1 + ρ . (3.3)

This implies that z(t) is a non-increasing function. Now we prove that z(t)
is positive. For otherwise, there exists a t2 ≥ t1 such that z(t2) ≤ 0. Since
ż(t) ≤ 0 for t ≥ t1 + ρ and ż(t) 6= 0 on [t1 + ρ,∞), there exists a t3 ≥ t2 such
that z(t) ≤ z(t3) for t ≥ t3. Thus from (2.1) it follows that for t ≥ t3,

x(t) = z(t) +

p∑
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s+ τk)x(s) ds

≤ z(t3) +

p∑
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s+ τk)x(s) ds

≤ z(t3) +

p∑
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s+ τk) ds( max
t−ρ≤s≤t

x(s)) .

Hence

x(t) ≤ z(t3) +
p∑
i=1

∑
k∈Jj

∫ t−τk
t−σi

Qk(s+ τk) ds( max
t−ρ≤s≤t

x(s)) .

Hypothesis (H4) yields

x(t) ≤ z(t3) + max
t−ρ≤s≤t

x(s) for all t ≥ t3 ,

where z(t3) ≤ 0. Lemma 1.1 implies that x(t) cannot be non-negative function
on [t3,∞). Thus contradicting x(t) > 0. Therefore, z(t) is a non-increasing and
positive function.

Theorem 3.2 Assume that (H1), (H2), (H3) and (H4) above are satisfied,

σp = max{σ1, σ2, σ3, . . . , σp},
∑p
i=1

∫ t+σi
t

Ri(s) ds > 0 for t ≥ t0 for some
t0 > 0. Also assume that

(H5) lim supt→∞
∫ t+σp
t

Rp(s) ds > 0

(H6)
∫∞
t0
(
∑p
i=1Ri(t)) ln

[
e
∑p
i=1

∫ t+σi
t

Ri(s) ds
]
dt =∞ where Ri(t) = Pi(t)−∑

k∈Ji
Qk(t+ τk − σi).

Then every solution of (1.2) oscillates.

Proof. On the contrary assume that (1.2) has an eventually positive solution
x(t). By Theorem 2.1 it follows that the function z(t) defined by (3.1) is an
eventually positive function. Also by (3.2) we have

ż(t) +

p∑
i=1

[Pi(t)−
∑
k∈Jj

Qk(t+ τk − σi)]x(t − σi) ≤ 0 . (3.4)
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From the fact that eventually 0 < z(t) ≤ x(t), we see that z(t) is a positive
function and satisfies eventually

ż(t) +

p∑
i=1

[Pi(t)−
∑
k∈Jj

Qk(t+ τk − σi)]z(t− σi) ≤ 0 . (3.5)

Then by Lemma 1.2, we have that the delay differential equation

ẏ(t) +

p∑
i=1

[Pi(t)−
∑
k∈Jj

Qk(t+ τk − σi)]y(t− σi) = 0 (3.6)

has an eventually positive solution. Let λ(t) = −ẏ(t)/y(t). Then λ(t) is a
non-negative and continuous, and there exists t1 ≥ t0 with y(t1) > 0 such

that y(t) = y(t1) exp (−
∫ t
t1
λ(s) ds). Furthermore, λ(t) satisfies the generalized

characteristic equation

λ(t) =

p∑
i=1

Ri(t) exp (

∫ t
t−σi

λ(s) ds)

with Ri(t) = Pi(t)−
∑p
k∈Ji
Qk(t+ τk − σi)

Let B(t) =
∑p
i=1

∫ t+σi
t

Ri(s) ds. By using (2.4) we find that

λ(t) =

p∑
i=1

Ri(t) exp
(
B(t)

1

B(t)

∫ t
t−σi

λ(s) ds
)

≥
p∑
i=1

Ri(t)
[ 1
B(t)

∫ t
t−σi

λ(s) ds+
ln(eB(t)

B(t)

]

or

p∑
i=1

∫ t+σi
t

Ri(s) dsλ(t) −
p∑
i=1

Ri(t)

∫ t
t−σi

λ(s) ds ≥
p∑
i=1

Ri(t)(ln e

∫ t+σi
t

Ri(s) ds)

Then for N > T ,

∫ N
T

λ(t)(

p∑
i=1

∫ t+σi
t

Ri(s) ds)dt −

∫ N
T

p∑
i=1

Ri(t)

∫ t
t−σi

λ(s) ds dt

≥

∫ N
T

p∑
i=1

Ri(t)(ln e

∫ t+σi
t

Ri(s) ds) dt . (3.7)

Interchanging the order of integration, we find that

∫ N
T

p∑
i=1

Ri(t)

∫ t
t−σi

λ(s) ds dt ≥

∫ N−σi
T

(

∫ s+σi
s

p∑
i=1

Ri(t)λ(s)dt) ds .
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Hence

∫ N
T

(

p∑
i=1

Ri(t))

∫ t
t−σi

λ(s) ds dt ≥

∫ N−σi
T

λ(s)(

∫ s+σi
s

p∑
i=1

Ri(t)dt) ds .

Then

∫ N
T

(

p∑
i=1

Ri(t))

∫ t
t−σi

λ(s) ds dt ≥
p∑
i=1

∫ N−σi
T

λ(t)(

∫ t+σi
t

Ri(s) ds) dt . (3.8)

From (3.7) and (3.8), it follows that

∫ N
T

λ(t)(

p∑
i=1

∫ t+σi
t

Ri(s) ds)dt −

∫ N−σi
T

λ(t)

∫ t+σi
t

p∑
i=1

Ri(s) ds dt

≥

∫ N
T

p∑
i=1

Ri(t)(ln e

p∑
i=1

∫ t+σi
t

Ri(s) ds) dt . (3.9)

Hence

p∑
i=1

∫ N
N−σi

λ(t)(

∫ t+σi
t

Ri(s) ds)dt (3.10)

≥

∫ N
T

(

p∑
i=1

Ri(t))(ln e

∫ t+σi
t

p∑
i=1

Ri(t) ds) dt .

On the other hand, by Lemma 1.4, we have

∫ t+σi
t

Ri(s) ds < 1, i = 1, . . . , p (3.11)

eventually. Then by (3.10) and (3.11), we find

p∑
i=1

∫ N
N−σi

λ(t)dt ≥

∫ N
T

(

p∑
i=1

Ri(t))ln(e

∫ t+σi
t

p∑
i=1

Ri(t) ds) dt

or

p∑
i=1

ln
y(N − σi)

y(N)
≥

∫ N
T

(

p∑
i=1

Ri(t))ln(e

∫ t+σi
t

p∑
i=1

Ri(t) ds) dt . (3.12)

In view of (H6) we have

lim
t→∞

p∏
i=1

y(t− σi)

y(t)
=∞ . (3.13)

This implies that

lim
t→∞

y(t− σp)

y(t)
=∞ . (3.14)
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However by Lemma 1.3, we have

lim inf
t→∞

y(t− σp)

y(t)
<∞

This contradicts (3.14) and completes the present proof. Therefore, every solu-
tion of (1.2) oscillates.
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