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C1,α convergence of minimizers of a

Ginzburg-Landau functional ∗

Yutian Lei & Zhuoqun Wu

Abstract

In this article we study the minimizers of the functional

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2,

on the class Wg = {v ∈ W
1,p(G,R2); v|∂G = g}, where g : ∂G → S1

is a smooth map with Brouwer degree zero, and p is greater than 2. In
particular, we show that the minimizer converges to the p-harmonic map
in C1,αloc (G,R

2) as ε approaches zero.

1 Introduction

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary
∂G and g be a smooth map from ∂G into S1 = {x ∈ R2; |x| = 1}. Consider the
Ginzburg-Landau-type functional

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2

with a small parameter ε > 0. This functional has been studied in [1] for
p = 2, d = deg(g, ∂G) = 0, and in [2] for p = 2, d = deg(g, ∂G) 6= 0. Here
d = deg(g, ∂G) denotes the Brouwer degree of the map g. For other related
papers, we refer to [3]–[11].
In this paper we are concerned with the case p > 2, d = deg(g, ∂G) = 0. It

is easy to see that the functional Eε(u,G) achieves its minimum on

Wg = {v ∈ W
1,p(G,R2) : v|∂G = g}

at a function uε and that

lim
ε→0

uε = up in W 1,p(G,R2) (1.1)
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2 C1,α convergence of minimizers EJDE–2000/14

where up is a p-harmonic map from G into S1 with boundary value g [9]. Recall
that u ∈ W 1,p(G,S1) is said to be a p-harmonic map on G, if u is a weak
solution of the equation

− div(|∇u|p−2∇u) = u|∇u|p.

Under the condition d = 0, there exists exactly one p-harmonic map on G
with the given boundary value g. However, there may be several minimizers of
the functional. Let ũε be a minimizer that can be obtained as the limit of a
subsequence of the minimizers uτε of the regularized functionals

Eτε (u,G) =
1

p

∫
G

(|∇u|2 + τ)p/2 +
1

4εp

∫
G

(1− |u|2)2, (τ > 0)

on Wg as τk → 0, namely

lim
τk→0

uτkε = ũε in W
1,p(G,R2). (1.2)

ũε is called the regularizable minimizer of Eε(u,G). Our main result reads as
follows.

Theorem 1.1 Assume that p > 2, d = deg(g, ∂G) = 0. Let ũε be a regulariz-
able minimizer of Eε(u,G). Then for some α ∈ (0, 1) we have

lim
ε→0

ũε = up in C1,αloc (G,R
2).

We shall prove a series of preliminary propositions in Sections 2, 3, and 4.
Then we complete the proof of the main theorem in §5. In §6, we indicate how
to extend our result to the higher dimensional case.

2 Convergence of |uτε |

We start our argument with the following proposition.

Proposition 2.1
lim
ε,τ→0

|uτε | = 1 in C(G,R2). (2.1)

Proof. For τ ∈ (0, 1), we have

Eτε (uε, G) ≤ Eτε (up, G) =
1

p

∫
G

(|∇up|
2 + τ)p/2

≤
1

p

∫
G

(|∇up|
2 + 1)p/2 = C .

Hence
∫
G
|∇uτε |

p ≤
∫
G
(|∇uτε |

2 + τ)p/2 ≤ C, (2.2)∫
G
(1− |uτε |

2)2 ≤ Cεp . (2.3)
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Here and below, we denote by C a universal constant which may take different
values on different occasions. If necessary, we indicate explicitly its dependence.
¿From (2.3) it follows that there exists a subsequence uτkεk of u

τ
ε with εk →

0, τk → 0 as k →∞, such that

lim
k→∞

|uτkεk | = 1, a. e. in G . (2.4)

Inequality (2.2) combined with |uτε | ≤ 1 (which follows from the maximum prin-
ciple) means that ‖uτε‖W 1,p(G,R2) ≤ C which implies that there exist a function
u∗ ∈ W 1,p(G,R2) and a subsequence of uτkεk , supposed to be u

τk
εk
itself without

loss of generality, such that

lim
k→∞

uτkεk = u∗ in C(G,R2) . (2.5)

Combining (2.5) with (2.4) yields |u∗| = 1 in G and hence

lim
k→∞

|uτkεk | = 1 in C(G,R2) .

Since any subsequence of |uτε | contains a uniformly convergent subsequence and
the limit is the same number 1, we may assert (2.1) which completes the proof.
Next, we prove some related facts about the asymptotic behaviour of |uτε |,

although Proposition 2.1 is enough for proving the next steps.

Proposition 2.2 For all q ∈ (1, p), there exist constants C, λ > 0, independent
of ε such that ∫

G

|∇|uτε ||
q ≤ Cελ (2.6)

for τ ∈ (0, 1) and ε ∈ (0, η) for some small η > 0.

Proof. As a minimizer of Eτε (u,G), u = uτε satisfies the corresponding Euler
equation

− div(v(p−2)/2∇u) = 1
εp
u(1− |u|2) in G (2.7)

u|∂G = g , (2.8)

where v = |∇u|2 + τ . Set u = h(cosφ, sinφ) and h = |u|. Then

− div(v(p−2)/2h2∇φ) = 0 (2.9)

− div(v(p−2)/2∇h) + h|∇φ|2v(p−2)/2 = 1
εp
h(1− h2) . (2.10)

Fix β ∈ (0, p/2) and set

S = {x ∈ G; |h(x)| > 1− εβ}, h̃ = max(h, 1− εβ).

Multiplying (2.8) with h(1− h̃), integrating over G and noticing that h̃|∂G = 1,
we have

−

∫
G

v(p−2)/2h∇h∇h̃+

∫
G

v(p−2)/2|∇h|2(1− h̃) +

∫
G

v(p−2)/2h2|∇φ|2(1− h̃)

=
1

εp

∫
G

h2(1 − h2)(1− h̃)
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and thus we obtain ∫
G

v(p−2)/2h∇h∇h̃ ≤ Cεβ (2.11)

by using (2.2) and the facts |∇u|2 = |∇h|2 + h2|∇φ|2 and h = |u| ≤ 1. Since
h̃ = 1 − εβ on G \ S, h̃ = h on S and h > 1/2 for ε > 0 small enough, (2.9)
implies ∫

S

v(p−2)/2|∇h|2 ≤ Cεβ

and hence ∫
S

|∇h|p ≤ Cεβ . (2.12)

On the other hand, from the definition of S and (2.3), we have

Cmeas(G \ S)ε2β ≤

∫
G\S
(1 − |u|2)2 ≤ Cεp,

namely
meas(G \ S) ≤ Cεp−2β

and hence using (2.2) again we see that for any q ∈ (1, p)

∫
G\S
|∇h|q ≤ meas(G− S)1−q/p(

∫
G

|∇h|p)q/p ≤ Cε(p−2β)(1−q/p)

which and (2.10) imply the conclusion of Proposition 2.2.

Proposition 2.3 There exists a constant C independent of ε, τ ∈ (0, 1), such
that

1

εp

∫
G

(1− |uτε |
2) ≤ C . (2.13)

Proof. First we take the inner product of the both sides of (2.7) with u and
then integrate over G

−

∫
G

div(v(p−2)/2∇u)u =
1

εp

∫
G

|u|2(1− |u|2).

Integrating by parts and using (2.2) and the Holder inequality we obtain

1

εp

∫
G

|u|2(1− |u|2) ≤

∫
G

v(p−2)/2|∇u|2 +

∫
∂G

v(p−2)/2|un||u|

≤ C +

∫
∂G

v(p−2)/2|un| (2.14)

≤ C + C

∫
∂G

v(p−2)/2 + C

∫
∂G

v(p−2)/2|un|
2

≤ C + C

∫
∂G

vp/2
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where n denotes the unit outward normal to ∂G and un the derivative with
respect to n.
To estimate

∫
∂G

vp/2, we choose a smooth vector field ν = (ν1, ν2) such that
ν|∂G = n, take the inner product of the both sides of (2.7) with ν · ∇u and
integrate over G. Then we have

−

∫
G

div(v(p−2)/2∇u)(ν · ∇u) =
1

2εp

∫
G

(1 − |u|2)(ν · ∇|u|2).

Integrating by parts and noticing |u|∂G = |g| = 1 and∫
G

(1 − |u|2)(ν · ∇|u|2) = −
1

2

∫
G

∇(1 − |u|2)2 · ν =
1

2

∫
G

(1− |u|2)2 div ν

yield

−

∫
∂G

v(p−2)/2|un|
2+

∫
G

v(p−2)/2∇u·∇(ν ·∇u) =
1

4εp

∫
G

(1−|u|2)2 div ν . (2.15)

¿From the smoothness of ν and (2.2), (2.3) we have

1

εp

∫
G

(1− |u|2)2| div ν| ≤ C (2.16)

∫
G

v(p−2)/2∇u∇(ν · ∇u) ≤ C

∫
G

v(p−2)/2|∇u|2 +
1

2

∫
G

v(p−2)/2ν · ∇v

≤ C +
1

p

∫
G

ν · ∇(vp/2) (2.17)

≤ C +
1

p

∫
G

div(νvp/2)−
1

p

∫
G

vp/2 div ν

≤ C +
1

p

∫
∂G

vp/2

and ∫
∂G

vp/2 =

∫
∂G

v(p−2)/2(|un|
2 + |gt|

2 + τ)

≤

∫
∂G

v(p−2)/2|un|
2 + C

∫
∂G

v(p−2)/2 (2.18)

where gt denotes the derivative of g with respect to the tangent vector t to ∂G.
Combining (2.13)-(2.16) we obtain

∫
∂G

vp/2 ≤ C

∫
∂G

v(p−2)/2 + C +
1

p

∫
∂G

vp/2

and derive ∫
∂G

vp/2 ≤ C (2.19)
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by using the Young inequality. Substituting (2.17) into (2.12) yields

1

εp

∫
G

|u|2(1− |u|2) ≤ C

which together with (2.3) implies (2.11).
Using Proposition 2.2 and Proposition 2.3, we may obtain the following

result which is similar to but stronger than the result in Proposition 2.1.

Proposition 2.4 Uniformly for τ ∈ (0, 1),

lim
ε→0
|uτε | = 1 in C(G,R2) .

Proof. From (2.6) and (2.11), we have

∫
G

|∇|uτε ||
(p+2)/2 ≤ Cελ, ∀ε ∈ (0, η), τ ∈ (0, 1)

∫
G

(1− |uτε |)
(p+2)/2 ≤

∫
G

(1− |uτε |) ≤

∫
G

(1− |uτε |
2) ≤ Cεp, ∀ε, τ ∈ (0, 1)

Thus
‖1− |uτε |‖W 1,(p+2)/2(G,R2) ≤ Cε

λ, ∀ε ∈ (0, η), τ ∈ (0, 1)

and hence by the embedding inequality, we obtain

‖1− |uτε |‖C(G,R2) ≤ Cε
λ

which is a conclusion stronger than (2.18).

3 Estimate for ‖∇uτε‖Llloc
The main goal of this section is to establish uniform estimates for ‖∇uτε‖Llloc .

Proposition 3.1 There exists a constant C independent of ε, τ ∈ (0, η) for
small η > 0, such that

‖∇uτε‖Ll(K,R2) ≤ C = C(K, l) (3.1)

where K ⊂ G is an arbitrary compact subset and l > 1.

Proof. Differentiate (2.7) with respect to xj

−(v(p−2)/2uxi)xixj =
1

εp
(u(1− |u|2))xj .

Here and in the sequel, double indices indicate summation.
Let ζ ∈ C∞0 (G,R) be a function such that ζ = 1 on K, ζ = 0 on G \G1, 0 ≤

ζ ≤ 1, |∇ζ| ≤ C on G, where K ⊂ G1 and G1 ⊂⊂ G be a sub-domain. Taking
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the the inner product of the both sides of (2.7) with uxjζ
2 and integrating over

G, we obtain∫
G

(v(p−2)/2uxi)xj (ζ
2uxj )xi =

1

εp

∫
G

(1− |u|2)ζ2|∇u|2 −
1

2εp

∫
G

ζ2(|u|2)2xj .

Summing up for j = 1, 2 and computing the term of the left side yield

∫
G

ζ2v(p−2)/2
2∑
j=1

|∇uxj |
2 +

p− 2

4

∫
G

ζ2v(p−4)/2|∇v|2

≤
1

εp

∫
G

(1− |u|2)ζ2|∇u|2 + 2|

∫
G

(v(p−2)/2uxi)xjuxjζζxi | . (3.2)

Applying Proposition 2.1 and the Young inequality, we derive from (2.7) that
for any δ ∈ (0, 1)

1

εp

∫
G

(1 − |u|2)ζ2|∇u|2

≤

∫
G

|u|−1|∇u|2ζ2| div(v(p−2)/2∇u)| (3.3)

≤ C

∫
G

ζ2v(v(p−2)/2|∆u|+
p− 2

2
v(p−3)/2|∇v|)

≤ C(δ)

∫
G

ζ2v(p+2)/2 + δ

∫
G

ζ2|∆u|2v(p−2)/2 + δ

∫
G

ζ2v(p−4)/2|∇v|2

≤ C(δ)

∫
G

ζ2v(p+2)/2 + δ

∫
G

ζ2
2∑
j=2

|∇uxj |
2v(p−2)/2 + δ

∫
G

ζ2v(p−4)/2|∇v|2 ,

where ε, τ ∈ (0, η) with η > 0 small enough. Since

|(v(p−2)/2uxi)xjuxjζζxi | = |
1

2
v(p−2)/2vxi +

p− 2

2
v(p−4)/2vxjuxiuxjζζxi |

≤ Cv(p−2)/2ζ|∇ζ||∇v| ,

using the Young inequality again, for δ ∈ (0, 1) we have

|

∫
G

(v(p−2)/2uxi)xjuxjζζxi | ≤ C

∫
G

v(p−2)/2ζ|∇ζ||∇v| (3.4)

≤ C(

∫
G

v(p−4)/2|∇v|2ζ2)1/2(

∫
G

vp/2|∇ζ|2)1/2

≤ δ

∫
G

v(p−4)/2|∇v|2ζ2 + C(δ)

∫
G

vp/2|∇ζ|2 .

Substituting (3.3) and (3.4) into (3.2) and choosing δ small enough,yield

∫
G

ζ2v(p−2)/2
2∑
j=1

|∇uxj |
2 +

∫
G

ζ2v(p−4)/2|∇v|2

≤ C

∫
G

ζ2v(p+2)/2 + C

∫
G

vp/2|∇ζ|2. (3.5)
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Hence, by applying (2.2) to the last term, we obtain

∫
G

ζ2v(p−4)/2|∇v|2 ≤ C

∫
G

ζv(p+2)/2 + C. (3.6)

Now we estimate
∫
G
ζv(p+2)/2. To do this, we take φ = ζ2/qv(p+2)/2q in the

interpolation inequality

‖φ‖Lq ≤ C‖∇φ‖
α
L1‖φ‖

1−α
L1 , q ∈ (1, 2), α = 2(1− 1/q).

Noticing that

|∇φ| ≤ Cζ2/q−1|∇ζ|v(p+2)/2q + Cζ2/qv(p+2)/2q−1|∇v|,

we have∫
G

ζ2v(p+2)/2 ≤ C(

∫
G

ζ2/qv(p+2)/2q)q(1−α) (3.7)

×(

∫
G

ζ2/q−1|∇ζ|v(p+2)/2q +

∫
G

ζ2/qv(p+2)/2q−1|∇v|)qα .

Since p > 2, we can choose q ∈ (1 + 2/p, 2) and hence p+22q < p
2 . Thus using

(2.2) again,we derive that

∫
G

ζ2/qv(p+2)/2q and

∫
G

ζ2/q−1|∇ζ|v(p+2)/2q

are bounded by

C

∫
G

v(p+2)/2q ≤ C(

∫
G

vp/2)(p+2)/pq ≤ C .

Substituting these inequalities into (3.7) gives

∫
G

ζ2v(p+2)/2 ≤ C(1 +

∫
G

ζ2/qv(p+2)/2q−1|∇v|)qα (3.8)

≤ C[1 + (

∫
G

ζ2v(p−4)/2|∇v|2)1/2(

∫
G

ζ4/q−2v(p+2)/q−p/2)1/2]qα

≤ C + C(

∫
G

ζ2v(p−4)/2|∇v|2)qα/2(

∫
G

ζ4/q−2v(p+2)/q−p/2)qα/2 .

Here we have used the inequality

(a+ b)λ ≤ C(aλ + bλ), (a, b ≥ 0).

Since q ∈ (1 + 2
p , 2), we have

qα
2 < 1, p+2q −

p
2 <

p
2 . Thus, using the Holder

inequality and (2.2), we obtain

∫
G

ζ4/q−2v(p+2)/q−p/2 ≤ C(

∫
G

vp/2)2(p+2)/pq−1 ≤ C .
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Hence from (3.8),we have for any δ ∈ (0, 1)

∫
G

ζ2v(p+2)/2 ≤ C + C(

∫
G

ζ2v(p−4)/2|∇v|2)qα/2

≤ C(δ) + δ

∫
G

ζ2v(p−4)/2|∇v|2

since qα2 < 1. Combining the last inequality with (3.6) we derive

∫
G

ζ2v(p−4)/2|∇v|2 ≤ C

or ∫
G

ζ2|∇w|2 ≤ C

where w = vp/4. Since (2.2) implies
∫
G
ζ2|w|2 ≤ C, we have ζw ∈ W 1,2(G,R),

and thus the embedding inequality gives

∫
G

(ζw)l ≤ C(l)

for any l > 1, which implies (3.1) since ζ = 1 on K.

4 Estimate for ‖∇uτε‖L∞loc

By means of the Moser iteration, from the estimate (3.1) we can further prove

Proposition 4.1 There exists a constant C independent of ε, τ ∈ (0.η) for
small η > 0 such that

‖∇uτε‖L∞(K,R2) ≤ C = C(K) (4.1)

where K ⊂ G is an arbitrary compact subset.

Proof. Given any x0 ∈ G. Let r be small enough and positive so that
B(x0, 2r) ⊂ G. DenoteQm = B(x0, rm), rm = r+

r
2m . Choose ζm ∈ C

∞
0 (Qm, R)

such that ζm = 1 on Qm+1, |∇ζm| ≤ Cr−12m, (m = 1, 2, . . .). Differentiate both
sides of (2.7) with respect xj , multiply by ζ

2
mv
buxj for b ≥ 1 and integrate over

Qm. Then

∫
Qm

(v(p−2)/2uxi)xj (ζ
2
mv
buxj )xi

=
1

εp

∫
Qm

(1− |u|2)ζ2mv
b|∇u|2 −

1

2εp

∫
Qm

ζ2mv
b(|u|2)2xj .
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Similar to the derivation of (3.2) we can obtain

∫
Qm

ζ2mv
(p+2b−2)/2

∑
j

|∇uxj |
2 +

p+ 2b− 2

4

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2

≤
1

εp

∫
Qm

(1− |u|2)ζ2mv
b+1 + |

∫
Qm

(v(p−2)/2uxi)xjv
buxjζmζmxi | . (4.2)

Also for any δ ∈ (0, 1), we have

1

εp

∫
Qm

(1− |u|2)ζ2mv
b+1

≤

∫
Qm

|u|−1ζ2mv
b+1| div(v(p−2)/2∇u)|

≤ C

∫
Qm

ζ2mv
(p+2b)/2|∆u|+

C(p+ 2b− 2)

2

∫
Qm

ζ2mv
(p+2b−2)/2|∇v|(4.3)

≤ C(δ)

∫
Qm

ζ2mv
(p+2b+2)/2 + δ

∫
Qm

ζ2mv
(p+2b−2)/2|∆u|2

+
C(δ)(p+ 2b− 2)

2

∫
Qm

ζ2mv
(p+2b+2)/2

+
δ(p+ 2b− 2)

2

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2

and ∣∣∣∣
∫
Qm

(v(p−2)/2uxi)xjv
buxjζmζmxi

∣∣∣∣
≤ C

∫
Qm

v(p+2b−2)/2|∇v|ζm|∇ζm| (4.4)

≤ δ

∫
Qm

v(p+2b−1)/2|∇v|2ζ2m + C(δ)

∫
Qm

v(p+2b)/2|∇ζm|
2 ,

where the constants C and C(δ) are independent of b,m, ε, τ . Combining (4.2)
with (4.3)(4.4) and choosing δ small enough yield

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2 ≤ C

∫
Qm

v(p+2b)/2|ζm|
2 + C

∫
Qm

ζ2mv
(p+2b+2)/2. (4.5)

To estimate
∫
Qm

ζ2mv
(p+2b+2)/2, we take

φ = ζ2/qm v(p+2b+2)/2q

in the interpolation inequality (3.6) and observe that

|∇φ| ≤
2

q
ζ2/q−1m |∇ζm|v

(p+2b+2)/2q +
p+ 2b+ 2

2q
ζ2/qm v(p+2b+2)/2q−1|∇v|.
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Then we obtain∫
Qm

ζ2mv
(p+2b+2)/2

≤ C(

∫
Qm

ζ2/qm v(p+2b+2)/2q)q(1−α)
(
2

q

∫
Qm

ζ2/q−1m |∇ζm|v
(p+2b+2)/2q

+
p+ 2b+ 2

2q

∫
Qm

ζ2/qm v(p+2b+2)/2q−1|∇v|)qα

≤ C(

∫
Qm

ζ2/qm v(p+2b+2)/2q)q(1−α)(
2

q
)qα(

∫
Qm

ζ2/q−1m |∇ζm|v
(p+2b+2)/2q

)qα
(4.6)

+(
p+ 2b+ 2

2q
)qα(

∫
Qm

ζ2/qm v(p+2b+2)/2q−1|∇v|)qα .

Now we estimate all integrals on the right-hand side of (4.6). Choose r small
enough so that meas(Qm) ≤ 1. In computing we need to notice that q ∈
(1 + 2

p
, 2), which implies q > 1 + 2

p+2b or
p+2b
2q < p+2b

2 . We have∫
Qm

ζ2/qm v(p+2b+2)/2q

≤

∫
Qm

v(p+2b+2)/2q

≤ (meas(Qm))
1−(p+2b+2)/(q(p+2b))(

∫
Qm

v(p+2b)/2)(p+2b+2)/(q(p+2b))

≤ (

∫
Qm

v(p+2b)/2)(p+2b+2)/(q(p+2b)),

∫
Qm

ζ2/q−1m |∇ζm|v
(p+2b+2)/2q ≤

2m

r

∫
Qm

v(p+2b+2)/2q

≤
2m

r
(

∫
Qm

v(p+2b)/2)(p+2b+2)/(q(p+2b))

and∫
Qm

ζ2/qm v(p+2b+2)/2q−1|∇v|

≤ (

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2)1/2(

∫
Qm

ζ4/q−2m v(p+2b+2)/q−(p+2b)/2)1/2

≤ (

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2)1/2(

∫
Qm

v(p+2b)/2)(p+2b+2)/(q(p+2b))−1/2 .

Combining these inequalities with (4.5) and (4.6) yields

I1 ≤ C[(
2m

r
)2I2 + (

2m

r
)qαI

1+2/(p+2b)
2 + (

p+ 2b+ 2

2q
)qαI

qα/2
1 I

1+2/(p+2b)−qα/2
2 ] ,

(4.7)
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where

I1 =

∫
Qm

ζ2mv
(p+2b−4)/2|∇v|2, and I2 =

∫
Qm

v(p+2b)/2.

Let
p+ 2b = sm, w = v(p+2b)/4 = vs

m/4

with s > 2 to be determined later. Then (4.7) becomes

I1 ≤ C[(
2m

r
I2 + (

2m

r
)qαI

1+2/Sm

2 + (
sm + 2

2q
)qαI

qα/2
1 I

1+2/sm−qα/2
2 ] .

The Young inequality applied to the last term on the right-hand side yields

C(
sm + 2

2q
)qαI

qα/2
1 I

1+2/(sm)−qα/2
2

≤ δI1 + C(δ)[(
sm + 2

2q
)qαI

1+2/(sm)−qα/2
2 ]2/(2−qα)

= δI1 + C(δ)(
sm + 2

2q
)2qα/(2−qα)I

2(1+2/(sm)−qα/2)/(2−qα)
2 .

Thus we obtain

I1 ≤ C(δ)[(
2m

r
)2I2 + (

2m

r
)qαI

1+2/(sm)
2 (4.8)

+(
sm + 2

2q
)2qα/(2−qα)I

2(1+2/(sm)−qα/2)/(2−qα)
2 ] .

By the embedding theorem, we have for any s > 1∫
Qm

(ζmw)
2s ≤ C(s)[

∫
Qm

(ζmw)
2 +

∫
Qm

|∇(ζmw)|
2]s

≤ C(s)[

∫
Qm

(ζmw)
2 +

∫
Qm

|∇ζm|
2w2 +

∫
Qm

ζ2m|∇w|
2]s

≤ C(s)[(1 + (
2m

r
)2)I2 + (

sm

4
)2I1]

s ,

which by using (4.8), turns out to be
∫
Qm

(ζmw)
2s ≤ C(s)[(1 + (

2m

r
)2 + (

sm

4
)2(
2m

r
)2)I2 + (

sm

4
)2(
2m

r
)qαI

1+ 2
sm

2 (4.9)

+(
sm

4
)2(

sm + 2

2q
)
2qα
2−qα I

(1+ 2
sm−

qα
2 )

2
2−qα

2 ]s .

If there exists a subsequence of positive integers {mi} with mi → ∞ such
that

I2 =

∫
Qmi

vs
mi/2 < 1 ,

then as mi →∞,
‖v‖L∞(Q∞,R) ≤ C(r) . (4.10)
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Otherwise, there must be a positive integer m0 such that

I2 =

∫
Qm

vs
m/2 ≥ 1 , ∀m ≥ m0 .

Since

(1 +
2

sm
−
qα

2
)
2

2− qα
= 1 +

2

sm
1

2− q
> 1 +

2

sm
> 1 ,

the exponent of the last term in (4.9) is higher than those of the other terms.
Now comparing the coefficients of the terms in (4.9), we have

(
sm

r
)2 ≥ 1 , (

2m

r
)2 ≥ (

2m

r
)qα

and, if we choose s > 2q(2r )
2(q−1)
2−q , r ≤ 1, then

(
sm + 2

2q
)
2qα
2−qα = (

sm + 2

2q
)
2(q−1)
2−q ≥ (

2m

r
)2.

Therefore, the coefficient of the last term in (4.9) is greater than those of the
other terms. Hence we have∫

Qm

(ζmw)
2s ≤ C[(

sm

4
)2(

sm + 2

2q
)
2(q−1)
2−q I

1+ 2
sm

1
2−q

2 ]s

or ∫
Qm+1

vs
m+1/2 ≤ (C0C

m
1 )
s(

∫
Qm

vs
m/2)(1+C2/S

m)s (4.11)

with some constant C0 > 0, C2 =
2
2−q , C1 = s(2+

2(q−1)
2−q )s. Using an iteration

proposition which will be stated and proved later, we also reach estimate (4.10).
Thus the proof of Proposition 4.1 is complete.

Proposition 4.2 Let Qm(m = 1, 2, . . .) ⊂ G be a sequence of bounded, open
subsets such that Qm+1 ⊂ Qm. If for any l ≥ 1, v ∈ Ll(Q1, R) and there exist
constants λ,C0, C1, C2 > 0, s > 1, λs ≥ 1, such that

∫
Qm+1

|v|λs
m+1

dx ≤ (C0C
m
1 )
s(

∫
Qm

|v|λs
m

dx)(1+C2/s
m)s,

for m = 1, 2, . . ., then

‖v‖L∞(Q∞,R) ≤ C
A1
0 CA21 (

∫
Qn0

|v|λs
n0
dx)A3/(λs

n0 ),

where A1, A2, A3 are constants depending only on s, C2, and n0 is an arbitrary
nonnegative integer.
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Proof. From (4.12) by iteration, we obtain

∫
Qm+1

|v|λs
m+1

dx ≤ CXm0 CYm1 (

∫
Qn0

|v|λs
n0
dx)s

m−n0+1Zm (4.12)

where

Xm = s+ s2λm + . . .+ s
m−n0+1λmλm−1 . . . λn0+1

Ym = ms+ (m− 1)s2λm + . . .+ n0s
m−n0+1λmλm−1 . . . λn0+1

Zm = λn0 . . . λm−1λm

with λm = 1 + C2/s
m. Since λj ≥ 1 for j = n0 − 1, . . . ,m− 1,m, . . ., Zm is an

increasing sequence. Noticing that ln(1 + x) ≤ x for x > 0, we have

lnZm = lnλn0 + . . .+ lnλm−1 + lnλm

≤ C2[(
1

s
)n0 + . . .+ (

1

s
)m−1 + (

1

s
)m]

≤ C2
(1/s)n0

1− 1/s
= γ

or Zm ≤ eγ . Hence limm→∞ Zm = A3 exists. Clearly, we also have

Xm ≤ eγ [s+ s2 + . . .+ sm−n0+1]

Ym ≤ eγ [ms+ (m− 1)s2 + . . .+ n0s
m−n0+1] .

From which it is easily seen that the following two limits exist:
limm→∞ s−(m+1)Xm = A1 and limm→∞ s−(m+1)Ym = A2. Taking the 1/λs

m+1

power on the both sides of (4.14), letting m→∞, and noticing that

‖v‖L∞(Q∞,R) = lim
m→∞

(

∫
Qm+1

|v|λs
m+1

dx)1/λs
m+1

,

we obtain (4.13).

5 Completion of the proof

Once the locally uniform estimate ‖∇uτε‖L∞(K) is established, it is not difficult
to prove the following proposition.

Proposition 5.1 Let ψτε =
1
εp (1− |u

τ
ε |
2). Then there exists a constant C inde-

pendent of ε, τ ∈ (0, η) with η > 0 small enough, such that

‖ψτε ‖L∞(K,R) ≤ C = C(K),

where K ⊂ G is an arbitrary compact subset.
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Proof. Take the inner product of both sides of (2.7) with u,

− div(v(p−2)/2∇u)u =
1

εp
|u|2(1− |u|2) = |u|2ψ

where u = uτε , ψ = ψ
τ
ε . This and

∇ψ = −
2

εp
u · ∇u

− div(v(p−2)/2∇u)u = − div(v(p−2)/2u · ∇u) + v(p−2)/2|∇u|2

give

|u|2ψ = v(p−2)/2|∇u|2 +
εp

2
div(v(p−2)/2∇ψ).

Using Proposition 2.1 we obtain

1

2
ψ ≤ v(p−2)/2|∇u|2 +

εp

2
div(v(p−2)/2∇ψ), ∀ε, τ ∈ (0, η).

Since at the point where ψ achieves its maximum, ∇ψ = 0, ∆ψ ≤ 0, and

div(v(p−2)/2∇ψ) = v(p−2)/2∆ψ +
p− 2

2
v(p−4)/2∇v∇ψ ≤ 0 ,

we derive (5.1) from (5.2) by using Proposition 4.1.
To complete the proof of Theorem 1.1, we apply a theorem in [12] (Page

244 Line 19–23). Now according to Proposition 5.1 the right hand side of (2.7)
is bounded on every compact subset K ⊂ G uniformly in ε, τ ∈ (0, η). Thus
applying the theorem in [12] (Page 244) yields

‖uτε‖C1,β(K) ≤ C = C(K) (5.1)

for some β ∈ (0, 1), where the constant C does not depend on ε, τ ∈ (0, η). From
this it follows that there exist a function u∗ and a subsequence u

τk
εk
(εk, τk → 0,

as k→∞) of uτε , such that

lim
k→∞

uτkεk = u∗, in C1,α(K,R2), α ∈ (0, β) .

By an argument similar to that in the proof of (1.1) and (1.2), we obtain

lim
ε,τ→0

uτε = up, in W 1,p(K,R2).

Certainly u∗ = up. From the fact that any subsequence of u
τ
ε contains a sub-

sequence convergent in C1,α(K,R2) and the limit is the same function up, we
may assert

lim
ε,τ→0

uτε = up, in C1,α(K,R2). (5.2)

On the other hand, for any ε ∈ (0, η), as a regularizable minimizer of Eε(u,G),
ũε is the limit of some subsequence u

τk
ε of u

τ
ε in W

1,p(G,R2). For large k, uτkε
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satisfies (5.3) and hence it contains a subsequence, for simplicity we suppose it
is uτkε itself, such that

lim
k→∞

uτkε = w, in C1,α(K,R2)

where the function w must be ũε. Combining this with (5.4) we finally obtain

lim
ε→0

ũε = up, in C1,α(K,R2)

and complete the proof of Theorem 1.1.

Remark Using Proposition 2.4 instead of Proposition 2.1 we may also prove
our theorem. In this way, we may obtain (3.1), (4.1) and (5.1) for ε ∈ (0, η), τ ∈
(0, 1) instead of those for ε, τ ∈ (0, η). The remainder of the proof is just the
same as above.

6 Extension of the argument

Our argument can be extended to the higher dimensional case. Let n > 2 G ⊂
R
n be a bounded and simply connected domain with smooth boundary ∂G, and

g : ∂G→ Sn−1 = {x ∈ Rn; |x| = 1} be a smooth map with d = deg(g, ∂G) = 0.
Consider the functional

Eε(u,G) =
1

p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2, (ε > 0)

and its regularized functional

Eτε (u,G) =
1

p

∫
G

(|∇u|2 + τ)p/2 +
1

4εp

∫
G

(1− |u|2)2, (ε, τ > 0)

on
Wg = {v ∈ W

1,p(G,Rn); v|∂G = g}.

Similar to the case n = 2, we may prove that if p > 1, then Eε(u,G) and
Eτε (u,G) achieve their minimum on Wg by some uε and u

τ
ε ; uε and u

τ
ε satisfy

− div(|∇u|p−2∇u) =
1

εp
u(1− |u|2), in G

and

− div(v(p−2)/2∇u) =
1

εp
u(1− |u|2), in G

respectively where v = |∇u|2 + τ , and

|uε|, |u
τ
ε | ≤ 1, in G.

It can also be proved that if p > 1, then there exists a subsequence uεk of
uε with εk → 0 such that

lim
εk→0

uεk = up, in W 1,p(G,Rn)
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where up is a p-harmonic map with boundary value g. However, differ to the
case n = 2, here we can only prove the convergence for a subsequence because
of the lack of uniqueness result for p-harmonic map with given boundary value.
Similarly, for some subsequence we have uτkε (τk → 0) of u

τ
ε

lim
τk→0

uτkε = ũε, inW 1,p(G,Rn)

and the limit ũε is a minimizer of Eε(u,G), called regularizable minimizer. The
main result is the following

Theorem 6.1 Assume that p > 2n − 2 and d = deg(g, ∂G) = 0. Let ũε be a
regularizable minimizer of Eε(u,G). Then there exists a subsequence ũεk of ũε
with εk → 0 such that for some α ∈ (0, 1)

lim
εk→0

ũεk = up, in C1,αloc (G,R
n).

The proof is similar to the case n = 2. First we have

lim
ε,τ→0

|uτε | = 1 in C(G,Rn)

and also
lim
ε→0
|uτε | = 1 in C(G,R

n)

uniformly for τ ∈ (0, 1).
Next we prove

‖∇uτε‖Ll(K,Rn) ≤ C = C(K, l)

where K ⊂ G is an arbitrary compact subset and l > 1.
For this purpose, we proceed as in section 3: first differentiate (6.1) with

respect to xj , take the inner product of the both sides with ζ
2vbuxj (b ≥ 0),

where ζ ∈ C∞0 (G,R) with 0 ≤ ζ ≤ 1, and integrate over G. Then as in (3.5)
and in (4.5), we obtain∫

G

ζ2v(p+2b−4)/2|∇v|2 ≤ C

∫
G

ζ2v(p+2b+2)/2 + C

∫
G

v(p+2b)/2|∇ζ|2 . (6.1)

Using the interpolation inequality

‖φ‖Lq ≤ C‖∇φ‖
α
L1‖φ‖

1−α
L1 , q ∈ (1, n/(n− 1)), α = n(q − 1)/q

for φ = ζ2/qv(p+2b+2)/2q to estimate the last term of (6.3) yields∫
G

ζ2v(p+2b−4)/2|∇v|2

≤ C

∫
G

|∇ζ|2v(p+2b)/2

+C(

∫
G

ζ2/qv(p+2b+2)/2q)q(1−β)(

∫
G

ζ2/q−1|∇ζ|v(p+2b+2)/2q)qβ

+C(

∫
G

ζ2/qv(p+2b+2)/2q)λ1(

∫
G

ζ4/q−2v(p+2b+2)/q−(p+2b)/2)λ2 ,
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where the constants λ1, λ2 > 0 depend on p, q, b, α only. Set w = v(p+2b)/4.
Since p > 2n− 2, we may choose q ∈ (1− 2/p, n/(n− 1)) such that

p+ 2b+ 2

2q
<
p+ 2b

2
and

p+ 2b+ 2

q
−
p+ 2b

2
<
p+ 2b

2
.

Then use the Holder inequality to obtain∫
G

ζ2|∇w|2 ≤ C

∫
G

|∇ζ|2w2 + C(

∫
G

w2)λ[1 + (

∫
G

|∇ζ|λ)λ] ,

where the constants C and λ > 0 are independent of ε and τ .
Now we choose ζ such that ζ = 1 on G1, where G1, G0 are sub-domains of

G satisfying K ⊂ G1 ⊂⊂ G0 ⊂⊂ G, ζ = 0 on G \G0, |∇ζ| ≤ C on G and b = 0.
From

Eτε (u
τ
ε , G) ≤ E

τ
ε (up, G) ≤ C

we have ∫
G

ζ2|∇w|2 ≤ C

and hence ‖ζw‖L2(G,Rn) ≤ C. By the embedding theorem,

‖ζw‖Lr(G,Rn) = (

∫
G

(ζw)r)1/r ≤ C‖ζw‖L2(G,Rn) ≤ C , (6.2)

where r ≤ 2n
n−2 . Clearly r = 2 +

8
np
≤ 2n
n−2 . Choosing r = 2 +

8
np
in (6.5) and

noticing that ζ = 1 on G1 we see that ∇u ∈ Ls1(G1)and∫
G1

|∇u|s1 ≤ C , (6.3)

where s1 = p+
4
n
. In the present case n > 2, we can not derive (6.2) directly by

using the embedding theorem once. To prove (6.2) we choose G2, a sub-domain
of G1, such that K ⊂ G2 ⊂⊂ G1 and ζ = 1 on G2, ζ = 0 on G \ G1, |∇ζ| ≤ C
on G. Set b = 2

n
, w = v(p+4/n)/4. Then from (6.6)

∫
G1

w2 =

∫
G1

v(p+4/n)/2 =

∫
G1

|∇u|s1 ≤ C ,

and from (6.4), ∫
G1

ζ2|∇w|2 ≤ C

Thus ‖ζw‖L2(G,Rn) ≤ C. Applying the embedding theorem to ζw, we obtain∫
G2

|∇u|s2 ≤ C

where

s2 = s1 +
4(n+ 2)

n2
= p+

4

n
+
4(n+ 2)

n2
= p+

8

n
+
8

n2



EJDE–2000/14 Yutian Lei & Zhuoqun Wu 19

For a given l > 1, proceeding inductively, we find an si for some i such that
si > l and ∫

Gi

|∇u|si ≤ C ,

where Gi is a sub-domain of Gi−1 such that K ⊂ Gi ⊂⊂ Gi−1 ⊂⊂ . . . ⊂⊂ G.
Thus (6.2) is proved.
The remainder of the proof is just the same as in sections 4 and 5. However,

we are not able to establish the convergence for the full ũε because of the lack
of uniqueness result for the p-harmonic map with the given boundary value.

References

[1] F. Bethuel, H. Brezis, F.Helein: Asymptotics for the minimization of a
Ginzburg-Landau functional, Calc. Var. PDE., 1 (1993).123-148.

[2] F. Bethuel, H. Brezis, F. Helein: Ginzburg-Landau Vortices, Birkhauser.
1994.

[3] S.J. Ding, Z.H. Liu: On the zeroes and asymptotic behaviour of minimizers
to the Ginzburg-Landau functional with variable coefficient, J. Partial Diff.
Eqns., 10 No.1. (1997).45-64.

[4] R. Hardt, F.H. Lin: Singularities for p-energy minimizing unit vector fields
on planner domains, Cal. Var. PDE., 3 (1995), 311-341.

[5] M.C. Hong: Asymptotic behavior for minimizers of a Ginzburg-Landau type
functional in higher dimensions associated with n-harmonic maps, Adv. in
Diff. Eqns., 1 (1996), 611-634.

[6] M.C. Hong: On a problem of Bethuel, Brezis and Helein concerning the
Ginzburg-Landau functional, C. R. Acad. Sic. Paris, 320 (1995), 679-684.

[7] M.C. Hong: Two estimates concerning asymptotics of the minimizations
of a Ginzburg-Landau functional, J. Austral. Math. Soc. Ser. A, 62 No.1,
(1997), 128-140.

[8] F.H. Lin: Solutions of Ginzburg-Landau equations and critical points of
the renormalized energy, Ann. Inst. P. Poincare Anal. Nonlineare, 12 No.5,
(1995), 599-622.

[9] Y.T. Lei: Asymptotic behavior of minimizers for a functional Acta. Scien.
Natur. Univer. Jilin., 1 (1999), 1-6.

[10] M. Struwe: On the asymptotic behavior of minimizers of the Ginzburg-
Landau model in 2-dimensions, Diff. and Int. Eqns., 7 (1994), 1613-1624.

[11] M. Struwe: An aysmptotic estimate for the Ginzburg-Landau model,
C.R.Acad. Sci. Paris., 317 (1993), 677-680.



20 C1,α convergence of minimizers EJDE–2000/14

[12] P. Tolksdorf: Everywhere regularity for some quasilinear systems with a
lack of ellipticity, Anna. Math. Pura. Appl., 134 (1983), 241-266.

Yutian Lei
Zhuoqun Wu (e-mail: wzq@mail.jlu.edu.cn )
Institute of Mathematics, Jilin University
130023 Changchun, P. R. China


