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A diffusion equation for composite materials ∗

Mohamed El Hajji

Abstract

In this article, we study the asymptotic behavior of solutions to the
diffusion equation with non-homogeneous Neumann boundary conditions.
This equation models a composite material that occupies a perforated
domain, in RN , with small holes whose sizes are measured by a number rε.
We examine the case when rε < ε

N/(N−2) with zero-average data around
the holes, and the case when limε→0 rε/ε = 0 with nonzero-average data.

1 Introduction

As a model for a composite material occupying a perforated domain in RN ,
the diffusion equation with non-homogeneous boundary conditions has been the
object of many studies. In particular, we are interested in the properties of the
solution to the equation

− div (Aε∇uε) = f in Ωε,

(Aε(x)∇uε) · n = hε on ∂Sε, (1)

uε = 0 on ∂Ω,

where Ωε is the perforated domain obtained by extracting a set of holes Sε from
Ω, f and hε are given functions, and A

ε is an operator in the space

M(α, β; Ω) =
{
A ∈ [L∞(RN )]N

2

: (A(x)λ, λ) ≥ α|λ|2,

|A(x)λ| ≤ β|λ| ∀λ ∈ RN , p.p · x ∈ Ω
}

which is defined for all real numbers α and β.
When hε ∈ L2(∂Sε) and the domain has holes of size rε, solutions to (1) have

been studied by D. Cioranescu and P. Donato [3] for rε = ε and A
ε(x) = A(x

ε
)

with A ∈M(α, β; Ω), and by C. Conca and P. Donato [5] for A = I and rε � ε.
Using the concept of H0-convergence introduced by M. Briane et al. [2], P.
Donato and M. El Hajji [6] showed convergence of solutions in not-necessarily
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periodic domains. The H0-convergence is proven by showing strong convergence
in H−1(Ω) of the distribution, concentrated on the boundary of Sε, given by

〈νεh, ϕ〉H−1(Ω), H10 (Ω) = 〈hε, ϕ〉H−1/2(∂Sε), H1/2(∂Sε), ∀ϕ ∈ H
1
0 (Ω). (2)

This method allows the study the asymptotic behavior of solutions to (1) for
hε ∈ L2(∂Sε) with rε > εN/N−2 (see [6]), and for perforated domains with
double periodicity with hε ∈ H−1/2(∂Sε) and rε/ε → 0 as ε → 0 (see T. Levy
[8]).
In this article, we study the perforated domains with rε < ε

N/N−2, and
perforated domains such that rε/ε→ 0 as ε → 0. In these situation the distri-
bution given by (2) does not converge strongly in H−1(Ω), and so the method
described above can not be applied. In spite of this, we describe the asymptotic
behavior of solutions to (1) using oscillating test functions. This method was
introduced by L. Tartar [10] and has been used by many authors.

2 Statement of the main result

Let Ω be a bounded open set of RN , Y = [0, l1[×..× [0, lN [ be a representative
cell, and S be an open set of Y with smooth boundary ∂S such that S ⊂ Y . Let
ε and rε be terms of positive sequences such that rε ≤ ε. Let c denote positive
constants independent of ε. We denote by τ(rεS) the set of translations of rεS
of the form εk1 + rεS with k ∈ ZN . Let kl = (k1l1, .., kN lN ) represent the holes
in RN .
We assume that the holes τ(rεS) do not intersect the boundary ∂Ω. If Sε is

the set of the holes enclosed in Ω, it follows that there exists a finite set K ∈ ZN

such that
Sε =

⋃
k∈K

rε(kl + S).

We set
Ωε = Ω \ Sε, (3)

and denote by χΩε the characteristic function of Ωε. Let Vε denote the Hilbert
space

Vε =
{
v ∈ H1(Ωε), v|∂Ω = 0

}
equipped with the H1-norm. Let A(y) = (aij(y))ij be a matrix such that

A ∈
(
L∞
(
R
N
))N2

,

A is Y-periodic, and there there exist α > 0 such that

N∑
i,j=1

aij (y)λiλj ≥ α |λ|
2
, a.e. y in RN , ∀λ ∈ RN . (4)

We note that for every ε > 0,

Aε(x) = A(
x

ε
) a.e. x in RN . (5)
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In this paper, we study the system

− div(Aε∇uε) = 0 in Ωε,

(Aε∇uε).n = hε on ∂Sε, (6)

uε = 0, on ∂Ω,

where Ωε is given by (3), A
ε is given by (5), and hε is given by

hε(x) = h(
x

rε
), (7)

where h ∈ L2(∂S) is Y -periodic function. Set

Ih =
1

|Y |

∫
∂S

h dσ . (8)

We examine the case where rε < ε
N/(N−2) with Ih 6= 0, and the case where

limε→o rε/ε = 0 with Ih = 0. The following result describes the asymptotic
behavior of the solution to (6) in the two cases.

Theorem 1 Let uε be the solution of (6). Suppose that one of the following
hypotheses is satisfied

Ih 6= 0 and


 limε→0

rε

εN/(N−2)
= 0 if N > 2,

lim
ε→0
ε−2(ln(ε/rε))

−1 = 0 if N = 2,
(9)

or
Ih = 0 and lim

ε→0

rε

ε
= 0 . (10)

Then, for every ε > 0, there exists an extension operator Pε defined from Vε to
H10 (Ω) satisfying

Pε ∈ L
(
Vε, H

1
0 (Ω)

)
, (11)

(Pεv)|Ωε = v ∀v ∈ Vε, (12)

‖∇ (Pεv)‖(L2(Ω))N ≤ C ‖∇v‖(L2(Ωε))N , ∀v ∈ Vε . (13)

such that
(
rε

ε
)−N/2Pεuε ⇀ u weakly in H10 (Ω), for N > 2

and

Pε[(
rε

ε
)−1/2(log

ε

rε
)−1/2uε]⇀ u weakly in H10 (Ω), for N = 2,

where u is the solution of the problem

− div(A0.∇u) = 0 in Ω,

u = 0 on ∂Ω,
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and the matrix A0 = (a0ij)ij has entries

a0ij =
1

|Y |

∫
Y

(aji −
N∑
k=1

aki
∂χj

∂yk
dy), (14)

and χj is a Y -periodic function that satisfies

− div(At∇(yj − χj)) = 0 in Y (15)

Remark. One can replace the first equation of system (6) by

− div(Aε∇uε) = fε in Ωε,

with

( rε
ε
)−N/2fε ⇀ f weakly in L2(Ω) if N > 2,

( rεε )
−1(ln(ε/rε))

−1/2fε ⇀ f weakly in L2(Ω) if N = 2.

Then u will be the solution of

− div(A0.∇u) = f in Ω,

u = 0 on ∂Ω.

This approach has been used in [5] for the case A = I, in [3] when A = I and
rε = ε, and in [6] for the case where rε > ε

N/(N−2) using the H0-convergence
and some arguments given by S. Kaizu in [7].

3 Proof of the main result

Observe first that Sε is admissible in Ω, in the sense of the H
0-convergence

([6, 4, 5, 10]). Then there exists an extension operator Pε satisfying (14).
On the other hand, the matrix A0 can be defined by

A0λ =MY (
tA∇wλ) =

1

|Y |

∫
Y

tA∇w − λdy, ∀λ ∈ RN ,

where for every λ ∈ R, wλ is the solution of the problem

− div(tA∇wλ) = 0 in Y, (16)

with wλ − λy Y -periodic.

For x ∈ RN , let

wελ(x) = εwλ(
x

ε
). (17)

To simplify notation, let

δε =

{
(rε/ε)

−N/2 if N > 2,

(rε/ε)
−1(ln(ε/rε))

−1/2 if N = 2.
(18)
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Taking uε as a test function in the variational formulation of (6), and using the
classical techniques of a priori estimates, one can easily show the existence of
two constants c and c’ independent of ε such that

c′ ≤ ‖∇(δεuε)‖L2(Ωε) ≤ c.

Hence, from (13), up to a subsequence,

Pε(δ
εuε)⇀ u weakly in H10 (Ω). (19)

Set now ξε = Aε∇[Pε(δεuε)]. Then using (19), (11)-(13) and (4)-(5), one shows
that ξε is bounded in L2(Ω), and so up to a subsequence

ξε ⇀ ξ weakly in L2(Ω). (20)

Case where (9) is satisfied. Let φ ∈ D(Ω). Then from the variational
formulation of (6), one has∫

Ω

χΩεξ
ε.∇φdx = δε

∫
∂Sε

hεφdσ . (21)

If N(ε) denotes the number of the holes included in Ω, one has then

|δε
∫
∂Sε

hεφdσ| ≤ ‖φ‖L∞(Ω)δ
ε
∑
k∈K

∫
∂(rε(S+k))

|h(
x

rε
)| dσ(x)

≤ cδεN(ε)rN−1ε

∫
∂S

|h| dσ (22)

≤ cδε
rN−1ε

εN
|∂S|1/2‖h‖L2(∂S).

From (18), one can write

δε
rN−1ε

εN
=

{
( rε

N−2

εN
)1/2 if N > 2,

[ε−2(ln(ε/rε))
−1]1/2 if N = 2,

and so in virtue of (9),

lim
ε→0
δε
rε
N−1

εN
= 0, (23)

hence

lim
ε→0
δε
∫
∂Sε

hεφdσ = 0 .

On the other hand, it is easy to show that

χΩε → 1 strongly in L
p(Ω) ∀p ∈ [1,∞[,

hence ∫
Ω

χεξ
ε.∇φdx→

∫
Ω

ξ.∇φdx. (24)
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One can deduce that, as ε→ 0 in (21),∫
Ω

ξ∇φdx = 0, ∀φ ∈ D(Ω).

Consequently

− div ξ = 0 in Ω. (25)

It remains to identify the function ξ. Let wελ be the function defined by (16)-
(17). Then

wελ ⇀ λx weakly in H1(Ω), and so Lp(Ω) strong ∀p < 2∗

where 1/2∗ = 1/2− 1/N , with N ≥ 2. Let φ ∈ D(Ω), by choosing φwελ as a test
function in the variational formulation of (6), one has∫

Ωε

ξε∇(φwελ) dx = δ
ε

∫
∂Sε

hεφw
ε
λ dx . (26)

To pass to the limit as ε→ 0 in (26), we set∫
Ωε

ξε∇(φwελ) dx = J
ε
1 + J

ε
2 , (27)

where

Jε1 =

∫
Ωε

ξε∇φ.wελ dx and Jε2 =

∫
Ωε

ξε∇wελ.φ dx.

Using the results given by G. Stampacchia in [9] (see also [1]), one can deduce
that wλ ∈ L∞(Y ), so

χΩεw
ε
λ → λx strongly in L2(Ω). (28)

This with convergence (20), gives

Jε1 =

∫
Ω

χΩεw
ε
λξ
ε∇φdx→

∫
Ω

λxξ∇φdx as ε→ 0 . (29)

Now, we may write

Jε2 =

∫
Ω

ξε∇wελφdx −

∫
Sε

ξε∇wελφdx . (30)

One the one hand,∫
Ω

ξε∇wελφdx =

∫
Ω

tAε∇wελ∇[Pε(δ
εuε)φ] dx −

∫
Ω

tAε∇wελ∇φPε[(δ
εuε] dx

= −

∫
Ω

tAε∇wελ∇φPε[(δ
εuε] dx
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because, from the definition of wελ,∫
Ω

tAε∇wελ∇[Pε(δ
εuε)φ] dx = 0 .

From the definition of A0, tAε∇wελ ⇀ A
0λ weakly in L2(Ω). From (19), up to

a subsequence,
Pε(δ

εuε)→ u strongly inL2(Ω),

which implies ∫
Ω

tAε∇wελ∇φPε(δ
εuε) dx→

∫
Ω

A0λu∇φdx .

Hence ∫
Ω

ξε∇wελφdx→ −

∫
Ω

A0λ∇φu dx . (31)

On the other hand,

|

∫
Sε

ξε∇wελφdx| ≤ c‖ξ
ε‖L2(Ω)‖∇w

ε
λ‖L2(Sε). (32)

Since ‖ξε‖L2(Ω) is bounded,

|

∫
Sε

ξε∇wελφdx| ≤ c‖∇w
ε
λ‖L2(Sε). (33)

Note that

‖∇wελ‖
2
L2(Sε)

=

∫
Sε

|(∇wελ)(x)|
2 dx

=
∑
k∈K

∫
rε(S+k)

|(∇wελ)(x)|
2 dx

=
∑
k∈K

∫
rε(S+k)

|(∇ywλ)(
x

ε
)|2 dy

= N(ε)εN
∫
rε
ε S

|(∇ywλ)(y)|
2 dy

≤ c

∫
rε
ε S

|∇wλ|
2 dy .

Since rε/ε→ 0 and wλ ∈ H1(Y ), it follows that∫
rεS/ε

|∇wλ|
2 dy → 0 .

Using (33), one has ∫
Sε

ξε∇wελφdx→ 0 as ε→ 0.
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This, with (30) and convergence (31) imply that

Jε2 → −

∫
Ω

A0λ∇φu dx. (34)

Next we pass to the limit in the right hand of (26). With the same argument
as in (22),

|δε
∫
∂Sε

hεφw
ε
λ dσ| ≤ cδεN(ε)rN−1ε

∫
∂S

|hwλ| dσ

≤ cδε
rN−1ε

εN
‖wλ‖L2(∂S)|∂S|

1/2‖h‖L2(∂S).

Since we have shown that

lim
ε→0
δε
rN−1ε

εN
= 0,

from (9) one deduces that

δε
∫
∂Sε

hεφw
ε
λ dσ → 0.

Finally, by passing to the limit as ε → 0 in (26), and using (32) and (34) one
obtains ∫

Ω

λxξ∇φdx −

∫
Ω

A0λ∇φu dx = 0,

hence, from (25) it follows that∫
Ω

ξλφ dx =

∫
Ω

A0λ∇uφdx∀φ ∈ D(Ω), ∀λ ∈ RN ,

i.e., ξ = A0∇u.

Case where (10) is satisfied. Let φ ∈ D(Ω). Then from the variational
formulation of (6), ∫

Ω

χΩεξ
ε.∇φdx = δε

∫
∂Sε

hεφdσ. (35)

The arguments used the proof of (24) can be applied here to obtain∫
Ω

χΩεξ
ε.∇φdx→

∫
Ω

ξ.∇φdx .

To pass to the limit in the right-hand side of (35), we introduce N as the
solution to

− divN = 0 in S,

N.n = −h on ∂S .
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The existence ofN is assured by the hypothesis Ih = 0. SetNε(x) = N(
x− εk

rε
),

for x in (εY \ rεS)k. Then∫
∂Sε

hεφdσ =

∫
Sε

∇φ.Nε dx,

hence

δε|

∫
∂Sε

hεφdσ| ≤ δ
ε‖∇φ‖L2(Sε)‖Nε‖L2(Sε).

Note that ‖Nε‖L2(Sε) ≤ c(
rε
ε
)N/2‖N‖L2(S), so

δε|

∫
∂Sε

hεφdσ| ≤ cδ
ε(
rε

ε
)N/2‖∇φ‖L1(Sε). (36)

Since

δε(
rε

ε
)N/2 =

{
1 if N > 2

(ln(ε/rε))
−1/2 if N = 2,

it follows from (36), when N = 2, that

lim
ε→0
δε|

∫
∂Sε

hεφdσ| = 0 .

For N > 2, one has

δε|

∫
∂Sε

hεφdσ| ≤ c‖∇φ‖L2(Sε).

Since χΩε → 1 strongly in L
p(Ω), for all p ∈ [1,∞[ and φ ∈ D(Ω), one deduces

that ∫
Ω

(1− χε)|∇φ|
2 dx→ 0 .

Hence, by passing to the limit as ε→ 0 in (35), one obtains∫
Ω

ξ.∇φdx = 0 ,

then − div ξ = 0 in Ω.
Let wελ be the function defined by (16)-(17) and φ ∈ D(Ω). As in the previous

case, by using φwελ as a test function in the variational formulation of (6), one
has ∫

Ωε

ξε.∇(φwελ) dx = δ
ε

∫
∂Sε

hεφw
ε
λ dσ .

From (27), (29) and (34), one has∫
Ωε

ξε.∇(φwελ) dx→

∫
Ω

λx.∇φdx −

∫
Ω

A0λ.∇φu dx. (37)
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Now we show that

δε|

∫
∂Sε

hεφw
ε
λ dσ| → 0. (38)

One has

δε|

∫
∂Sε

hεφw
ε
λ dσ|

= δε|

∫
Sε

∇(φwελ).Nε dx|

≤ δε|

∫
Sε

∇φ.wελ.Nε dσ|+ δ
ε|

∫
Sε

φ.∇wελ.Nε dσ|

≤ δε‖Nε‖L2(Sε)‖∇φw
ε
λ‖L2(Sε) + δ

ε‖Nε‖L2(Sε)‖φ∇w
ε
λ‖L2(Sε)

≤ cδε(
rε

ε
)N/2

{
‖∇φwελ‖L2(Sε) + ‖φ∇w

ε
λ‖L2(Sε)

}
≤ cδε(

rε

ε
)N/2

{
‖∇φ‖L∞(Ω)‖w

ε
λ‖L2(Sε) + ‖φ‖L∞(Ω)‖∇w

ε
λ‖L2(Sε)

}
.

≤ cδε(
rε

ε
)N/2

{
‖wελ‖L2(Sε) + ‖∇w

ε
λ‖L2(Sε)

}
.

Note that

‖∇wελ‖
2
L2(Sε)

=

∫
Sε

|∇wελ|
2 dx =

∑
k∈K

∫
rε(S+k)

|∇wελ|
2 dx

≤ N(ε)εN
∫
rε
ε S

|∇wλ|
2 dx ≤ c

∫
r−ε
ε S

|∇wλ|
2 dx .

Since wλ ∈ H1(S) and rε/ε→ 0,

lim
ε→0

∫
rε
ε S

|∇wλ|
2 dx = 0 .

Hence ‖∇wελ‖L2(Sε) → 0. On the other hand, one has ‖w
ε
λ‖L2(Sε) ≤ c. Finally,

as

lim
ε→0
δε(
rε

ε
)N/2 = 0 ,

one deduces (38). This and (37) completes the proof, using the same arguments
as in the previous case.
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