ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2000**(2000), No. 18, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.unt.edu (login: ftp)

# Minimax principles for critical-point theory in applications to quasilinear boundary-value problems \*

A. R. El Amrouss & M. Moussaoui

#### Abstract

Using the variational method developed in [7], we establish the existence of solutions to the equation  $-\Delta_p u = f(x, u)$  with Dirichlet boundary conditions. Here  $\Delta_p$  denotes the p-Laplacian and  $\int_0^s f(x, t) dt$  is assumed to lie between the first two eigenvalues of the p-Laplacian.

#### 1 Introduction

Consider the Dirichlet problem for the p-Laplacian (p > 1),

$$-\Delta_p u = f(x, u) \quad \text{in } \Omega \tag{1}$$
$$u = 0 \quad \text{on } \partial\Omega \,,$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^N$  with smooth boundary  $\partial\Omega$ . We assume that  $f: \Omega \times \mathbb{R} \to \mathbb{R}$  is a Carathéodory function with subcritical growth; that is,

$$|f(x,s)| \le A|s|^{q-1} + B, \quad \forall s \in \mathbb{R}, \text{ a.e. } x \in \Omega,$$
(F<sub>0</sub>)

and some positive constants A, B, where  $1 \leq q < \frac{Np}{N-p}$  if  $N \geq p+1$ , and  $1 \leq q < \infty$  if  $1 \leq N < p$ . It is well known that weak solutions  $u \in W_0^{1,p}(\Omega)$  of (1) are the critical points of the  $C^1$  functional

$$\Phi(u) = \frac{1}{p} \int |\nabla u|^p \, dx - \int F(x, u) \, dx \,,$$

where  $F(x,s) = \int_0^s f(x,t) dt$ .

We are interested in the situation where  $\Phi$  is strongly indefinite in the sense that it is neither bounded from above or from below. Let  $\lambda_1$  and  $\lambda_2$  be the first and the second eigenvalues of  $-\Delta_p$  on  $W_0^{1p}(\Omega)$ . It is known that  $\lambda_1 > 0$  is a simple eigenvalue, and that  $\sigma(-\Delta_p) \cap ]\lambda_1, \lambda_2 [= \emptyset$ , where  $\sigma(-\Delta_p)$  is the spectrum of  $-\Delta_p$ , (cf. [1]).

<sup>\*</sup> Mathematics Subject Classifications: 49J35, 35J65, 35B34.

Key words and phrases: Minimax methods, p-Laplacian, resonance.

<sup>©2000</sup> Southwest Texas State University and University of North Texas.

Submitted September 9, 1999. Published March 8, 2000.

We shall assume the following conditions

$$\lim_{|s|\to\infty} [f(x,s)s - pF(x,s)] = \pm\infty \quad \text{uniformly for a.e. } x \in \Omega, \qquad (F_1^{\pm})$$

$$\limsup_{s \to \infty} \frac{pF(x,s)}{|s|^p} < \lambda_2 , \qquad (F_2)$$

and

$$\left[\int F(x,t\varphi_1)\,dx - \frac{1}{p}|t|^p\right] \to \infty, \quad \text{as } |t| \to \infty, \quad (F_3)$$

where  $\varphi_1$  is the normalized  $\lambda_1$ - eigenfunction. We note that  $\varphi_1$  does not change sign in  $\Omega$ .

Now, we are ready to state our main result.

**Theorem 1.1** Assume  $(F_0), (F_1^+), (F_2)$  and  $(F_3)$ . Then (1) has a weak solution in  $W_0^{1,p}(\Omega)$ .

Similarly, we have

**Theorem 1.2** Assume  $(F_0), (F_1^-), (F_2)$  and  $(F_3)$ . Then (1) has a weak solution in  $W_0^{1,p}(\Omega)$ .

As an immediate consequence, we obtain the following corollary.

**Corollary 1.1** If F satisfies  $(F_0), (F_1^-)$ , and

$$\lambda_1 \le \liminf_{s \to \infty} \frac{pF(x,s)}{|s|^p} \le \limsup_{s \to \infty} \frac{pF(x,s)}{|s|^p} < \lambda_2, \tag{F'_3}$$

then (1) has a solution.

The nonlinear case  $(p \neq 2)$  when the nonlinearity  $pF(x, s)/|s|^p$  stays asymptotically between  $\lambda_1$  and  $\lambda_2$  has been studied by just a few authors. A contribution in this direction is [8], where the authors use a topological method to study the case N = 1. Another contribution was made by D. G. Costa and C.A.-Magalhães [5] who studied the case when  $pF(x, s)/|s|^p$  interacts asymptotically with the first eigenvalue  $\lambda_1$ .

We point out, that the variational method used in the linear case (p = 2) can not be extended to the nonlinear case. To overcome this difficulty, we introduce the idea of linking and proving an abstract min-max theorem.

## 2 Preliminaries. An abstract theorem

In this section we prove a critical-point theorem for the real functional  $\Phi$  on a real Banach space X. Let  $X^*$  denote the dual of X, and  $\|.\|$  denote the norm in X and in  $X^*$ . For  $\Phi$  a continuously Fréchet differentiable map from X to  $\mathbb{R}$ , let  $\Phi'(u)$  denote its Fréchet derivative. For  $\Phi \in C^1(X, \mathbb{R})$  and  $c \in \mathbb{R}$ , let

$$K_c = \{x \in E : \Phi(x) = c, \Phi'(x) = 0\}, \ \Phi^c = \{x \in X : \Phi(u) \ge c\}.$$

Thus  $K_c$  is the set of critical points of  $\Phi$ , and  $\Phi$  has value c.

**Definition** Given  $c \in \mathbb{R}$ , we shall say that  $\Phi \in C^1(X, \mathbb{R})$  satisfies the condition  $(C_c)$ , if

- i) any bounded sequence  $(u_n) \subset E$  such that  $\Phi(u_n) \to c$  and  $\Phi'(u_n) \to 0$  possesses a convergent subsequence;
- ii) there exist constants  $\delta, R, \alpha > 0$  such that

 $\|\Phi'(u)\|\|u\| \ge \alpha$  for any  $u \in \Phi^{-1}([c-\delta, c+\delta])$  with  $\|u\| \ge R$ .

**Definition** If  $\Phi \in C^1(X, \mathbb{R})$  satisfies the condition  $(C_c)$  for every  $c \in \mathbb{R}$ , we say that  $\Phi$  satisfies (C).

This condition was introduced by Cerami [3], and recently was generalized by the first author in [7]. It was shown in [2] that condition (C) suffices to get a deformation lemma.

**Lemma 2.1 (Deformation Lemma)** Let X be a real Banach space and let  $\Phi \in C^1(X, \mathbb{R})$  satisfy  $(C_c)$ . Then there exists  $\overline{\varepsilon} > 0$ ,  $\varepsilon \in ]0, \overline{\varepsilon}[$  and an homeomorphism  $\eta : X \to X$  such that:

- 1.  $\eta(x) = x$  if  $x \notin \Phi^{-1}[c \overline{\varepsilon}, c + \overline{\varepsilon}];$
- 2. If  $K_c = \emptyset$ ,  $\eta(\Phi^{c-\varepsilon}) \subset \Phi^{c+\varepsilon}$ .

Now, we define the class of closed symmetric subsets of X as

$$\Sigma = \{A \subset X : Aclosed, A = -A\}.$$

**Definition** For a non-empty set A in  $\Sigma$ , following Coffman [4], we define the Krasnoselskii genus as

$$\gamma(A) = \begin{cases} \inf\{m : \exists h \in C(A, \mathbb{R}^m \setminus \{0\}); h(-x) = -h(x)\} \\ \infty \quad \text{if } \{\ldots\} \text{ is empty, in particular if } 0 \text{ is in } A. \end{cases}$$

For A empty we define  $\gamma(A) = 0$ .

Next we state the existence of critical points for a class of perturbations of p-homogeneous real valued  $C^1$  functionals defined on a real Banach space.

**Theorem 2.1** Let  $\Phi$  be a  $C^1$  functional on X satisfying condition (C), and let Q be a closed connected subset such that  $\partial Q \cap (-\partial Q) \neq \emptyset$ . Assume that

- i)  $\forall K \in A_2 \text{ there exists } v_K \in K \text{ and there exists } \beta \in \mathbb{R} \text{ such that } \Phi(v_K) \geq \beta$ and  $\Phi(-v_K) \geq \beta$
- ii)  $a = \sup_{\partial Q} \Phi < \beta$ .
- iii)  $\sup_{O} \Phi(x) < \infty$ .

Then  $\Phi$  has a critical value  $c \geq \beta$ .

For the proof of this theorem, we will use lemma 1.1 and the following lemma.

Lemma 2.2 Under the hypothesis of Theorem 2.1, we have

$$h(Q) \cap \Phi^{\delta} \neq \emptyset; \quad \forall \delta, \delta < \beta, \forall h \in \Gamma,$$
 (H<sub>1</sub>),

where  $\Gamma = \{h \in C(X, X) : h(x) = x \text{ in } \partial Q\}.$ 

**Proof** : First we claim that If A is nonempty connected symmetric then  $\gamma(A) > 1$ .

Indeed, if  $\gamma(A) = 1$ , then there exists a map h continuous and even such that  $h(A) \subset \mathbb{R} \setminus \{0\}$ . Since h is even continuous, h(A) is a symmetric interval. Therefore,  $0 \in h(A)$  which is a contradiction and the claim is proved.

Let  $h \in \Gamma$  and put  $K = \overline{h(Q) \cup -h(Q)}$ . Clearly we have

$$\partial Q \cap -\partial Q \subset h(Q) \cap -h(Q).$$

Therefore, K is a closed, connected, symmetric subset, and by the claim above  $\gamma(K) \geq 2$ .

On the other hand, by i) of Theorem 2.1 there exists  $v_K \in K$  such that

$$\Phi(v_K) \ge \beta$$
 and  $\Phi(-v_K) \ge \beta$ .

Let  $\delta < \beta$ , then there exists  $v_1 \in h(Q) \cup -h(Q)$  such that

$$\Phi(v_1) \ge \delta$$
 and  $\Phi(-v_1) \ge \delta$ .

Indeed, if this is not the case, then for every  $v \in h(Q) \cup -h(Q)$  we have  $\Phi(v) < \delta$ or  $\Phi(-v) < \delta$ . Then, since  $\Phi$  is continuous, for every  $v \in K \Phi(v) \le \delta$  or  $\Phi(-v) \le \delta$ . Which is a contradiction. Moreover,  $h(Q) \cap \Phi^{\delta} \neq \emptyset$ , and the conclusion easily follows.  $\diamondsuit$ 

**Proof of Theorem 2.1.** Suppose that  $c = \inf_{h \in \Gamma} \sup_{x \in Q} \Phi(h(x))$  is not a critical value (i.e.  $K_c = \emptyset$ ). Let  $\overline{\varepsilon} < \beta - a$ , then by lemma 2.1 there exists  $\eta : X \to X$  an homeomorphism such that

$$\eta(x) = x \quad \text{if } x \notin \Phi^{-1}[c - \bar{\varepsilon}, c + \bar{\varepsilon}[, \text{ with } \bar{\varepsilon} < \gamma - a; \\ \eta(\Phi^{c-\varepsilon}) \subset \Phi^{c+\varepsilon} \,.$$

$$(2)$$

By  $(H_1)$  there exists a sequence  $(x_n)_n \subset Q$  such that

$$\gamma \leq \sup_{n} \Phi(h(x_n)), \quad \forall h \in \Gamma.$$

This implies  $\beta \leq c$ . Then by **iii**) we have  $\beta \leq c < \infty$ .

On the other hand, since  $\bar{\varepsilon} < \beta - a$  and  $\beta \leq c$ , it results from *ii*) that

$$\Phi(x) < c - \bar{\varepsilon}, \quad \forall x \in \partial Q \,.$$

This leads to

$$\eta(x) = x \quad \text{for } x \text{ in } \partial Q. \tag{3}$$

Hence, we have  $\eta^{-1} \circ h \in \Gamma$ , and by the definition of c there exists  $\tilde{x} \in Q$  such that

$$\Phi\left(\eta^{-1}\circ h(\tilde{x})\right)\geq c-\varepsilon$$
.

Hence, by (2) we obtain

$$c + \varepsilon \le \Phi\left(\eta\left[\eta^{-1} \circ h(\tilde{x})\right]\right) = \Phi(h(\tilde{x})).$$

Therefore, we get the contradiction

$$c + \varepsilon \leq \inf_{h \in \Gamma} \sup_{x \in Q} \Phi(h(x)) = c.$$

Which completes the present proof.

#### Proof of Theorem 1.1 3

In this section we shall use Theorem 2.1 for proving Theorem 1.1. The Sobolev space  $W_0^{1,p}(\Omega)$  will be the Banach space X, endowed with the norm ||u|| = $(\int_{\Omega} |\nabla u|^p dx)^{\frac{1}{p}}$  and the  $C^1$  functional  $\Phi$  will be

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \int_{\Omega} F(x, u) \, dx \, .$$

To apply Theorem 2.1, we shall do separate studies of the "compactness" of  $\Phi$ and its "geometry". First, we prove that  $\Phi$  satisfies the condition (C).

**Lemma 3.1** Assume F satisfies  $(F_0), (F_2)$  and  $(F_1^+)$ . Then for every  $c \in \mathbb{R}$ ,  $\Phi$  satisfies the condition  $(C_c)$  on  $W_0^{1,p}(\Omega)$ .

**Proof:** We first verify the condition  $(C_c)(i)$ . Let  $(u_n)_n \subset W_0^{1,p}(\Omega)$ , be bounded and such that  $\Phi'(u_n) \to 0$  in  $W^{-1,p'}(\Omega)$ . We have

$$-\Delta_p u_n - f(x, u_n) \to 0$$
 in  $W^{-1, p'}(\Omega)$ .

And as  $-\Delta_p$  is an homeomorphism from  $W_0^{1,p}(\Omega)$  to  $W^{-1,p'}(\Omega)$  (cf [9]), we have

$$u_n - (-\Delta)_p^{-1}[f(x, u_n)] \to 0 \quad \text{in } W_0^{1, p}(\Omega).$$
 (4)

Since  $(u_n)$  is bounded, there is a subsequence  $(u'_n)$  weakly converging to some  $u_0 \in W_0^{1,p}(\Omega)$ . On the other hand, as the map  $u \mapsto f(x,u)$  is completely continuous from  $W_0^{1,p}(\Omega)$  to  $W^{-1,p'}(\Omega)$  then

$$(-\Delta_p)^{-1}[f(x,u'_n)] \to (-\Delta_p)^{-1}[f(x,u_0)] \text{ in } W^{1,p}_0(\Omega).$$
 (5)

By (4), (5) we deduce that  $(u'_n)$  converges in  $W_0^{1,p}(\Omega)$ . Let us now prove that the condition  $(C_c)(ii)$  is satisfied for every  $c \in \mathbb{R}$ . Assume that F satisfies  $(F_0), (F_2), (F_1^+)$  and again, by contradiction, let  $c \in \mathbb{R}$ and  $(u_n)_n \subset W_0^{1,p}(\Omega)$  such that:

$$\Phi(u_n) \to c \tag{6}$$

$$||u_n|| |\langle \Phi'(u_n), v \rangle| \le \varepsilon_n ||v|| \quad \forall v \in W_0^{1,p}(\Omega)$$
(7)

$$|u_n\| o \infty, \varepsilon_n = \|u_n\| \|\Phi'(u_n)\| o 0, \quad \text{as } n \to \infty,$$

 $\diamond$ 

where  $\langle .,. \rangle$  is the duality pairing between  $W_0^{1,p}(\Omega)$  and  $W^{-1,p'}(\Omega)$ . It follows that

$$\lim_{n \to \infty} |\langle \Phi'(u_n), u_n \rangle - p \Phi(u_n)| = pc.$$

More precisely, we have

$$\lim_{n \to \infty} \int_{\Omega} \left[ f(x, u_n) u_n(x) - pF(x, u_n) \right] \, dx = pc \,. \tag{8}$$

Put  $z_n = u_n/||u_n||$ , we have  $||z_n|| = 1$  and, passing if necessary to a subsequence, we may assume that:  $z_n \rightharpoonup z$  weakly in  $W_0^{1,p}(\Omega)$ ,  $z_n \rightarrow z$  strongly in  $L^p(\Omega)$  and  $z_n(x) \rightarrow z(x)$  a.e. in  $\Omega$ .

On the other hand, note that  $\limsup_{s\to\infty} \frac{pF(x,s)}{|s|^p} < \lambda_2$  and  $(F_0)$  implies

$$F(x,s) \le \frac{\lambda_2}{p} |s|^p + b(x), \quad \forall s \in \mathbb{R}, b \in L^p(\Omega).$$
(9)

Therefore, passing to the limit in the equality

$$\frac{1}{\|u_n\|^p}\Phi(u_n) = \frac{1}{p} - \frac{1}{\|u_n\|^p} \int F(x, u_n) \, dx$$

and, using (9), it results

$$\frac{1}{p}(1 - \lambda_2 \|z\|_{L^p}^p) \le 0$$

which shows that  $z \neq 0$ . Now, by  $(F_1^+)$  and  $(F_0)$  there exist M > 0, such that

$$f(x,s)s - pF(x,s) \ge -M + b_1(x), \forall s \in \mathbb{R}, \quad a.e.x \in \Omega;$$

hence,

$$\begin{split} \int_{\Omega} \left[ f(x, u_n) u_n(x) - pF(x, u_n) \right] \, dx &\geq \int_{\{x: z(x) \neq 0\}} f(x, u_n) u_n(x) - pF(x, u_n) \, dx \\ &- M |\{x \in \Omega : z(x) = 0\}| - \|b_1\|_{L^1}. \end{split}$$

An application of Fatou's lemma yields

$$\int_{\Omega} \left[ f(x, u_n) u_n(x) - pF(x, u_n) \right] \, dx \to \infty, \quad \text{as } n \to \infty,$$

which is a contradiction to (8). Thus the proof of lemma 3.1 is complete.  $\diamond$ 

Now, we will show that  $\Phi$  satisfies the geometric conditions i, ii, iii, iii) of Theorem 2.1.

**Lemma 3.2** Assume that F satisfies the hypothesis of Theorem 1.1. Then we have

- i)  $\Phi(v) \to -\infty$ , as  $||v|| \to \infty$  with  $v \in X_1$
- ii)  $\forall K \in A_2$ , there exists  $v_K \in K$ , and  $\beta \in \mathbb{R}$  such that  $\Phi(v_k) \geq \beta$  and  $\Phi(-v_K) \geq \beta$ .

**Proof:** i) Let  $X_1$  denote the eigenspace associated to the eigenvalue  $\lambda_1$ . Since dim  $X_1 = 1$ , we set  $X_1 = \{t\varphi_1 : t \in \mathbb{R}\}$ . Thus for every  $v \in X_1, v = t\varphi_1, t \in \mathbb{R}$ , we obtain

$$\Phi(v) = \frac{1}{p} \int |\nabla t\varphi_1|^p - \int F(x, t\varphi_1) dx$$
  
$$= \frac{1}{p} |t|^p \int |\nabla \varphi_1|^p - \int F(x, t\varphi_1) dx.$$

Since  $\int |\nabla \varphi_1|^p = 1$ , by  $(F_3)$ , we obtain

$$\Phi(v) = -\left[\int F(x, t\varphi_1) \, dx - \frac{1}{p} |t|^p\right] \to -\infty, \quad \text{as } |t| \to \infty.$$

ii) Let us recall that the Lusternik-Schnirelaman theory gives

$$\lambda_2 = \inf_{K \in A_2} \sup \left\{ \int |\nabla u|^p, \int |u|^p = 1, u \in K \right\}.$$

However, for every  $K \in A_2$  and  $\epsilon > 0$  there exists  $v_K \in K$  such that

$$(\lambda_2 - \epsilon) \int |v_K|^p \, dx \le \int |\nabla v_K|^p \, dx \,. \tag{10}$$

Indeed, we shall treat the following two possible cases: **Case 1.**  $0 \in K$ , (10) is proved by setting  $v_K = 0$ . **Case 2.**  $0 \notin K$ , we consider

$$\Pi: K \to \tilde{K}, v \mapsto \frac{v}{\|v\|_{L^p}}.$$

Note that  $\Pi$  is an odd map. By the genus properties we have  $\gamma(\Pi(K)) \geq 2$  and by the definition of  $\lambda_2$  there exists  $\tilde{v_K} \in \tilde{K}$  such that

$$\int |\tilde{v_K}|^p dx = 1$$
 and  $(\lambda_2 - \epsilon) \le \int |\nabla \tilde{v_K}|^p dx$ .

Thus (10) is satisfied by setting  $v_K = \Pi^{-1}(\tilde{v}_K)$ . On the other hand, we note that  $\limsup_{s\to\infty} \frac{pF(x,s)}{|s|^p} < \lambda_2$  and  $(F_0)$  implies

$$F(x,s) \le (\lambda_2 - 2\epsilon) \frac{|s|^p}{p} + D, \forall s \in \mathbb{R}$$
(11)

for some constant D > 0. Therefore, by using (10) and (11), we obtain the estimate

$$\Phi(v_K) \geq \frac{1}{p} \int |\nabla v_K|^p \, dx - \frac{(\lambda_2 - 2\epsilon)}{p} \int |v_K|^p \, dx - D|\Omega|$$
  
$$\geq \frac{1}{p} \left[ 1 - \frac{(\lambda_2 - 2\epsilon)}{(\lambda_2 - \epsilon)} \right] \int |\nabla v_K|^p \, dx - D|\Omega| \,.$$
(12)

The argument is similar for

$$\Phi(-v_K) \ge \frac{1}{p} \left[ 1 - \frac{(\lambda_2 - 2\epsilon)}{(\lambda_2 - \epsilon)} \right] \int |\nabla v_K|^p \, dx - D|\Omega| \,. \tag{13}$$

It is clear from (12) and (13) that for every  $K \in A_2$  we have

$$\Phi(\pm v_K) \ge -D|\Omega| = \beta.$$

Which completes the proof.

**Proof of theorem 1.1:** In view of Lemmas 3.1 and 3.2, we may apply Theorem 2.1 letting  $Q = B_R \cap X_1$ , where,  $B_R = \{u \in W_0^{1,p} : ||u|| \le R\}$  with R > 0 being such that  $\sup_{v \in \partial Q} \Phi(v) < \beta$ . It follows that the functional  $\Phi$  has a critical value  $c \ge \beta$  and, hence, the problem (1) has a weak solution  $u \in W_0^{1,p}(\Omega)$ , the theorem is proved.

**Proof of Corollary 1.1:** The proof of this corollary follows closely the arguments in [5]. It suffices to prove that  $(F_1^-)$  and  $(F_3')$  implies  $(F_3)$ . Let us suppose that  $g(x,s) = f(x,s) - \lambda_1 |s|^{p-1}s$  and  $G(x,s) = F(x,s) - \frac{1}{p}\lambda_1 |s|^p$ . Then, by  $(F_1^-)$ , for every M > 0 there exists  $s_M > 0$  such that

$$g(x,s)s - pG(x,s) \le -M, \forall |s| \ge s_M, \text{ a.e. } x \in \Omega.$$
(14)

Using (14) and integrating the relation

$$\frac{d}{ds}\left[\frac{G(x,s)}{|s|^p}\right] = \frac{g(x,s)s - pG(x,s)}{|s|^{p+1}}$$

over an interval  $[t,T] \subset [s_M,\infty[$  which was also explored in [6], we get

$$\frac{G(x,T)}{T^p} - \frac{G(x,t)}{t^p} \le -\frac{M}{p} \left[ \frac{1}{T^p} - \frac{1}{t^p} \right].$$

Therefore, since  $\liminf_{T\to\infty} \frac{G(x,T)}{T^p} \ge 0$  by  $(F'_3)$ , we obtain

$$G(x,t)\geq rac{M}{p}, orall t\geq s_M, ext{ a.e. } x\in \Omega$$

In the same way we show that  $G(x,t) \geq \frac{M}{p}$ , for every  $t \leq -s_M$ , and almost every  $x \in \Omega$ . By  $(F'_3)$  and M > 0 being arbitrary, we have  $(F_3)$  which completes the proof.  $\diamondsuit$ 

### References

 A. Anane & N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Pitman Research Notes 343(1996), 1–9.

 $\diamond$ 

- [2] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, *Nonlinear Analysis* 7(1983), 981–1012.
- [3] G. Cerami, Un criterio de esistenza per i punti critici su varietá ilimitate, *Rc.Ist.Lomb.Sci.Lett.*121(1978), 332–336.
- [4] C. V. Coffman, A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math. 22(1969), 391–419.
- [5] D. G. Costa & C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, *Nonlinear Analysis* 23(1994), 1401–1412.
- [6] D. G. Costa & C. A. Magalhães, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis 24(1995), 409–418.
- [7] A. R. El Amrouss, An abstract critical point theorem and applications to Hamiltonian systems, to appear.
- [8] A. R. El Amrouss & M. Moussaoui, Non-resonance entre les deux premières valeurs propres d'un problème quasi-linéaire, Bul. Bel. Math. Soc., 4(1997), 317-331.
- [9] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, *Dunod, Paris, Gauthier-Villars*, (1969).

A. R. EL AMROUSS & M. MOUSSAOUI University Mohamed I Faculty of sciences Department of Mathematics Oujda, Morocco e-mail: amrouss@sciences.univ-oujda.ac.ma e-mail: moussaoui@sciences.univ-oujda.ac.ma