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Minimax principles for critical-point theory in

applications to quasilinear boundary-value

problems ∗

A. R. El Amrouss & M. Moussaoui

Abstract

Using the variational method developed in [7], we establish the exis-
tence of solutions to the equation−∆pu = f(x, u) with Dirichlet boundary
conditions. Here ∆p denotes the p-Laplacian and

∫ s
0
f(x, t) dt is assumed

to lie between the first two eigenvalues of the p-Laplacian.

1 Introduction

Consider the Dirichlet problem for the p-Laplacian (p > 1),

−∆pu = f(x, u) in Ω (1)

u = 0 on ∂Ω ,

where Ω is a bounded domain in RN with smooth boundary ∂Ω. We assume
that f : Ω×R→ R is a Carathéodory function with subcritical growth; that is,

|f(x, s)| ≤ A|s|q−1 +B, ∀s ∈ R, a.e. x ∈ Ω, (F0)

and some positive constants A,B, where 1 ≤ q < Np
N−p if N ≥ p + 1, and

1 ≤ q < ∞ if 1 ≤ N < p. It is well known that weak solutions u ∈ W 1,p0 (Ω) of
(1) are the critical points of the C1 functional

Φ(u) =
1

p

∫
|∇u|p dx−

∫
F (x, u) dx ,

where F (x, s) =
∫ s
0
f(x, t) dt.

We are interested in the situation where Φ is strongly indefinite in the sense
that it is neither bounded from above or from below. Let λ1 and λ2 be the first
and the second eigenvalues of −∆p on W

1p
0 (Ω). It is known that λ1 > 0 is a

simple eigenvalue, and that σ(−∆p)∩]λ1, λ2[= ∅, where σ(−∆p) is the spectrum
of −∆p, (cf. [1]).
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2 Minimax principles for critical-point theory EJDE–2000/18

We shall assume the following conditions

lim
|s|→∞

[f(x, s)s− pF (x, s)] = ±∞ uniformly for a.e. x ∈ Ω , (F±1 )

lim sup
s→∞

pF (x, s)

|s|p
< λ2 , (F2)

and [∫
F (x, tϕ1) dx−

1

p
|t|p
]
→∞, as |t| → ∞ , (F3)

where ϕ1 is the normalized λ1- eigenfunction. We note that ϕ1 does not change
sign in Ω.
Now, we are ready to state our main result.

Theorem 1.1 Assume (F0), (F
+
1 ), (F2) and (F3). Then (1) has a weak solution

in W 1,p0 (Ω).

Similarly, we have

Theorem 1.2 Assume (F0), (F
−
1 ), (F2) and (F3). Then (1) has a weak solution

in W 1,p0 (Ω).

As an immediate consequence, we obtain the following corollary.

Corollary 1.1 If F satisfies (F0), (F
−
1 ), and

λ1 ≤ lim inf
s→∞

pF (x, s)

|s|p
≤ lim sup

s→∞

pF (x, s)

|s|p
< λ2, (F ′3)

then (1) has a solution.

The nonlinear case (p 6= 2) when the nonlinearity pF (x, s)/|s|p stays asymp-
totically between λ1 and λ2 has been studied by just a few authors. A contribu-
tion in this direction is [8], where the authors use a topological method to study
the case N = 1. Another contribution was made by D. G. Costa and C.A.-
Magalhães [5] who studied the case when pF (x, s)/|s|p interacts asymptotically
with the first eigenvalue λ1.
We point out, that the variational method used in the linear case (p = 2) can

not be extended to the nonlinear case. To overcome this difficulty, we introduce
the idea of linking and proving an abstract min-max theorem.

2 Preliminaries. An abstract theorem

In this section we prove a critical-point theorem for the real functional Φ on a
real Banach space X . Let X∗ denote the dual of X , and ‖.‖ denote the norm
in X and in X∗. For Φ a continuously Fréchet differentiable map from X to R,
let Φ′(u) denote its Fréchet derivative. For Φ ∈ C1(X,R) and c ∈ R, let

Kc = {x ∈ E : Φ(x) = c,Φ′(x) = 0},

Φc = {x ∈ X : Φ(u) ≥ c}.

Thus Kc is the set of critical points of Φ, and Φ has value c.
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Definition Given c ∈ R, we shall say that Φ ∈ C1(X,R) satisfies the condition
(Cc), if

i) any bounded sequence (un) ⊂ E such that Φ(un) → c and Φ′(un) → 0
possesses a convergent subsequence;

ii) there exist constants δ,R, α > 0 such that

‖Φ′(u)‖‖u‖ ≥ α for any u ∈ Φ−1([c− δ, c+ δ]) with ‖u‖ ≥ R.

Definition If Φ ∈ C1(X,R) satisfies the condition (Cc) for every c ∈ R, we
say that Φ satisfies (C).
This condition was introduced by Cerami [3], and recently was generalized

by the first author in [7]. It was shown in [2] that condition (C) suffices to get
a deformation lemma.

Lemma 2.1 (Deformation Lemma) Let X be a real Banach space and let
Φ ∈ C1(X,R) satisfy (Cc). Then there exists ε̄ > 0, ε ∈]0, ε̄[ and an homeomor-
phism η : X → X such that:

1. η(x) = x if x 6∈ Φ−1[c− ε̄, c+ ε̄[;

2. If Kc = ∅, η(Φc−ε) ⊂ Φc+ε.

Now, we define the class of closed symmetric subsets of X as

Σ = {A ⊂ X : Aclosed,A = −A} .

Definition For a non-empty set A in Σ, following Coffman [4], we define the
Krasnoselskii genus as

γ(A) =

{
inf{m : ∃h ∈ C(A,Rm \ {0});h(−x) = −h(x)}
∞ if {...} is empty, in particular if 0 is in A.

For A empty we define γ(A) = 0.
Next we state the existence of critical points for a class of perturbations of

p-homogeneous real valued C1 functionals defined on a real Banach space.

Theorem 2.1 Let Φ be a C1 functional on X satisfying condition (C), and let
Q be a closed connected subset such that ∂Q ∩ (−∂Q) 6= ∅. Assume that

i) ∀K ∈ A2 there exists vK ∈ K and there exists β ∈ R such that Φ(vK) ≥ β
and Φ(−vK) ≥ β

ii) a = sup∂QΦ < β.

iii) supQΦ(x) <∞.

Then Φ has a critical value c ≥ β.

For the proof of this theorem, we will use lemma 1.1 and the following lemma.

Lemma 2.2 Under the hypothesis of Theorem 2.1, we have

h(Q) ∩ Φδ 6= ∅; ∀δ, δ < β, ∀h ∈ Γ, (H1) ,

where Γ = {h ∈ C(X,X) : h(x) = x in ∂Q}.
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Proof : First we claim that If A is nonempty connected symmetric then
γ(A) > 1.
Indeed, if γ(A) = 1, then there exists a map h continuous and even such

that h(A) ⊂ R \ {0}. Since h is even continuous, h(A) is a symmetric interval.
Therefore, 0 ∈ h(A) which is a contradiction and the claim is proved.
Let h ∈ Γ and put K = h(Q) ∪ −h(Q). Clearly we have

∂Q ∩ −∂Q ⊂ h(Q) ∩−h(Q).

Therefore, K is a closed, connected, symmetric subset, and by the claim above
γ(K) ≥ 2.
On the other hand, by i) of Theorem 2.1 there exists vK ∈ K such that

Φ(vK) ≥ β and Φ(−vK) ≥ β .

Let δ < β, then there exists v1 ∈ h(Q) ∪−h(Q) such that

Φ(v1) ≥ δ and Φ(−v1) ≥ δ .

Indeed, if this is not the case, then for every v ∈ h(Q)∪−h(Q) we have Φ(v) < δ
or Φ(−v) < δ. Then, since Φ is continuous, for every v ∈ K Φ(v) ≤ δ or
Φ(−v) ≤ δ. Which is a contradiction. Moreover, h(Q) ∩ Φδ 6= ∅, and the
conclusion easily follows. ♦

Proof of Theorem 2.1. Suppose that c = infh∈Γ supx∈QΦ(h(x)) is not a
critical value (i.e. Kc = ∅). Let ε̄ < β − a, then by lemma 2.1 there exists
η : X → X an homeomorphism such that

η(x) = x if x 6∈ Φ−1[c− ε̄, c+ ε̄[, with ε̄ < γ − a;

η(Φc−ε) ⊂ Φc+ε . (2)

By (H1) there exists a sequence (xn)n ⊂ Q such that

γ ≤ sup
n
Φ(h(xn)), ∀h ∈ Γ .

This implies β ≤ c. Then by iii) we have β ≤ c <∞.
On the other hand, since ε̄ < β − a and β ≤ c, it results from ii) that

Φ(x) < c− ε̄, ∀x ∈ ∂Q .

This leads to

η(x) = x for x in ∂Q. (3)

Hence, we have η−1 ◦ h ∈ Γ, and by the definition of c there exists x̃ ∈ Q such
that

Φ
(
η−1 ◦ h(x̃)

)
≥ c− ε .
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Hence, by (2) we obtain

c+ ε ≤ Φ
(
η
[
η−1 ◦ h(x̃)

])
= Φ(h(x̃)).

Therefore, we get the contradiction

c+ ε ≤ inf
h∈Γ
sup
x∈Q
Φ(h(x)) = c .

Which completes the present proof. ♦

3 Proof of Theorem 1.1

In this section we shall use Theorem 2.1 for proving Theorem 1.1. The Sobolev
space W 1,p0 (Ω) will be the Banach space X , endowed with the norm ‖u‖ =

(
∫
Ω |∇u|

p dx)
1
p and the C1 functional Φ will be

Φ(u) =
1

p

∫
Ω

|∇u|p dx−

∫
Ω

F (x, u) dx .

To apply Theorem 2.1, we shall do separate studies of the “compactness” of Φ
and its “geometry”. First, we prove that Φ satisfies the condition (C).

Lemma 3.1 Assume F satisfies (F0), (F2) and (F
+
1 ). Then for every c ∈ R, Φ

satisfies the condition (Cc) on W
1,p
0 (Ω).

Proof: We first verify the condition (Cc)(i). Let (un)n ⊂W
1,p
0 (Ω), be bounded

and such that Φ′(un)→ 0 in W−1,p
′
(Ω). We have

−∆pun − f(x, un)→ 0 in W
−1,p′(Ω).

And as −∆p is an homeomorphism fromW
1,p
0 (Ω) toW

−1,p′(Ω) (cf [9]), we have

un − (−∆)
−1
p [f(x, un)]→ 0 in W

1,p
0 (Ω) . (4)

Since (un) is bounded, there is a subsequence (u
′
n) weakly converging to some

u0 ∈ W
1,p
0 (Ω). On the other hand, as the map u 7→ f(x, u) is completely

continuous from W 1,p0 (Ω) to W
−1,p′(Ω) then

(−∆p)
−1[f(x, u′n)]→ (−∆p)

−1[f(x, u0)] in W
1,p
0 (Ω). (5)

By (4), (5) we deduce that (u′n) converges in W
1,p
0 (Ω).

Let us now prove that the condition (Cc)(ii) is satisfied for every c ∈ R.
Assume that F satisfies (F0), (F2), (F

+
1 ) and again, by contradiction, let c ∈ R

and (un)n ⊂W
1,p
0 (Ω) such that:

Φ(un)→ c (6)

‖un‖|〈Φ′(un), v〉| ≤ εn‖v‖ ∀v ∈ W
1,p
0 (Ω) (7)

‖un‖ → ∞, εn = ‖un‖‖Φ′(un)‖ → 0, as n→∞,
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where 〈., .〉 is the duality pairing between W 1,p0 (Ω) and W
−1,p′(Ω). It follows

that
lim
n→∞

|〈Φ′(un), un〉 − pΦ(un)| = pc .

More precisely, we have

lim
n→∞

∫
Ω

[f(x, un)un(x)− pF (x, un)] dx = pc . (8)

Put zn = un/‖un‖, we have ‖zn‖ = 1 and, passing if necessary to a subsequence,
we may assume that: zn ⇀ z weakly in W

1,p
0 (Ω), zn → z strongly in L

p(Ω) and
zn(x)→ z(x) a.e. in Ω.

On the other hand, note that lim sups→∞
pF (x,s)
|s|p < λ2 and (F0) implies

F (x, s) ≤
λ2

p
|s|p + b(x), ∀s ∈ R, b ∈ Lp(Ω) . (9)

Therefore, passing to the limit in the equality

1

‖un‖p
Φ(un) =

1

p
−

1

‖un‖p

∫
F (x, un) dx

and, using (9), it results
1

p
(1− λ2‖z‖

p
Lp) ≤ 0

which shows that z 6≡ 0. Now, by (F+1 ) and (F0) there exist M > 0, such that

f(x, s)s− pF (x, s) ≥ −M + b1(x), ∀s ∈ R, a.e.x ∈ Ω ;

hence,∫
Ω

[f(x, un)un(x) − pF (x, un)] dx ≥

∫
{x:z(x) 6=0}

f(x, un)un(x) − pF (x, un) dx

−M |{x ∈ Ω : z(x) = 0}| − ‖b1‖L1 .

An application of Fatou’s lemma yields∫
Ω

[f(x, un)un(x) − pF (x, un)] dx→∞, as n→∞,

which is a contradiction to (8). Thus the proof of lemma 3.1 is complete. ♦

Now, we will show that Φ satisfies the geometric conditions i), ii), iii) of
Theorem 2.1.

Lemma 3.2 Assume that F satisfies the hypothesis of Theorem 1.1. Then we
have

i) Φ(v)→ −∞, as ‖v‖ → ∞ with v ∈ X1

ii) ∀K ∈ A2, there exists vK ∈ K, and β ∈ R such that Φ(vk) ≥ β and
Φ(−vK) ≥ β.
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Proof: i) Let X1 denote the eigenspace associated to the eigenvalue λ1. Since
dim X1 = 1, we set X1 = {tϕ1 : t ∈ R}. Thus for every v ∈ X1, v = tϕ1, t ∈ R,
we obtain

Φ(v) =
1

p

∫
|∇tϕ1|

p −

∫
F (x, tϕ1) dx

=
1

p
|t|p
∫
|∇ϕ1|

p −

∫
F (x, tϕ1) dx.

Since
∫
|∇ϕ1|p = 1, by (F3), we obtain

Φ(v) = −

[∫
F (x, tϕ1) dx−

1

p
|t|p
]
→ −∞, as |t| → ∞ .

ii) Let us recall that the Lusternik-Schnirelaman theory gives

λ2 = inf
K∈A2

sup

{∫
|∇u|p,

∫
|u|p = 1, u ∈ K

}
.

However, for every K ∈ A2 and ε > 0 there exists vK ∈ K such that

(λ2 − ε)

∫
|vK |

p dx ≤

∫
|∇vK |

p dx . (10)

Indeed, we shall treat the following two possible cases:
Case 1. 0 ∈ K, (10) is proved by setting vK = 0.
Case 2. 0 6∈ K, we consider

Π : K → K̃, v 7→
v

‖v‖Lp
.

Note that Π is an odd map. By the genus properties we have γ(Π(K)) ≥ 2 and
by the definition of λ2 there exists ṽK ∈ K̃ such that∫

|ṽK |
p dx = 1 and (λ2 − ε) ≤

∫
|∇ṽK |

p dx .

Thus (10) is satisfied by setting vK = Π
−1(ṽK).

On the other hand, we note that lim sups→∞
pF (x,s)
|s|p < λ2 and (F0) implies

F (x, s) ≤ (λ2 − 2ε)
|s|p

p
+D, ∀s ∈ R (11)

for some constant D > 0. Therefore, by using (10) and (11), we obtain the
estimate

Φ(vK) ≥
1

p

∫
|∇vK |

p dx−
(λ2 − 2ε)

p

∫
|vK |

p dx−D|Ω|

≥
1

p

[
1−
(λ2 − 2ε)

(λ2 − ε)

]∫
|∇vK |

p dx−D|Ω| . (12)



8 Minimax principles for critical-point theory EJDE–2000/18

The argument is similar for

Φ(−vK) ≥
1

p

[
1−
(λ2 − 2ε)

(λ2 − ε)

] ∫
|∇vK |

p dx−D|Ω| . (13)

It is clear from (12) and (13) that for every K ∈ A2 we have

Φ(±vK) ≥ −D|Ω| = β.

Which completes the proof. ♦

Proof of theorem 1.1: In view of Lemmas 3.1 and 3.2, we may apply The-
orem 2.1 letting Q = BR ∩X1, where, BR = {u ∈W

1,p
0 : ‖u‖ ≤ R} with R > 0

being such that supv∈∂QΦ(v) < β. It follows that the functional Φ has a critical

value c ≥ β and, hence, the problem (1) has a weak solution u ∈ W 1,p0 (Ω), the
theorem is proved.

Proof of Corollary 1.1: The proof of this corollary follows closely the argu-
ments in [5]. It suffices to prove that (F−1 ) and (F

′
3) implies (F3). Let us suppose

that g(x, s) = f(x, s) − λ1|s|p−1s and G(x, s) = F (x, s) −
1
p
λ1|s|p. Then, by

(F−1 ), for every M > 0 there exists sM > 0 such that

g(x, s)s− pG(x, s) ≤ −M, ∀|s| ≥ sM , a.e. x ∈ Ω . (14)

Using (14) and integrating the relation

d

ds

[
G(x, s)

|s|p

]
=
g(x, s)s− pG(x, s)

|s|p+1

over an interval [t, T ] ⊂ [sM ,∞[ which was also explored in [6], we get

G(x, T )

T p
−
G(x, t)

tp
≤ −
M

p

[
1

T p
−
1

tp

]
.

Therefore, since lim infT→∞
G(x,T )
Tp

≥ 0 by (F ′3), we obtain

G(x, t) ≥
M

p
, ∀t ≥ sM , a.e. x ∈ Ω

In the same way we show that G(x, t) ≥ M
p
, for every t ≤ −sM , and almost

every x ∈ Ω. By (F ′3) andM > 0 being arbitrary, we have (F3) which completes
the proof. ♦
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