Minimax principles for critical-point theory in applications to quasilinear boundary-value problems *

A. R. El Amrouss \& M. Moussaoui

Abstract

Using the variational method developed in [7], we establish the existence of solutions to the equation $-\Delta_{p} u=f(x, u)$ with Dirichlet boundary conditions. Here Δ_{p} denotes the p-Laplacian and $\int_{0}^{s} f(x, t) d t$ is assumed to lie between the first two eigenvalues of the p-Laplacian.

1 Introduction

Consider the Dirichlet problem for the p-Laplacian $(p>1)$,

$$
\begin{gather*}
-\Delta_{p} u=f(x, u) \quad \text { in } \Omega \tag{1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. We assume that $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with subcritical growth; that is,

$$
\begin{equation*}
|f(x, s)| \leq A|s|^{q-1}+B, \quad \forall s \in \mathbb{R}, \text { a.e. } x \in \Omega \tag{0}
\end{equation*}
$$

and some positive constants A, B, where $1 \leq q<\frac{N p}{N-p}$ if $N \geq p+1$, and $1 \leq q<\infty$ if $1 \leq N<p$. It is well known that weak solutions $u \in W_{0}^{1, p}(\Omega)$ of (1) are the critical points of the C^{1} functional

$$
\Phi(u)=\frac{1}{p} \int|\nabla u|^{p} d x-\int F(x, u) d x
$$

where $F(x, s)=\int_{0}^{s} f(x, t) d t$.
We are interested in the situation where Φ is strongly indefinite in the sense that it is neither bounded from above or from below. Let λ_{1} and λ_{2} be the first and the second eigenvalues of $-\Delta_{p}$ on $W_{0}^{1 p}(\Omega)$. It is known that $\lambda_{1}>0$ is a simple eigenvalue, and that $\left.\sigma\left(-\Delta_{p}\right) \cap\right] \lambda_{1}, \lambda_{2}\left[=\emptyset\right.$, where $\sigma\left(-\Delta_{p}\right)$ is the spectrum of $-\Delta_{p}$, (cf. [1]).

[^0]We shall assume the following conditions

$$
\begin{gather*}
\lim _{|s| \rightarrow \infty}[f(x, s) s-p F(x, s)]= \pm \infty \quad \text { uniformly for a.e. } x \in \Omega \\
\limsup _{s \rightarrow \infty} \frac{p F(x, s)}{|s|^{p}}<\lambda_{2} \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[\int F\left(x, t \varphi_{1}\right) d x-\frac{1}{p}|t|^{p}\right] \rightarrow \infty, \quad \text { as }|t| \rightarrow \infty \tag{3}
\end{equation*}
$$

where φ_{1} is the normalized λ_{1} - eigenfunction. We note that φ_{1} does not change sign in Ω.

Now, we are ready to state our main result.
Theorem 1.1 Assume $\left(F_{0}\right),\left(F_{1}^{+}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$. Then (1) has a weak solution in $W_{0}^{1, p}(\Omega)$.

Similarly, we have
Theorem 1.2 Assume $\left(F_{0}\right),\left(F_{1}^{-}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$. Then (1) has a weak solution in $W_{0}^{1, p}(\Omega)$.

As an immediate consequence, we obtain the following corollary.
Corollary 1.1 If F satisfies $\left(F_{0}\right),\left(F_{1}^{-}\right)$, and

$$
\begin{equation*}
\lambda_{1} \leq \liminf _{s \rightarrow \infty} \frac{p F(x, s)}{|s|^{p}} \leq \limsup _{s \rightarrow \infty} \frac{p F(x, s)}{|s|^{p}}<\lambda_{2} \tag{3}
\end{equation*}
$$

then (1) has a solution.
The nonlinear case $(p \neq 2)$ when the nonlinearity $p F(x, s) /|s|^{p}$ stays asymptotically between λ_{1} and λ_{2} has been studied by just a few authors. A contribution in this direction is [8], where the authors use a topological method to study the case $N=1$. Another contribution was made by D. G. Costa and C.A.Magalhães [5] who studied the case when $p F(x, s) /|s|^{p}$ interacts asymptotically with the first eigenvalue λ_{1}.

We point out, that the variational method used in the linear case $(p=2)$ can not be extended to the nonlinear case. To overcome this difficulty, we introduce the idea of linking and proving an abstract min-max theorem.

2 Preliminaries. An abstract theorem

In this section we prove a critical-point theorem for the real functional Φ on a real Banach space X. Let X^{*} denote the dual of X, and $\|$.$\| denote the norm$ in X and in X^{*}. For Φ a continuously Fréchet differentiable map from X to \mathbb{R}, let $\Phi^{\prime}(u)$ denote its Fréchet derivative. For $\Phi \in C^{1}(X, \mathbb{R})$ and $c \in \mathbb{R}$, let

$$
\begin{gathered}
K_{c}=\left\{x \in E: \Phi(x)=c, \Phi^{\prime}(x)=0\right\}, \\
\Phi^{c}=\{x \in X: \Phi(u) \geq c\} .
\end{gathered}
$$

Thus K_{c} is the set of critical points of Φ, and Φ has value c.

Definition Given $c \in \mathbb{R}$, we shall say that $\Phi \in C^{1}(X, \mathbb{R})$ satisfies the condition $\left(C_{c}\right)$, if
i) any bounded sequence $\left(u_{n}\right) \subset E$ such that $\Phi\left(u_{n}\right) \rightarrow c$ and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence;
ii) there exist constants $\delta, R, \alpha>0$ such that

$$
\left\|\Phi^{\prime}(u)\right\|\|u\| \geq \alpha \text { for any } u \in \Phi^{-1}([c-\delta, c+\delta]) \text { with }\|u\| \geq R
$$

Definition If $\Phi \in C^{1}(X, \mathbb{R})$ satisfies the condition $\left(C_{c}\right)$ for every $c \in \mathbb{R}$, we say that Φ satisfies (C).

This condition was introduced by Cerami [3], and recently was generalized by the first author in [7]. It was shown in [2] that condition (C) suffices to get a deformation lemma.

Lemma 2.1 (Deformation Lemma) Let X be a real Banach space and let $\Phi \in C^{1}(X, \mathbb{R})$ satisfy $\left(C_{c}\right)$. Then there exists $\left.\bar{\varepsilon}>0, \varepsilon \in\right] 0, \bar{\varepsilon}[$ and an homeomorphism $\eta: X \rightarrow X$ such that:

1. $\eta(x)=x$ if $x \notin \Phi^{-1}[c-\bar{\varepsilon}, c+\bar{\varepsilon}[$;
2. If $K_{c}=\emptyset, \eta\left(\Phi^{c-\varepsilon}\right) \subset \Phi^{c+\varepsilon}$.

Now, we define the class of closed symmetric subsets of X as

$$
\Sigma=\{A \subset X: \text { Aclosed, } A=-A\}
$$

Definition For a non-empty set A in Σ, following Coffman [4], we define the Krasnoselskii genus as

$$
\gamma(A)=\left\{\begin{array}{l}
\inf \left\{m: \exists h \in C\left(A, \mathbb{R}^{m} \backslash\{0\}\right) ; h(-x)=-h(x)\right\} \\
\infty \quad \text { if }\{\ldots\} \text { is empty, in particular if } 0 \text { is in } A .
\end{array}\right.
$$

For A empty we define $\gamma(A)=0$.
Next we state the existence of critical points for a class of perturbations of p-homogeneous real valued C^{1} functionals defined on a real Banach space.
Theorem 2.1 Let Φ be a C^{1} functional on X satisfying condition (C), and let Q be a closed connected subset such that $\partial Q \cap(-\partial Q) \neq \emptyset$. Assume that
i) $\forall K \in A_{2}$ there exists $v_{K} \in K$ and there exists $\beta \in \mathbb{R}$ such that $\Phi\left(v_{K}\right) \geq \beta$ and $\Phi\left(-v_{K}\right) \geq \beta$
ii) $a=\sup _{\partial Q} \Phi<\beta$.
iii) $\sup _{Q} \Phi(x)<\infty$.

Then Φ has a critical value $c \geq \beta$.
For the proof of this theorem, we will use lemma 1.1 and the following lemma.
Lemma 2.2 Under the hypothesis of Theorem 2.1, we have

$$
h(Q) \cap \Phi^{\delta} \neq \emptyset ; \quad \forall \delta, \delta<\beta, \forall h \in \Gamma
$$

where $\Gamma=\{h \in C(X, X): h(x)=x$ in $\partial Q\}$.

Proof : First we claim that If A is nonempty connected symmetric then $\gamma(A)>1$.

Indeed, if $\gamma(A)=1$, then there exists a map h continuous and even such that $h(A) \subset \mathbb{R} \backslash\{0\}$. Since h is even continuous, $h(A)$ is a symmetric interval. Therefore, $0 \in h(A)$ which is a contradiction and the claim is proved.

Let $h \in \Gamma$ and put $K=\overline{h(Q) \cup-h(Q)}$. Clearly we have

$$
\partial Q \cap-\partial Q \subset h(Q) \cap-h(Q)
$$

Therefore, K is a closed, connected, symmetric subset, and by the claim above $\gamma(K) \geq 2$.

On the other hand, by \mathbf{i}) of Theorem 2.1 there exists $v_{K} \in K$ such that

$$
\Phi\left(v_{K}\right) \geq \beta \quad \text { and } \quad \Phi\left(-v_{K}\right) \geq \beta
$$

Let $\delta<\beta$, then there exists $v_{1} \in h(Q) \cup-h(Q)$ such that

$$
\Phi\left(v_{1}\right) \geq \delta \quad \text { and } \quad \Phi\left(-v_{1}\right) \geq \delta
$$

Indeed, if this is not the case, then for every $v \in h(Q) \cup-h(Q)$ we have $\Phi(v)<\delta$ or $\Phi(-v)<\delta$. Then, since Φ is continuous, for every $v \in K \Phi(v) \leq \delta$ or $\Phi(-v) \leq \delta$. Which is a contradiction. Moreover, $h(Q) \cap \Phi^{\delta} \neq \emptyset$, and the conclusion easily follows.

Proof of Theorem 2.1. Suppose that $c=\inf _{h \in \Gamma} \sup _{x \in Q} \Phi(h(x))$ is not a critical value (i.e. $K_{c}=\emptyset$). Let $\bar{\varepsilon}<\beta-a$, then by lemma 2.1 there exists $\eta: X \rightarrow X$ an homeomorphism such that

$$
\begin{gather*}
\eta(x)=x \quad \text { if } x \notin \Phi^{-1}[c-\bar{\varepsilon}, c+\bar{\varepsilon}[, \text { with } \bar{\varepsilon}<\gamma-a \\
\eta\left(\Phi^{c-\varepsilon}\right) \subset \Phi^{c+\varepsilon} \tag{2}
\end{gather*}
$$

By $\left(H_{1}\right)$ there exists a sequence $\left(x_{n}\right)_{n} \subset Q$ such that

$$
\gamma \leq \sup _{n} \Phi\left(h\left(x_{n}\right)\right), \quad \forall h \in \Gamma
$$

This implies $\beta \leq c$. Then by iii) we have $\beta \leq c<\infty$.
On the other hand, since $\bar{\varepsilon}<\beta-a$ and $\beta \leq c$, it results from $i i$) that

$$
\Phi(x)<c-\bar{\varepsilon}, \quad \forall x \in \partial Q
$$

This leads to

$$
\begin{equation*}
\eta(x)=x \quad \text { for } x \text { in } \partial Q \tag{3}
\end{equation*}
$$

Hence, we have $\eta^{-1} \circ h \in \Gamma$, and by the definition of c there exists $\tilde{x} \in Q$ such that

$$
\Phi\left(\eta^{-1} \circ h(\tilde{x})\right) \geq c-\varepsilon
$$

Hence, by (2) we obtain

$$
c+\varepsilon \leq \Phi\left(\eta\left[\eta^{-1} \circ h(\tilde{x})\right]\right)=\Phi(h(\tilde{x}))
$$

Therefore, we get the contradiction

$$
c+\varepsilon \leq \inf _{h \in \Gamma} \sup _{x \in Q} \Phi(h(x))=c .
$$

Which completes the present proof.

3 Proof of Theorem 1.1

In this section we shall use Theorem 2.1 for proving Theorem 1.1. The Sobolev space $W_{0}^{1, p}(\Omega)$ will be the Banach space X, endowed with the norm $\|u\|=$ $\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}$ and the C^{1} functional Φ will be

$$
\Phi(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} F(x, u) d x .
$$

To apply Theorem 2.1, we shall do separate studies of the "compactness" of Φ and its "geometry". First, we prove that Φ satisfies the condition (C).

Lemma 3.1 Assume F satisfies $\left(F_{0}\right),\left(F_{2}\right)$ and $\left(F_{1}^{+}\right)$. Then for every $c \in \mathbb{R}, \Phi$ satisfies the condition $\left(C_{c}\right)$ on $W_{0}^{1, p}(\Omega)$.

Proof: We first verify the condition $\left(C_{c}\right)(i)$. Let $\left(u_{n}\right)_{n} \subset W_{0}^{1, p}(\Omega)$, be bounded and such that $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W^{-1, p^{\prime}}(\Omega)$. We have

$$
-\Delta_{p} u_{n}-f\left(x, u_{n}\right) \rightarrow 0 \quad \text { in } W^{-1, p^{\prime}}(\Omega)
$$

And as $-\Delta_{p}$ is an homeomorphism from $W_{0}^{1, p}(\Omega)$ to $W^{-1, p^{\prime}}(\Omega)(\operatorname{cf}[9])$, we have

$$
\begin{equation*}
u_{n}-(-\Delta)_{p}^{-1}\left[f\left(x, u_{n}\right)\right] \rightarrow 0 \quad \text { in } W_{0}^{1, p}(\Omega) \tag{4}
\end{equation*}
$$

Since $\left(u_{n}\right)$ is bounded, there is a subsequence $\left(u_{n}^{\prime}\right)$ weakly converging to some $u_{0} \in W_{0}^{1, p}(\Omega)$. On the other hand, as the map $u \mapsto f(x, u)$ is completely continuous from $W_{0}^{1, p}(\Omega)$ to $W^{-1, p^{\prime}}(\Omega)$ then

$$
\begin{equation*}
\left(-\Delta_{p}\right)^{-1}\left[f\left(x, u_{n}^{\prime}\right)\right] \rightarrow\left(-\Delta_{p}\right)^{-1}\left[f\left(x, u_{0}\right)\right] \quad \text { in } W_{0}^{1, p}(\Omega) \tag{5}
\end{equation*}
$$

By (4), (5) we deduce that $\left(u_{n}^{\prime}\right)$ converges in $W_{0}^{1, p}(\Omega)$.
Let us now prove that the condition $\left(C_{c}\right)(i i)$ is satisfied for every $c \in \mathbb{R}$. Assume that F satisfies $\left(F_{0}\right),\left(F_{2}\right),\left(F_{1}^{+}\right)$and again, by contradiction, let $c \in \mathbb{R}$ and $\left(u_{n}\right)_{n} \subset W_{0}^{1, p}(\Omega)$ such that:

$$
\begin{gather*}
\Phi\left(u_{n}\right) \rightarrow c \tag{6}\\
\left\|u_{n}\right\|\left|\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle\right| \leq \varepsilon_{n}\|v\| \quad \forall v \in W_{0}^{1, p}(\Omega) \tag{7}\\
\left\|u_{n}\right\| \rightarrow \infty, \varepsilon_{n}=\left\|u_{n}\right\|\left\|\Phi^{\prime}\left(u_{n}\right)\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty
\end{gather*}
$$

where $\langle.,$.$\rangle is the duality pairing between W_{0}^{1, p}(\Omega)$ and $W^{-1, p^{\prime}}(\Omega)$. It follows that

$$
\lim _{n \rightarrow \infty}\left|\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle-p \Phi\left(u_{n}\right)\right|=p c
$$

More precisely, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left[f\left(x, u_{n}\right) u_{n}(x)-p F\left(x, u_{n}\right)\right] d x=p c \tag{8}
\end{equation*}
$$

Put $z_{n}=u_{n} /\left\|u_{n}\right\|$, we have $\left\|z_{n}\right\|=1$ and, passing if necessary to a subsequence, we may assume that: $z_{n} \rightharpoonup z$ weakly in $W_{0}^{1, p}(\Omega), z_{n} \rightarrow z$ strongly in $L^{p}(\Omega)$ and $z_{n}(x) \rightarrow z(x)$ a.e. in Ω.

On the other hand, note that $\limsup _{s \rightarrow \infty} \frac{p F(x, s)}{|s|^{p}}<\lambda_{2}$ and $\left(F_{0}\right)$ implies

$$
\begin{equation*}
F(x, s) \leq \frac{\lambda_{2}}{p}|s|^{p}+b(x), \quad \forall s \in \mathbb{R}, b \in L^{p}(\Omega) \tag{9}
\end{equation*}
$$

Therefore, passing to the limit in the equality

$$
\frac{1}{\left\|u_{n}\right\|^{p}} \Phi\left(u_{n}\right)=\frac{1}{p}-\frac{1}{\left\|u_{n}\right\|^{p}} \int F\left(x, u_{n}\right) d x
$$

and, using (9), it results

$$
\frac{1}{p}\left(1-\lambda_{2}\|z\|_{L^{p}}^{p}\right) \leq 0
$$

which shows that $z \not \equiv 0$. Now, by $\left(F_{1}^{+}\right)$and $\left(F_{0}\right)$ there exist $M>0$, such that

$$
f(x, s) s-p F(x, s) \geq-M+b_{1}(x), \forall s \in \mathbb{R}, \quad \text { a.e. } x \in \Omega
$$

hence,

$$
\begin{aligned}
\int_{\Omega}\left[f\left(x, u_{n}\right) u_{n}(x)-p F\left(x, u_{n}\right)\right] d x \geq & \int_{\{x: z(x) \neq 0\}} f\left(x, u_{n}\right) u_{n}(x)-p F\left(x, u_{n}\right) d x \\
& -M|\{x \in \Omega: z(x)=0\}|-\left\|b_{1}\right\|_{L^{1}} .
\end{aligned}
$$

An application of Fatou's lemma yields

$$
\int_{\Omega}\left[f\left(x, u_{n}\right) u_{n}(x)-p F\left(x, u_{n}\right)\right] d x \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

which is a contradiction to (8). Thus the proof of lemma 3.1 is complete.
Now, we will show that Φ satisfies the geometric conditions i), $i i$), $i i i$) of Theorem 2.1.

Lemma 3.2 Assume that F satisfies the hypothesis of Theorem 1.1. Then we have
i) $\Phi(v) \rightarrow-\infty$, as $\|v\| \rightarrow \infty$ with $v \in X_{1}$
ii) $\forall K \in A_{2}$, there exists $v_{K} \in K$, and $\beta \in \mathbb{R}$ such that $\Phi\left(v_{k}\right) \geq \beta$ and $\Phi\left(-v_{K}\right) \geq \beta$.

Proof: i) Let X_{1} denote the eigenspace associated to the eigenvalue λ_{1}. Since $\operatorname{dim} X_{1}=1$, we set $X_{1}=\left\{t \varphi_{1}: t \in \mathbb{R}\right\}$. Thus for every $v \in X_{1}, v=t \varphi_{1}, t \in \mathbb{R}$, we obtain

$$
\begin{aligned}
\Phi(v) & =\frac{1}{p} \int\left|\nabla t \varphi_{1}\right|^{p}-\int F\left(x, t \varphi_{1}\right) d x \\
& =\frac{1}{p}|t|^{p} \int\left|\nabla \varphi_{1}\right|^{p}-\int F\left(x, t \varphi_{1}\right) d x
\end{aligned}
$$

Since $\int\left|\nabla \varphi_{1}\right|^{p}=1$, by $\left(F_{3}\right)$, we obtain

$$
\Phi(v)=-\left[\int F\left(x, t \varphi_{1}\right) d x-\frac{1}{p}|t|^{p}\right] \rightarrow-\infty, \quad \text { as }|t| \rightarrow \infty
$$

ii) Let us recall that the Lusternik-Schnirelaman theory gives

$$
\lambda_{2}=\inf _{K \in A_{2}} \sup \left\{\int|\nabla u|^{p}, \int|u|^{p}=1, u \in K\right\}
$$

However, for every $K \in A_{2}$ and $\epsilon>0$ there exists $v_{K} \in K$ such that

$$
\begin{equation*}
\left(\lambda_{2}-\epsilon\right) \int\left|v_{K}\right|^{p} d x \leq \int\left|\nabla v_{K}\right|^{p} d x \tag{10}
\end{equation*}
$$

Indeed, we shall treat the following two possible cases:
Case 1. $0 \in K,(10)$ is proved by setting $v_{K}=0$.
Case 2. $0 \notin K$, we consider

$$
\Pi: K \rightarrow \tilde{K}, v \mapsto \frac{v}{\|v\|_{L^{p}}}
$$

Note that Π is an odd map. By the genus properties we have $\gamma(\Pi(K)) \geq 2$ and by the definition of λ_{2} there exists $\tilde{v_{K}} \in \tilde{K}$ such that

$$
\int\left|\tilde{v_{K}}\right|^{p} d x=1 \quad \text { and } \quad\left(\lambda_{2}-\epsilon\right) \leq \int\left|\nabla \tilde{v_{K}}\right|^{p} d x
$$

Thus (10) is satisfied by setting $v_{K}=\Pi^{-1}\left(\tilde{v}_{K}\right)$.
On the other hand, we note that $\lim _{\sup _{s \rightarrow \infty}} \frac{p F(x, s)}{|s|^{p}}<\lambda_{2}$ and $\left(F_{0}\right)$ implies

$$
\begin{equation*}
F(x, s) \leq\left(\lambda_{2}-2 \epsilon\right) \frac{|s|^{p}}{p}+D, \forall s \in \mathbb{R} \tag{11}
\end{equation*}
$$

for some constant $D>0$. Therefore, by using (10) and (11), we obtain the estimate

$$
\begin{align*}
\Phi\left(v_{K}\right) & \geq \frac{1}{p} \int\left|\nabla v_{K}\right|^{p} d x-\frac{\left(\lambda_{2}-2 \epsilon\right)}{p} \int\left|v_{K}\right|^{p} d x-D|\Omega| \\
& \geq \frac{1}{p}\left[1-\frac{\left(\lambda_{2}-2 \epsilon\right)}{\left(\lambda_{2}-\epsilon\right)}\right] \int\left|\nabla v_{K}\right|^{p} d x-D|\Omega| \tag{12}
\end{align*}
$$

The argument is similar for

$$
\begin{equation*}
\Phi\left(-v_{K}\right) \geq \frac{1}{p}\left[1-\frac{\left(\lambda_{2}-2 \epsilon\right)}{\left(\lambda_{2}-\epsilon\right)}\right] \int\left|\nabla v_{K}\right|^{p} d x-D|\Omega| \tag{13}
\end{equation*}
$$

It is clear from (12) and (13) that for every $K \in A_{2}$ we have

$$
\Phi\left(\pm v_{K}\right) \geq-D|\Omega|=\beta
$$

Which completes the proof.

Proof of theorem 1.1: In view of Lemmas 3.1 and 3.2, we may apply Theorem 2.1 letting $Q=B_{R} \cap X_{1}$, where, $B_{R}=\left\{u \in W_{0}^{1, p}:\|u\| \leq R\right\}$ with $R>0$ being such that $\sup _{v \in \partial Q} \Phi(v)<\beta$. It follows that the functional Φ has a critical value $c \geq \beta$ and, hence, the problem (1) has a weak solution $u \in W_{0}^{1, p}(\Omega)$, the theorem is proved.

Proof of Corollary 1.1: The proof of this corollary follows closely the arguments in [5]. It suffices to prove that $\left(F_{1}^{-}\right)$and $\left(F_{3}^{\prime}\right)$ implies $\left(F_{3}\right)$. Let us suppose that $g(x, s)=f(x, s)-\lambda_{1}|s|^{p-1} s$ and $G(x, s)=F(x, s)-\frac{1}{p} \lambda_{1}|s|^{p}$. Then, by $\left(F_{1}^{-}\right)$, for every $M>0$ there exists $s_{M}>0$ such that

$$
\begin{equation*}
g(x, s) s-p G(x, s) \leq-M, \forall|s| \geq s_{M}, \text { a.e. } x \in \Omega \tag{14}
\end{equation*}
$$

Using (14) and integrating the relation

$$
\frac{d}{d s}\left[\frac{G(x, s)}{|s|^{p}}\right]=\frac{g(x, s) s-p G(x, s)}{|s|^{p+1}}
$$

over an interval $[t, T] \subset\left[s_{M}, \infty[\right.$ which was also explored in [6], we get

$$
\frac{G(x, T)}{T^{p}}-\frac{G(x, t)}{t^{p}} \leq-\frac{M}{p}\left[\frac{1}{T^{p}}-\frac{1}{t^{p}}\right]
$$

Therefore, since $\liminf _{T \rightarrow \infty} \frac{G(x, T)}{T^{p}} \geq 0$ by $\left(F_{3}^{\prime}\right)$, we obtain

$$
G(x, t) \geq \frac{M}{p}, \forall t \geq s_{M}, \text { a.e. } x \in \Omega
$$

In the same way we show that $G(x, t) \geq \frac{M}{p}$, for every $t \leq-s_{M}$, and almost every $x \in \Omega$. By $\left(F_{3}^{\prime}\right)$ and $M>0$ being arbitrary, we have $\left(F_{3}\right)$ which completes the proof.

References

[1] A. Anane \& N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Pitman Research Notes 343(1996), 1-9.
[2] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis 7(1983), 981-1012.
[3] G. Cerami, Un criterio de esistenza per i punti critici su varietá ilimitate, Rc.Ist.Lomb.Sci.Lett.121(1978), 332-336.
[4] C. V. Coffman, A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math. 22(1969), 391-419.
[5] D. G. Costa \& C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Analysis 23(1994), 1401-1412.
[6] D. G. Costa \& C. A. Magalhães, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis 24(1995), 409-418.
[7] A. R. El Amrouss, An abstract critical point theorem and applications to Hamiltonian systems, to appear.
[8] A. R. El Amrouss \& M. Moussaoui, Non-resonance entre les deux premières valeurs propres d'un problème quasi-linéaire, Bul. Bel. Math. Soc.,, 4(1997), 317-331.
[9] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod, Paris, Gauthier-Villars, (1969).
A. R. El Amrouss \& M. Moussaoui

University Mohamed I
Faculty of sciences
Department of Mathematics
Oujda, Morocco
e-mail: amrouss@sciences.univ-oujda.ac.ma
e-mail: moussaoui@sciences.univ-oujda.ac.ma

[^0]: *Mathematics Subject Classifications: 49J35, 35J65, 35B34.
 Key words and phrases: Minimax methods, p-Laplacian, resonance.
 (C) 2000 Southwest Texas State University and University of North Texas.

 Submitted September 9, 1999. Published March 8, 2000.

