Periodic and almost periodic solutions for multi-valued differential equations in Banach spaces *

E. Hanebaly \& B. Marzouki

Abstract

It is known that for ω-periodic differential equations of monotonous type, in uniformly convex Banach spaces, the existence of a bounded solution on \mathbb{R}^{+}is equivalent to the existence of an ω-periodic solution (see Haraux [5] and Hanebaly [7, 10]). It is also known that if the Banach space is strictly convex and the equation is almost periodic and of monotonous type, then the existence of a continuous solution with a precompact range is equivalent to the existence of an almost periodic solution (see Hanebaly [8]). In this note we want to generalize the results above for multi-valued differential equations.

1 Preliminaries

Let X and Y be Banach spaces, and 2^{Y} denote the collection of subsets of Y. For a multi-valued map $F: X \rightarrow 2^{Y}$ we define the following conditions:
F is upper semi-continuous (u.s.c.) in X if for every x_{0} in X and every open set $G \subset Y$ with $F x_{0} \subset G$ there exists a neighborhood U of x_{0} such that $F x_{0} \subset G$ for all $x \in U$. In practice F is u.s.c. at x_{0} means that $F x \subset$ $F x_{0}+B_{\varepsilon}(0)$ for all x sufficiently close to x_{0} and for ε sufficiently small.
F is bounding if it maps bounded subsets of X into bounded subsets of Y.
F is dissipative if $X=Y$ and

$$
\langle F x-F y, x-y\rangle_{-} \leq 0 \quad \forall x \in X, \forall y \in X
$$

This implies that for all $x_{1} \in F x$ and all $y_{1} \in F y$,

$$
\left\langle x_{1}-y_{1}, x-y\right\rangle_{-} \leq 0
$$

where the lower semi-inner product on X introduced by Lumer [11] is defined as

$$
\langle x, y\rangle_{-}=\|y\| \lim _{h \rightarrow 0^{-}} \frac{\|y+h x\|-\|y\|}{h}
$$

[^0]F is accretive if $\langle F x-F y, x-y\rangle_{+} \geq 0$ where the upper semi-inner product on X is defined as
$$
\langle x, y\rangle_{+}=\|y\| \lim _{h \rightarrow 0^{+}} \frac{\|y+h x\|-\|y\|}{h} .
$$

We denote by \rightharpoonup the convergence for the weak topology $\sigma\left(X, X^{*}\right)$. Recall that $x: J \subset \mathbb{R} \rightarrow X$ is said to be absolutely continuous (a.c. for short) if for each $\varepsilon>0$ there is $\delta>0$ such that $\sum\left\|x\left(t_{i}\right)-x\left(s_{i}\right)\right\| \leq \varepsilon$ whenever the finitely many intervals $\left[s_{i}, t_{i}\right] \subset J$ do not overlap and $\sum\left|t_{i}-s_{i}\right| \leq \delta$. In particular every Lipschitzean map is a.c. When X is of finite dimension it is known that x is a.c. if and only if x is differentiable almost everywhere (a.e. for short) and $x^{\prime} \in L^{1}(J, X)$, but if X is of infinite dimension and X is not reflexive, then an a.c. function need not be differentiable at any point (see e.g Deimling [6] p.138).

By a solution of the Cauchy problem

$$
\begin{equation*}
x^{\prime} \in F(t, x) ; \quad x\left(t_{0}\right)=x_{0} \tag{1}
\end{equation*}
$$

in some interval I (with $t_{0} \in I$), we mean a continuous function on I, a.c. in every compact subset of I, differentiable a.e., and that satisfies (1) a.e. on I.

The collection non-empty compact convex subsets of X will be denoted by $C V(X)$.

2 Boundedness and periodicity of solutions

We begin by giving a result concerning the existence of a global solutions. Let $(X,\|\cdot\|)$ be a real reflexive Banach space. Consider the multi-valued Cauchy problem

$$
\begin{gather*}
x^{\prime}(t) \in F(t, x(t)) \tag{2}\\
x(0)=x_{0}, \tag{3}
\end{gather*}
$$

where $F: \mathbb{R}^{+} \times X \rightarrow C V(X)$ is u.s.c. and bounding.

Theorem 1 If for all $(t, x, y) \in \mathbb{R}^{+} \times X \times X,\langle F(t, x)-F(t, y), x-y\rangle_{-} \leq 0$, then the Cauchy problem (2)-(3) has a unique solution defined on \mathbb{R}^{+}.

Remark. This theorem is well known for the inclusion of type

$$
x^{\prime} \in-A x+f(t)
$$

where A is a multi-valued maximal monotone operator on a Hilbert space and f is a uni-valued map (see Brezis [4]).

Proof of Theorem 1. Since F is u.s.c. with convex values, by the approximate selection theorem (see Cellina [1]) for each $n \geq 0$ there exists a locally lipschitzean map $f_{n}: \mathbb{R}^{+} \times X \rightarrow X$ such that

$$
f_{n}(t, x) \in F\left(\mathbb{R}^{+} \times X \cap B_{1 / n}(t, x)\right)+B_{\frac{1}{n}}(0) \quad \forall(t, x) \in \mathbb{R}^{+} \times X
$$

where $B_{1 / n}(t, x)$ is a ball in $\mathbb{R}^{+} \times X$ and $B_{1 / n}(0)$ is a ball in X. Since F is u.s.c. at (t, x), for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
F\left(\mathbb{R}^{+} \times X \cap B_{\delta}(t, x)\right) \subset F(t, x)+B_{\varepsilon}(0)
$$

Then for n large we can choose δ such that $B_{1 / n}(t, x) \subset B_{\delta}(t, x)$ and

$$
F\left(\mathbb{R}^{+} \times X \cap B_{1 / n}(t, x)\right) \subset F(t, x)+B_{\varepsilon}(0)
$$

Consequently, for $\varepsilon=1 / m$ with $m \geq n$ we obtain

$$
f_{n}(t, x) \in F(t, x)+B_{1 / n}(0)+B_{1 / n}(0) \subset F(t, x)+B_{2 / n}(0) .
$$

Now we show that for any $a>0$ the uni-valued Cauchy problem

$$
\begin{gather*}
x^{\prime}(t)=f_{n}(t, x(t)) \tag{4}\\
x(0)=x_{0} \tag{5}
\end{gather*}
$$

has a unique solution x_{n} on $[0, a]$ and the sequence x_{n} converges uniformly to the solution of the Cauchy problem (2)-(3).

Consider f_{n} from $[0, a] \times X$ to X, then f_{n} satisfies
i) f_{n} is continuous and locally lipschitzean with respect to x.
ii) $\left\langle f_{n}(t, x)-f_{n}(t, y), x-y\right\rangle_{-} \leq \frac{4}{n}\|x-y\|$.

For proving ii), we take $f_{n}(t, x) \in F(t, x)+B_{2 / n}(0)$ and $f_{n}(t, y) \in F(t, y)+$ $B_{2 / n}(0)$, so that $f_{n}(t, x)=a+\alpha_{n}$ and $f_{n}(t, y)=b+\beta_{n}$ with $a \in F(t, x), b \in$ $F(t, y)$ and $\alpha_{n}, \beta_{n} \in B_{2 / n}(0)$. Then

$$
\begin{aligned}
\left\langle f_{n}(t, x)-f_{n}(t, y), x-y\right\rangle_{-} & =\left\langle a+\alpha_{n}-b-\beta_{n}, x-y\right\rangle_{-} \\
& \leq\langle a-b, x-y\rangle_{-}+\left\langle\alpha_{n}-\beta_{n}, x-y\right\rangle_{+} \\
& \leq\left\langle\alpha_{n}-\beta_{n}, x-y\right\rangle_{-} \\
& \leq\left\|\alpha_{n}-\beta_{n}\right\|\|x-y\| \\
& \leq \frac{4}{n}\|x-y\| .
\end{aligned}
$$

It is well known that by i) the uni-valued Cauchy problem (4)-(5) has a unique local solution x_{n}, and that by ii) this solution can be extended on $[0, a]$. This statement is proven by the standard procedure of bounding the derivative of x_{n}.

Taking $y=0$ in ii), we obtain

$$
\left\langle f_{n}(t, x)-f_{n}(t, 0), x\right\rangle_{-} \leq \frac{4}{n}\|x\|
$$

Therefore,

$$
\begin{aligned}
\left\langle x_{n}^{\prime}(t), x_{n}(t)\right\rangle_{-} & =\left\langle f_{n}\left(t, x_{n}(t)\right)-f_{n}(t, 0)+f_{n}(t, 0), x_{n}(t)\right\rangle_{-} \\
& \leq\left\langle f_{n}\left(t, x_{n}(t)\right)-f_{n}(t, 0), x_{n}(t)\right\rangle_{-}+\left\langle f_{n}(t, 0), x_{n}(t)\right\rangle_{+} \\
& \leq \frac{4}{n}\left\|x_{n}(t)\right\|+\left\|f_{n}(t, 0)\right\|\left\|x_{n}(t)\right\| \\
& \leq\left(1+\sup _{t \in[0, a]}\left\|f_{n}(t, 0)\right\|\right)\left\|x_{n}(t)\right\| .
\end{aligned}
$$

We deduce that (see appendix II)

$$
D^{-}\left\|x_{n}(t)\right\| \leq 1+\sup _{t \in[0, a]}\left\|f_{n}(t, 0)\right\|=k_{n}
$$

with k_{n} a constant which does not depend on t. This follows because there is $t_{0}^{n} \in[0, a]$ such that

$$
\sup _{t \in[0, a]}\left\|f_{n}(t, 0)\right\|=\left\|f_{n}\left(t_{0}^{n}, 0\right)\right\|
$$

consequently, we have a sequence $x_{n} \in C([0, a], X)$ that satisfies

$$
\begin{equation*}
x_{n}^{\prime}(t) \in F\left(t, x_{n}(t)\right)+B_{2 / n}(0) . \tag{6}
\end{equation*}
$$

Next we show that x_{n} is a Cauchy sequence. Let $\Phi_{n, m}(t)=\left\|x_{n}(t)-x_{m}(t)\right\|$. Then $\Phi_{n, m}(0)=0$ and using the same technique as for proving ii) we deduce that

$$
\begin{aligned}
\Phi_{n, m}(t) D^{-} \Phi_{n, m}(t) & =\left\langle x_{n}^{\prime}(t)-x_{m}^{\prime}(t), x_{n}(t)-x_{m}(t)\right\rangle_{-} \\
& \leq\left(\frac{2}{n}+\frac{2}{m}\right) \Phi_{n, m}(t)
\end{aligned}
$$

Therefore, $\Phi_{n, m}(t) \leq\left(\frac{2}{n}+\frac{2}{m}\right) a$ and then

$$
\sup _{t \in[0, a]}\left\|x_{n}(t)-x_{m}(t)\right\| \rightarrow 0 \quad \text { as } n, m \rightarrow+\infty
$$

Let x be the limit of x_{n}. Then we have in particular $x(0)=x_{0}$, now we have to show that x is a.e. differentiable and satisfies

$$
x^{\prime}(t) \in F(t, x(t)) \quad \text { a.e. in }[0, a] .
$$

Since F is u.s.c. and $x_{n} \rightarrow x$ uniformly on $[0, a]$, we deduce that for n large,

$$
F\left(t, x_{n}(t)\right) \subset F(t, x(t))+B_{1}(0)
$$

Since F is bounding, by (6) we have $\left\|x_{n}^{\prime}(t)\right\| \leq c$ uniformly on $[0, a]$ for some $c>0$.

Put $J=[0, a]$, then we have $x_{n}^{\prime} \in L^{\infty}(J, X) \subset L^{2}(J, X)$. Since $L^{2}(J, X)$ is reflexive (because X is reflexive), there is a subsequence (which we denote by
the same symbol) such that $x_{n}^{\prime} \rightharpoonup y \in L^{2}(J, X)$ so

$$
\begin{aligned}
x_{n}(t) & =x_{0}+\int_{0}^{t} x_{n}^{\prime}(s) d s=x_{0}+\int_{J} \chi_{[0, t]}(s) x_{n}^{\prime}(s) d s \\
& \rightharpoonup x_{0}+\int_{J} \chi_{[0, t]}(s) y(s) d s=x_{0}+\int_{0}^{t} y(s) d s
\end{aligned}
$$

Since $x_{n}(t) \rightarrow x(t)$, it follows that $x_{n}(t) \rightharpoonup x(t)$. Consequently

$$
x(t)=x_{0}+\int_{0}^{t} y(s) d s \quad \text { and } \quad x^{\prime}(t)=y(t) \quad \text { a.e. in } J .
$$

We deduce that $x_{n}^{\prime} \rightharpoonup x^{\prime}$ in $L^{2}(J, X)$ for the weak topology $\sigma\left(L^{2}(J, X), L^{2}\left(J, X^{*}\right)\right)$. Let $\varepsilon>0$ and put

$$
A_{\varepsilon}=\left\{z \in L^{2}(J, X): z(t) \in F(t, x(t))+\bar{B}_{\varepsilon}(0) \text { a.e. }\right\}
$$

Then A_{ε} is nonempty (because $x_{n}(t) \rightarrow x(t)$ and F is u.s.c., so $x_{n}^{\prime} \in A_{\varepsilon}$ for n large), A_{ε} is closed and convex, hence A_{ε} is weakly closed. Since $x_{n}^{\prime} \in A_{\varepsilon}$ and $x_{n}^{\prime} \rightharpoonup x^{\prime}$ we deduce that

$$
x^{\prime}(t) \in \overline{F(t, x(t))}=F(t, x(t)) \text { a.e. }
$$

So x is a solution of the Cauchy problem (2)-(3). Since $a>0$ is arbitrary we deduce that the sequence x_{n} converges in the Banach space $C\left(\mathbb{R}^{+}, X\right)$ equipped with the topology of uniform convergence in compact subsets of \mathbb{R}^{+}.

That x is unique follows from the dissipativeness of F. Indeed let x and y be two solutions of the Cauchy problem (2)-(3), then we have

$$
\left\langle x^{\prime}(t)-y^{\prime}(t), x(t)-y(t)\right\rangle_{-} \leq 0 \quad \text { and } \quad \frac{1}{2} D^{-}\|x(t)-y(t)\|^{2} \leq 0
$$

Hence the map $t \mapsto\|x(t)-y(t)\|^{2}$ is non increasing, and consequently

$$
\begin{equation*}
\|x(t)-y(t)\| \leq\|x(0)-y(0)\| \tag{7}
\end{equation*}
$$

Now we present a result that gives us the relationship between the existence of bounded solution and the existence of an ω-periodic solution of (2) when F is ω-periodic. Observe that under the hypothesis of Theorem 1 the condition: There exists a positive R such that

$$
<F(t, x), x>_{-} \leq 0 \quad \text { for }\|x\|>R
$$

ensures the existence of a bounded solution on $[0,+\infty[$ (see Browder [3] and Hanebaly [8]).

Theorem 2 Under the hypothesis of Theorem 1, assuming that X is uniformly convex, and $F(t+\omega, x)=F(t, x)(\omega>0)$, the equation (2) has an ω-periodic solution if and only if it has a bounded solution on $[0,+\infty[$.

Proof. The necessity condition is obvious because a continuous periodic map is bounded. Conversely we consider the Poincaré map $P: X \rightarrow X$ defined by $P x_{0}=x(\omega)$ where x_{0} is given in X and x is a solution of (2) which satisfies $x(0)=x_{0}$. The map P is well defined because of the uniqueness of solutions for the Cauchy problem (2)-(3). Now let x be the solution of (2) which is bounded on $[0,+\infty[$ and put

$$
\begin{aligned}
x_{1} & =P x_{0}=x(\omega) \\
x_{2} & =P x_{1}=x(2 \omega) \\
& \vdots \\
x_{n} & =P x_{n-1}=x(n \omega)
\end{aligned}
$$

Note that the solution x is bounded, so the sequence x_{n} is bounded, and that P is non-expansive. Indeed, let y and z be two solutions of (2) such that $y(0)=y_{0}$ and $z(0)=z_{0}$ so by dissipativeness of F and the inequality (7) we have

$$
\|y(t)-z(t)\| \leq\|y(0)-z(0)\|=\left\|y_{0}-z_{0}\right\|
$$

Taking $t=\omega$ we deduce that

$$
\left\|P y_{0}-P z_{0}\right\| \leq\left\|y_{0}-z_{0}\right\| .
$$

So by the Browder-Petryshyn's fixed point theorem (see Petryshyn [2]), P has a fixed point. So there is a solution \widetilde{x} of (2) which satisfies $\widetilde{x}(0)=\widetilde{x}(\omega)$ and \widetilde{x} is ω-periodic. Indeed, put $\widetilde{y}(t)=\widetilde{x}(t+\omega)$ then

$$
\widetilde{y^{\prime}}(t)=\widetilde{x^{\prime}}(t+\omega) \in F(t+\omega, \widetilde{x}(t+\omega))=F(t, \widetilde{y}(t)) .
$$

Now since $\widetilde{y}(0)=\widetilde{x}(\omega)=\widetilde{x}(0)$, by (7) we deduce that

$$
\widetilde{x}(t)=\widetilde{y}(t)=\widetilde{x}(t+\omega)
$$

hence \widetilde{x} is ω-periodic.

Remark. Let x be an ω-periodic solution of (2), if y is another ω-periodic solution (respectively an T-periodic solution with $\frac{\omega}{T} \notin \mathbb{Q}$) then $\|x(t)-y(t)\|$ is constant for all $t \in \mathbb{R}^{+}$. From the dissipativeness of F it follows that the map $t \mapsto\|x(t)-y(t)\|$ is decreasing. Since it is continuous and periodic (respectively almost-periodic) we conclude that it is constant.

Example. Consider $\left(\mathbb{R}^{n},\|\|.\right)$ with $\|$.$\| the Euclidean norm and \langle.,$.$\rangle the asso-$ ciated inner product. We consider the differential equation

$$
x^{\prime}+x\|x\|^{\alpha}+\beta \operatorname{sgn}(x)=f(t)
$$

where $\alpha \geq 0, \beta \geq 0, f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{n}$ is continuous and ω-periodic, and

$$
\operatorname{sgn}(x)= \begin{cases}\frac{x}{\|x\|} & \text { if } x \neq 0 \\ \bar{B}(0,1) & \text { if } x=0\end{cases}
$$

Then the above equation becomes $x^{\prime} \in F(t, x)$ where $F(t, x)=f(t)-x\|x\|^{\alpha}-$ $\beta \operatorname{sgn}(x)$ is a bounding multi-valued map with compact and convex values. To conclude that the inclusion has an ω-periodic solution, we have to prove the following lemma.

Lemma 1 1) F is upper semi-continuous on $\mathbb{R}^{+} \times \mathbb{R}^{n}$.
2) There exist a positive c_{α} and $r_{\alpha} \geq 2$ such that for all $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{n}$,

$$
\langle F(t, x)-F(t, y), x-y\rangle \leq-c_{\alpha}\|x-y\|^{r_{\alpha}}
$$

In particular F is dissipative with respect to x
3) Every solution of the inclusion $x^{\prime} \in F(t, x)$ is bounded.

Proof of 1) We have to show that for every closed $A \subset \mathbb{R}^{n}$, the set

$$
F^{-1}(A)=\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{n}: F(t, x) \cap A \neq \emptyset\right\}
$$

is closed in $\mathbb{R}^{+} \times \mathbb{R}^{n}$. Let $\left(t_{n}, x_{n}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{n}$ be such that $\left(t_{n}, x_{n}\right) \rightarrow(t, x)$ and $F\left(t_{n}, x_{n}\right) \cap A \neq \emptyset$. We have to show that $F(t, x) \cap A \neq \emptyset$. Let $y_{n} \in F\left(t_{n}, x_{n}\right) \cap A$, then $y_{n}=f\left(t_{n}\right)-x_{n}\left\|x_{n}\right\|^{\alpha}-\beta \gamma_{n}$ with $\left\|\gamma_{n}\right\| \leq 1, \gamma_{n}$ has a subsequence (which we denote by the same) such that $\gamma_{n} \rightarrow \gamma$ with $(\|\gamma\| \leq 1)$, so

$$
y_{n}=f\left(t_{n}\right)-x_{n}\left\|x_{n}\right\|^{\alpha}-\beta \gamma_{n} \rightarrow y:=f(t)-x\|x\|^{\alpha}-\beta \gamma \in F(t, x) \cap A
$$

Hence $F(t, x) \cap A \neq \emptyset$ and F is upper semi-continuous on $\mathbb{R}^{+} \times \mathbb{R}^{n}$.
Proof of 2) It is easy to see that for all $x, y \in \mathbb{R}^{n},\langle\operatorname{sgn}(x)-\operatorname{sgn}(y), x-y\rangle \geq 0$. Now let $x, y \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
& \left\langle x\|x\|^{\alpha}-y\|y\|^{\alpha}, x-y\right\rangle \\
& \quad=\left\langle x\|x\|^{\alpha}-y\|x\|^{\alpha}+x\|y\|^{\alpha}-y\|y\|^{\alpha}+y\|x\|^{\alpha}-x\|y\|^{\alpha}, x-y\right\rangle \\
& \quad=\|x-y\|^{2}\left(\|x\|^{\alpha}+\|y\|^{\alpha}\right)+\left\langle y\|x\|^{\alpha}-x\|y\|^{\alpha}, x-y\right\rangle \\
& \quad=\frac{1}{2}\|x-y\|^{2}\left(\|x\|^{\alpha}+\|y\|^{\alpha}\right)+\frac{1}{2}\left\langle(x+y)\|x\|^{\alpha}-(x+y)\|y\|^{\alpha}, x-y\right\rangle \\
& \quad=\frac{1}{2}\|x-y\|^{2}\left(\|x\|^{\alpha}+\|y\|^{\alpha}\right)+\frac{1}{2}\left(\|x\|^{\alpha}-\|y\|^{\alpha}\right)\left(\|x\|^{2}-\|y\|^{2}\right) \\
& \geq \frac{1}{2}\|x-y\|^{2}\left(\|x\|^{\alpha}+\|y\|^{\alpha}\right)
\end{aligned}
$$

The last inequality comes from the fact that the map $\varphi(t)=t^{\alpha}$ is increasing on \mathbb{R}^{+}, so $\left(\|x\|^{\alpha}-\|y\|^{\alpha}\right)(\|x\|-\|y\|) \geq 0$. Hence for $\alpha=0$,

$$
\left\langle x\|x\|^{\alpha}-y\|y\|^{\alpha}, x-y\right\rangle \geq\|x-y\|^{2}
$$

If $0<\alpha \leq 1$ then $\|x\|^{\alpha}+\|y\|^{\alpha} \geq(\|x\|+\|y\|)^{\alpha} \geq\|x-y\|^{\alpha}$, (because the map $\varphi(t)=1+t^{\alpha}-(1+t)^{\alpha}$ is positive on $\left.\mathbb{R}^{+}\right)$, so

$$
\left\langle x\|x\|^{\alpha}-y\|y\|^{\alpha}, x-y\right\rangle \geq \frac{1}{2}\|x-y\|^{\alpha+2}
$$

If $\alpha \geq 1$ then the map $\varphi(t)=t^{\alpha}$ is convex on \mathbb{R}^{+}, so

$$
\|x\|^{\alpha}+\|y\|^{\alpha} \geq \frac{1}{2^{\alpha-1}}(\|x\|+\|y\|)^{\alpha} \geq \frac{1}{2^{\alpha-1}}\|x-y\|^{\alpha}
$$

Hence

$$
\left\langle x\|x\|^{\alpha}-y\|y\|^{\alpha}, x-y\right\rangle \geq \frac{1}{2^{\alpha}}\|x-y\|^{\alpha+2}
$$

Proof of 3) From 2) we deduce that

$$
\langle F(t, x)-F(t, 0), x\rangle \leq-c_{\alpha}\|x\|^{r_{\alpha}}
$$

where

$$
\begin{array}{ll}
c_{\alpha}=1 \text { and } r_{\alpha}=2 & \text { if } \alpha=0 \\
c_{\alpha}=1 / 2 \text { and } r_{\alpha}=\alpha+2 & \text { if } 0<\alpha \leq 1 \\
c_{\alpha}=1 / 2^{\alpha} \text { and } r_{\alpha}=\alpha+2 & \text { if } \alpha \geq 1
\end{array}
$$

Let x be a solution of $x^{\prime} \in F(t, x)$, and let $a \in F(t, 0)$. Then $a=f(t)-\beta \gamma$, $(\|\gamma\| \leq 1)$, and we have

$$
\begin{aligned}
\left\langle x^{\prime}(t), x(t)\right\rangle & =\left\langle x^{\prime}(t)-a+a, x(t)\right\rangle \\
& =\left\langle x^{\prime}(t)-a, x(t)\right\rangle+\langle a, x(t)\rangle \\
& \leq-c_{\alpha}\|x(t)\|^{r_{\alpha}}+(M+\beta)\|x(t)\|
\end{aligned}
$$

where $M=\sup _{t \in \mathbb{R}}\|f(t)\|$. Therefore,

$$
\frac{d}{2 d t}\|x(t)\|^{2} \leq 0 \quad \text { for }\|x(t)\| \geq\left(\frac{M+\beta}{c_{\alpha}}\right)^{1 /\left(r_{\alpha}-1\right)}
$$

Consequently

$$
\sup _{t \in \mathbb{R}}\|x(t)\| \leq \max \left[\|x(0)\|,\left(\frac{M+\beta}{c_{\alpha}}\right)^{1 /\left(r_{\alpha}-1\right)}\right]
$$

because the map $t \mapsto\|x(t)\|^{2}$ is decreasing outside $B\left(0,\left(\frac{M+\beta}{c_{\alpha}}\right)^{1 /\left(r_{\alpha}-1\right)}\right)$.

3 Almost periodic solutions

Let $(E,\|\cdot\|)$ be a uniformly convex Banach space with E^{*} uniformly convex. We consider the problem

$$
\begin{equation*}
x^{\prime}(t) \in-A x(t)+f(t) \tag{8}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow E$ is a continuous almost periodic function (see appendix I for the definition of almost periodicity) and $A: E \rightarrow 2^{E} \backslash \emptyset$ is a hyper-accretive multi-valued map which means that for all $\lambda>0, \operatorname{Im}(I+\lambda A)=E$ and $\langle A x-$ $A y, x-y\rangle_{+} \geq 0$ for all $x, y \in E$.

Theorem 3 Problem (8) has a solution on $\left[t_{0},+\infty\left[\left(t_{0} \in \mathbb{R}\right)\right.\right.$, which is uniformly continuous with precompact range if and only if it has a weak almost periodic solution.

Remark. Since a continuous almost periodic map is uniformly continuous with precompact range, it is convenient to relate the existence of a solution to that of uniformly continuous with the precompact range.

Proof of Theorem 3. The proof will be divided into four steps.

Step 1. The Cauchy problem

$$
\begin{gather*}
x^{\prime}(t) \in-A x(t)+f(t) \tag{9}\\
x\left(t_{0}\right)=x_{0} \tag{10}
\end{gather*}
$$

has a unique weak solution on $\left[t_{0},+\infty[\right.$. (weak solution means that there are sequences x_{n} and f_{n} where x_{n} is a strong solution and $x_{n} \rightarrow x$ uniformly in every compact subset J of $\left[t_{0},+\infty\left[\right.\right.$ and $f_{n} \rightarrow f$ in $\left.L^{1}(J, E)\right)$. Indeed, Since E and E^{*} are uniformly convex, the Cauchy problem

$$
\begin{gathered}
x^{\prime}(t) \in-A x(t) \\
x\left(t_{0}\right)=x_{0}
\end{gathered}
$$

has a unique strong solution on $\left[t_{0},+\infty[\right.$ (see Deimling [6]). Since f is almost periodic, $f \in L^{1}(J, E)$ for every compact $J \subset\left[t_{0},+\infty\left[\right.\right.$, with $t_{0} \in J$, so there is a sequence f_{n} of stairs functions which converges uniformly to f, hence $f_{n} \rightarrow f$ in $L^{1}(J, E)$. On the other hand for every f_{n} there is x_{n} such that

$$
\begin{gathered}
x_{n}^{\prime}(t) \in-A x_{n}(t)+f_{n}(t) \\
x_{n}\left(t_{0}\right)=x_{0} .
\end{gathered}
$$

Because if g is a stair function defined on $a=b_{0}<b_{1}<\ldots<b_{p}=T(T>a)$ by $g(t)=y_{i}$ on $\left[b_{i-1}, b_{i}\right.$ [the Cauchy problem

$$
\begin{gathered}
x^{\prime}(t) \in-A x(t)+g(t) \\
x\left(t_{0}\right)=x_{0}
\end{gathered}
$$

has also a unique strong solution x defined by $x(t)=S_{i}\left(t-b_{i-1}\right) \cdot x\left(b_{i-1}\right)$ for $t \in\left[b_{i-1}, b_{i}\right]$ and $x\left(t_{0}\right)=x_{0}$ where $S_{i}(t)$ is the semigroup generated by the hyper-accretive operator $-\left(A-y_{i}\right)$.

Let us show that $\left(x_{n}\right)$ is a Cauchy sequence in the Banach space $C\left(\left[t_{0},+\infty[, E)\right.\right.$ equipped with the topology of uniformly convergence in compact subsets. Since $-A$ is dissipative, we have

$$
\left\langle x_{n}^{\prime}(t)-f_{n}(t)-x_{p}^{\prime}(t)+f_{p}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \leq 0
$$

E^{*} is uniformly convex, $\langle., .\rangle_{-}=\langle., .\rangle_{+}$, and $\langle., .\rangle_{-}$is linear on the first argument. Then

$$
\frac{d^{-}}{2 d t}\left\|x_{n}(t)-x_{p}(t)\right\|^{2}
$$

$$
\begin{aligned}
= & \left\langle x_{n}^{\prime}(t)-x_{p}^{\prime}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \\
= & \left\langle x_{n}^{\prime}(t)-f_{n}(t)-x_{p}^{\prime}(t)+f_{p}(t)+f_{n}(t)-f_{p}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \\
= & \left\langle x_{n}^{\prime}(t)-f_{n}(t)-x_{p}^{\prime}(t)+f_{p}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \\
& +\left\langle f_{n}(t)-f_{p}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \\
\leq & \left\langle f_{n}(t)-f_{p}(t), x_{n}(t)-x_{p}(t)\right\rangle_{-} \\
\leq & \left\|f_{n}(t)-f_{p}(t)\right\|\left\|x_{n}(t)-x_{p}(t)\right\|
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|x_{n}(t)-x_{p}(t)\right\| & \leq\left\|x_{n}\left(t_{0}\right)-x_{p}\left(t_{0}\right)\right\|+\int_{t_{0}}^{t}\left\|f_{n}(s)-f_{p}(s)\right\| d s \\
& =\int_{t_{0}}^{t}\left\|f_{n}(s)-f_{p}(s)\right\| d s \rightarrow 0 \quad \text { as } n, p \rightarrow+\infty .
\end{aligned}
$$

Without loss of generality, we can assume that the Cauchy problem (9)-(10) has a strong solution. Let $x:\left[t_{0},+\infty[\rightarrow E\right.$ be the uniformly continuous solution of the Cauchy problem (9)-(10) with $x\left(\left[t_{0},+\infty[)\right.\right.$ precompact. Since f is almost periodic, there is $t_{n} \rightarrow+\infty$ such that $f\left(t+t_{n}\right) \rightarrow f(t)$ uniformly on \mathbb{R} (see appendix I). Consider the sequences of translated functions

$$
x_{n}(t)=x\left(t+t_{n}\right) \quad \text { and } \quad f_{n}(t)=f\left(t+t_{n}\right)
$$

which are defined on the real interval $\left[a,+\infty\left[\right.\right.$ when $n \geq n(a)$. Since $x\left(\left[t_{0},+\infty[)\right.\right.$ is precompact, we deduce that $\left\{x_{n}(t), t \geq a, n \geq n(a)\right\}$ is also precompact. On the other hand that $\left\{x_{n}, n \geq n(a)\right\}$ is equi-continuous follows from the following lemma which is easy to proof.
Lemma 2 Let E be a Banach space, $J \subset \mathbb{R}$ be an interval and \mathcal{M} a bounded subset of the Banach space $C_{b}(J, E)$ of continuous bounded functions. Then \mathcal{M} is uniformly equi-continuous if and only if the mapping $(\psi, t) \mapsto \psi(t)$ of $\mathcal{M} \times J \subset C_{b}(J, E) \times \mathbb{R}$ into E is uniformly continuous on $\mathcal{M} \times J$.

Now applying Ascoli's theorem in the intervals $[-N, N], N=1,2, \ldots$ and using the diagonal procedure (see Zaidman [13]) it is possible to find a subsequence which converges uniformly in every compact subset J of \mathbb{R}. But f_{n} is almost periodic, so $f_{n} \rightarrow f$ in $L^{1}(J, E)$. Therefore, we obtain a weak solution x^{*} of (8) defined on \mathbb{R} which is uniformly continuous with range contained in the closure of $x\left(\left[t_{0},+\infty[)\right.\right.$, hence with precompact range.

Step 2. Put $K_{0}=\overline{\operatorname{Co}}\left(x^{*}(\mathbb{R})\right)$, so that K_{0} is a compact convex subset of E. Let

$$
\Omega=\left\{x: \mathbb{R} \rightarrow E \mid x(\mathbb{R}) \subset K_{0}\right\}
$$

with x a uniformly continuous solution of (8) and $J: \Omega \rightarrow \mathbb{R}^{+}$defined by $J x=\sup _{t \in \mathbb{R}}\|x(t)\|$. Put $\mu=\inf _{x \in \Omega} J x$, so there is $x_{n} \in \Omega$ such that $J\left(x_{n}\right) \rightarrow \mu$. By
Lemma 2 and Ascoli's theorem there is a subsequence of x_{n} which converges uniformly in every compact subset of \mathbb{R}, let \widetilde{x} be this limit, then $\widetilde{x} \in \Omega$ and $J \widetilde{x}=\mu$.

Step 3. We show that \widetilde{x} is unique. Assume that there are x_{1} and x_{2} in Ω such that $J x_{1}=J x_{2}=\mu$. Since f is almost periodic, there is $t_{n} \rightarrow-\infty$ such that $f\left(t+t_{n}\right) \rightarrow f(t)$ uniformly on \mathbb{R}. By Ascoli's theorem, we can extract from t_{n} a subsequence (which we denote by the same symbol) such that $x_{1}\left(t+t_{n}\right)$ and $x_{2}\left(t+t_{n}\right)$ converge uniformly in every compact subset of \mathbb{R}. Let

$$
y_{1}=\lim x_{1}\left(t+t_{n}\right) \quad \text { and } \quad y_{2}=\lim x_{2}\left(t+t_{n} .\right)
$$

Then y_{1} and y_{2} are weak solutions of (8), and $y_{1}, y_{2} \in \Omega$ with $J\left(y_{1}\right)=J\left(y_{2}\right)=\mu$. Now since

$$
x_{1}^{\prime}\left(t+t_{n}\right) \in-A x_{1}\left(t+t_{n}\right)+f\left(t+t_{n}\right)
$$

and

$$
x_{2}^{\prime}\left(t+t_{n}\right) \in-A x_{2}\left(t+t_{n}\right)+f\left(t+t_{n}\right)
$$

and $-A$ is dissipative, we deduce that

$$
\left\langle x_{1}^{\prime}\left(t+t_{n}\right)-x_{2}^{\prime}\left(t+t_{n}\right), x_{1}\left(t+t_{n}\right)-x_{2}\left(t+t_{n}\right)\right\rangle_{-} \leq 0
$$

So

$$
\frac{d^{-}}{2 d t}\left\|x_{1}\left(t+t_{n}\right)-x_{2}\left(t+t_{n}\right)\right\|^{2} \leq 0
$$

Consequently the map $t \longmapsto\left\|x_{1}\left(t+t_{n}\right)-x_{2}\left(t+t_{n}\right)\right\|$ is non increasing. Since $x_{i}(\mathbb{R}) \subset K_{0}$ for $\mathrm{i}=1,2$, we deduce that

$$
\begin{align*}
\left\|y_{1}(t)-y_{2}(t)\right\| & =\lim _{n \rightarrow+\infty}\left\|x_{1}\left(t+t_{n}\right)-x_{2}\left(t+t_{n}\right)\right\| \\
& =\lim _{\tau \rightarrow-\infty}\left\|x_{1}(\tau)-x_{2}(\tau)\right\| \tag{11}\\
& =\sup _{t \in \mathbb{R}}\left\|x_{1}(t)-x_{2}(t)\right\| \\
& =\text { a constant }
\end{align*}
$$

To continue, we need the following lemma.
Lemma 3 Let E be a strictly convex Banach space, C a closed convex subset of E. Let $T: C \rightarrow C$ be a non expansive map and x_{0}, y_{0} in C such that

$$
\left\|T x_{0}-T y_{0}\right\|=\left\|x_{0}-y_{0}\right\|
$$

Then

$$
T\left(\frac{x_{0}+y_{0}}{2}\right)=\frac{T x_{0}+T y_{0}}{2}
$$

Let the operator $T_{t}: E \rightarrow E$ be defined by by $T_{t} x(0)=x(t)$ where $x($.$) is a$ weak solution of (8). Then $T_{t} y_{1}(0)=y_{1}(t)$ and $T_{t} y_{2}(0)=y_{2}(t)$ where y_{1} and y_{2} are in Ω. By (11),

$$
\left\|T_{t} y_{1}(0)-T_{t} y_{2}(0)\right\|=\left\|y_{1}(t)-y_{2}(t)\right\|=\left\|y_{1}(0)-y_{2}(0)\right\|
$$

So that by Lemma 3,

$$
T_{t}\left(\frac{y_{1}(0)+y_{2}(0)}{2}\right)=\frac{T_{t} y_{1}(0)+y_{2}(0)}{2}=\frac{y_{1}(t)+y_{2}(t)}{2}
$$

and $y(t):=\frac{y_{1}(t)+y_{2}(t)}{2}$ is also a solution of (8) satisfying $y(0)=\frac{y_{1}(0)+y_{2}(0)}{2}$. Since K_{0} is convex, $y(\mathbb{R}) \subset K_{0}$ and $y \in \Omega$. We have

$$
J y_{1}=J y_{2}=\mu
$$

So, $\mu=\inf _{x \in \Omega} J x$ and $\frac{y_{1}+y_{2}}{2} \in \Omega$. We deduce that

$$
\mu \leq J\left(\frac{\left.y_{1}+y_{2}\right)}{2}\right) \leq \frac{J y_{1}}{2}+\frac{J y_{2}}{2}=\mu
$$

and consequently $J y=\mu$. Since $J\left(\frac{y_{1}+y_{2}}{2}\right)=\frac{J y_{1}}{2}+\frac{J y_{2}}{2}$ we have

$$
\sup _{t \in \mathbb{R}}\left\|\frac{y_{1}(t)+y_{2}(t)}{2}\right\|=\frac{1}{2} \sup _{t \in \mathbb{R}}\left\|y_{1}(t)\right\|+\frac{1}{2} \sup _{t \in \mathbb{R}}\left\|y_{2}(t)\right\|
$$

So there is $s_{n} \in \mathbb{R}$ such that

$$
\begin{aligned}
\mu-\frac{1}{n} & <\left\|\frac{y_{1}\left(s_{n}\right)+y_{2}\left(s_{n}\right)}{2}\right\| \\
& \leq \frac{\left\|y_{1}\left(s_{n}\right)\right\|}{2}+\frac{\left\|y_{2}\left(s_{n}\right)\right\|}{2} \\
& \leq \mu
\end{aligned}
$$

and since $y_{1}\left(s_{n}\right) \in K_{0} ; y_{2}\left(s_{n}\right) \in K_{0}$ there is a subsequence (which we denote by the same symbol) such that $y_{1}\left(s_{n}\right) \rightarrow l_{1}$ and $y_{2}\left(s_{n}\right) \rightarrow l_{2}$. Then

$$
\left\|\frac{l_{1}+l_{2}}{2}\right\|=\frac{\left\|l_{1}\right\|}{2}+\frac{\left\|l_{2}\right\|}{2}=\mu
$$

On the other hand $\left\|y_{i}\left(s_{n}\right)\right\| \leq \mu$ implies $\left\|l_{i}\right\| \leq \mu$ and $\frac{\left\|l_{1}\right\|}{2}+\frac{\left\|l_{2}\right\|}{2}=\mu$ implies $\left\|l_{i}\right\| \geq \mu$ for $i=1,2$. Hence $\left\|l_{1}\right\|=\left\|l_{2}\right\|=\mu$. Since the norm of E is strictly convex, we deduce that $l_{1}=l_{2}$ and consequently

$$
\begin{aligned}
\left\|l_{1}-l_{2}\right\| & =\left\|y_{1}(t)-y_{2}(t)\right\| \\
& =\lim _{\tau \rightarrow-\infty}\left\|x_{1}(\tau)-x_{2}(\tau)\right\| \\
& =\left\|x_{1}(-\infty)-x_{2}(-\infty)\right\| \\
& =\sup _{t \in \mathbb{R}}\left\|x_{1}(t)-x_{2}(t)\right\|
\end{aligned}
$$

So $x_{1}(t)=x_{2}(t)$ for every $t \in \mathbb{R}$.
Remark. In the case of a Hilbert space, by the parallelogram formula and by (11), we deduce directly that $x_{1}(t)=x_{2}(t)$ for all $t \in \mathbb{R}$.

Step 4. Finally we show that \widetilde{x} the unique element of Ω which satisfies $J \widetilde{x}=\inf _{x \in \Omega} J x$ is almost periodic. For this purpose, we use the $2^{\text {nd }}$ Bochner's characterization of almost periodicity (see appendix I). Let t_{n} and s_{n} be two real sequences, then by Ascoli's theorem there is a subsequence of t_{n} (which we denote by the same symbol) such that $\widetilde{x}\left(t+t_{n}\right) \rightarrow y(t)$ uniformly in every compact subset of \mathbb{R}. Then $y($.$) is a weak solution of$

$$
\begin{equation*}
x^{\prime} \in-A x+g(t) \tag{12}
\end{equation*}
$$

where $g(t)=\lim f\left(t+t_{n}\right)$. Now consider $\widetilde{x}\left(t+t_{n}+s_{n}\right)$ and $y\left(t+s_{n}\right)$, then by Ascoli's theorem we can extract from t_{n} and s_{n} sub-sequences such that $\widetilde{x}\left(t+t_{n}+s_{n}\right) \rightarrow z_{1}(t)$ and $y\left(t+s_{n}\right) \rightarrow z_{2}(y)$, but $f\left(t+t_{n}+s_{n}\right)$ and $g\left(t+s_{n}\right)$ have the same limit which we denote by $h(t)$. Then $z_{1}($.$) and z_{2}($.$) are weak$ solutions of

$$
\begin{equation*}
x^{\prime} \in-A x+h(t) \tag{13}
\end{equation*}
$$

so $\mu=J_{f}\left(K_{0}\right)=J_{h}\left(K_{0}\right) \leq J z_{i} \quad i=1,2$ where

$$
J_{f}\left(K_{0}\right)=\inf \left\{J x: x \text { is a weak solution of }(8), x(\mathbb{R}) \subset K_{0}\right\}
$$

and

$$
J_{h}\left(K_{0}\right)=\inf \left\{J x: x \text { is a weak solution of }(13), x(\mathbb{R}) \subset K_{0}\right\}
$$

We have $\mu=J z_{1}=J z_{2}$, but the equation (13) has the same property as the equation (8) because the map $h($.$) is almost periodic. Therefore, there is a$ unique solution which satisfies

$$
J_{h}\left(K_{0}\right)=\inf \left\{J u: u \text { is a weak solution of }(13), u(\mathbb{R}) \subset K_{0}\right\}
$$

Consequently $z_{1}=z_{2}$. Also $\widetilde{x}\left(t+t_{n}+s_{n}\right)$ and $y\left(t+s_{n}\right)$ have the same limit, hence \widetilde{x} is almost periodic.

Example. Let $E=\left(\mathbb{R}^{n},\|\cdot\|\right)$ with the Euclidean norm $\|\cdot\|$, and let $\varphi(x)=\|x\|$. Consider

$$
A x=\partial \varphi(x)+k x
$$

where $k>0$ and $\partial \varphi$ is the sub-differential of φ. Since φ is continuous and convex,

$$
\overbrace{\operatorname{Dom}(\varphi)}^{\circ} \subset \operatorname{Dom}(\partial \varphi) \quad \text { so } \quad \operatorname{Dom}(A)=\mathbb{R}^{n}
$$

The problem

$$
x^{\prime} \in-A x+f(t)
$$

with $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ continuous and almost periodic, has a strong solution defined on $\left[t_{0},+\infty\left[\left(t_{0} \in \mathbb{R}\right)\right.\right.$ (see Brezis [4]). Now since $0 \in \partial \varphi(0)$ we have

$$
\left\langle f(t)-k x-x^{\prime}(t), x(t)\right\rangle \geq 0
$$

Therefore,

$$
\begin{aligned}
\left\langle x^{\prime}(t), x(t)\right\rangle & \leq\langle f(t), x(t)\rangle-k\|x(t)\|^{2} \\
& \leq(M-k\|x(t)\|)\|x(t)\|
\end{aligned}
$$

where $M=\sup _{t \in \mathbb{R}}\|f(t)\|$. We deduce that

$$
D^{-}\|x(t)\| \leq M
$$

and

$$
\frac{d}{2 d t}\|x(t)\|^{2} \leq 0 \quad \text { for }\|x(t)\| \geq \frac{M}{k}
$$

The first inequality shows that x is lipschitzean, hence uniformly continuous and the second one shows that the map $t \longmapsto\|x(t)\|$ is non increasing outside of the ball $B\left(0, \frac{M}{k}\right)$. Consequently

$$
\|x(t)\| \leq \sup \left(\left\|x\left(t_{0}\right)\right\|, \frac{M}{k}\right) \quad \forall t \geq t_{0}
$$

So that the problem $x^{\prime} \in-A x+f(t)$ has a uniformly continuous solution which is bounded, hence with precompact range, so it has an almost periodic solution. \diamond

Appendix I

Let E be a real Banach space, a map $f: \mathbb{R} \rightarrow E$ is said to be almost periodic if for each $\varepsilon>0$ there exists l_{ε} such that for all $a \in \mathbb{R}$ there exists $\tau \in\left[a, a+l_{\varepsilon}\right]$ such that

$$
\|f(t+\tau)-f(t)\| \leq \varepsilon \quad \forall t \in \mathbb{R}
$$

If f is almost periodic then there exist $t_{n} \rightarrow+\infty$ and $s_{n} \rightarrow-\infty$ such that $f\left(t+t_{n}\right) \rightarrow f(t)$ and $f\left(t+s_{n}\right) \rightarrow f(t)$ uniformly on \mathbb{R}. In practice, we use the following Bochner's characterizations of almost periodicity (Yoshisawa [12]).

First characterization. $\quad f \in C(\mathbb{R}, E)$ is almost periodic if and only if from every real sequence t_{n}^{\prime} one can extract a subsequence t_{n} such that $\lim f\left(t+t_{n}\right)$ exists uniformly on the real line, furthermore the limit is also almost periodic.

Second characterization. $f \in C(\mathbb{R}, E)$ is almost periodic if and only if for every pair of real sequences h_{n}^{\prime} and k_{n}^{\prime} there are sub-sequences h_{n} and k_{n} such that $f\left(t+h_{n}\right)$ has a pointwise limit $g(t)$ on \mathbb{R}, and $f\left(t+h_{n}+k_{n}\right)$ and $g\left(t+k_{n}\right)$ have a same limit $h(t)$ on \mathbb{R}, and h is also almost periodic.

Appendix II

Let E be a real Banach space and $x:[a, b] \subset \mathbb{R} \rightarrow E$ differentiable, and put $\Phi(t)=\|x(t)\|$. Then

$$
\Phi(t) D^{-} \Phi(t)=<x^{\prime}(t), x(t)>_{-}
$$

where

$$
D^{-} \Phi(t)=\limsup _{h \rightarrow 0^{-}} \frac{\Phi(t+h)-\Phi(t)}{h}
$$

is the upper Dini's derivative of Φ (see e.g Deimling [6]).

References

[1] J. Aubin, A. Cellina, Differential inclusions multivalued maps and viability theory, Springer-Verlag (1984).
[2] F. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bul Amer Math Soc, 72 (1966), 571-575.
[3] F. Browder, Periodic solutions of nonlinear equations of evolution in infinite dimensional spaces, "Lecture in differential equations" A.K Aziz. ed, V1 Van Norstrand, Newyork,(1969), 71-96.
[4] H. Brezis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North-Holand Amsterdam (1973).
[5] J. Baillon A. Haraux, Comportement à l'infinie pour les équations d'évolution avec forcing périodique, Arch. Rat. Mec. Anal, 67 (1977), 101109.
[6] K. Deimling, Nonlinear functional analysis, Springer-Verlag (1985).
[7] E. Hanebaly, Solutions périodiques d'équations différentielles non linéaires en dimension infinite, C.R.A.S, Serie A (1979), 623-626.
[8] E. Hanebaly, Solutions presque-périodiques d'équations différentielles monotones, C.R.A.S, 296 Serie I (1983), 263.
[9] E. Hanebaly, Contribution à l'étude des solutions périodiques et presquepériodiques des équations différentielles non linéaires sur les espaces de Banach, Thèse d'état Université de Pau I.U.R.S (1988).
[10] E. Hanebaly, Un théorème du point fixe et solutions périodiques d'équations différentielles V-dissipatives, π P.R.N.M.S (252) Fixed point theory and applications, (1991), 221-230. Edit=82 par J.B.Baillon M.A. thera.
[11] G. Lumer, Semi-inner product spaces, Trans. Math. Math .Soc, (1961), 2943.
[12] T. Yoshisawa, stability theory and the existence of periodic solutions and almost periodic solutions, Spriger-Verlag (1975).
[13] S. Zaidman, Solution of almost periodic abstract differential equations with relatively compact range, J. Nonlinear analysis, Vol. 8, No. 9 (1984), 10911093.

E. Hanebaly

Université Mohammed V Faculté des Sciences
Département de Mathématiques, Rabat, Maroc.
e-mail: hanebaly@fsr.ac.ma
Brahim Marzouki
Université Mohammed I Faculté des Sciences
Département de Mathématiques, Oujda, Maroc.
e-mail: marzouki@sciences.univ-oujda.ac.ma

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 34A60, 34C25, 34C27, 47H10.
 Key words and phrases: Multi-valued differential equation, Hyper-accretive, Almost periodicity, Banach space.
 (c) 2000 Southwest Texas State University and University of North Texas.

 Submitted July 16, 1999. Published March 30, 2000.

