ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2000**(2000), No. 24, pp. 1–16. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

Periodic and almost periodic solutions for multi-valued differential equations in Banach spaces *

E. Hanebaly & B. Marzouki

Abstract

It is known that for ω -periodic differential equations of monotonous type, in uniformly convex Banach spaces, the existence of a bounded solution on \mathbb{R}^+ is equivalent to the existence of an ω -periodic solution (see Haraux [5] and Hanebaly [7, 10]). It is also known that if the Banach space is strictly convex and the equation is almost periodic and of monotonous type, then the existence of a continuous solution with a precompact range is equivalent to the existence of an almost periodic solution (see Hanebaly [8]). In this note we want to generalize the results above for multi-valued differential equations.

1 Preliminaries

Let X and Y be Banach spaces, and 2^Y denote the collection of subsets of Y. For a multi-valued map $F: X \to 2^Y$ we define the following conditions:

F is **upper semi-continuous** (u.s.c.) in *X* if for every x_0 in *X* and every open set $G \subset Y$ with $Fx_0 \subset G$ there exists a neighborhood *U* of x_0 such that $Fx_0 \subset G$ for all $x \in U$. In practice *F* is u.s.c. at x_0 means that $Fx \subset$ $Fx_0 + B_{\varepsilon}(0)$ for all *x* sufficiently close to x_0 and for ε sufficiently small.

F is **bounding** if it maps bounded subsets of X into bounded subsets of Y. F is **dissipative** if X = Y and

$$\langle Fx - Fy, x - y \rangle_{-} \leq 0 \quad \forall x \in X, \forall y \in X.$$

This implies that for all $x_1 \in Fx$ and all $y_1 \in Fy$,

$$\langle x_1 - y_1, x - y \rangle_- \le 0 \,,$$

where the lower semi-inner product on X introduced by Lumer [11] is defined as

$$\langle x, y \rangle_{-} = \|y\| \lim_{h \to 0^{-}} \frac{\|y + hx\| - \|y\|}{h}.$$

 $Key\ words\ and\ phrases:$ Multi-valued differential equation, Hyper-accretive, Almost periodicity, Banach space.

^{*} Mathematics Subject Classifications: 34A60, 34C25, 34C27, 47H10.

 $[\]textcircled{O}2000$ Southwest Texas State University and University of North Texas.

Submitted July 16, 1999. Published March 30, 2000.

F is **accretive** if $\langle Fx - Fy, x - y \rangle_+ \ge 0$ where the upper semi-inner product on X is defined as

$$\langle x, y \rangle_+ = \|y\| \lim_{h \to 0^+} \frac{\|y + hx\| - \|y\|}{h}$$

We denote by \rightarrow the convergence for the weak topology $\sigma(X, X^*)$. Recall that $x : J \subset \mathbb{R} \to X$ is said to be absolutely continuous (a.c. for short) if for each $\varepsilon > 0$ there is $\delta > 0$ such that $\sum ||x(t_i) - x(s_i)|| \le \varepsilon$ whenever the finitely many intervals $[s_i, t_i] \subset J$ do not overlap and $\sum |t_i - s_i| \le \delta$. In particular every Lipschitzean map is a.c. When X is of finite dimension it is known that x is a.c. if and only if x is differentiable almost everywhere (a.e. for short) and $x' \in L^1(J, X)$, but if X is of infinite dimension and X is not reflexive, then an a.c. function need not be differentiable at any point (see e.g Deimling [6] p.138).

By a solution of the Cauchy problem

$$x' \in F(t,x); \quad x(t_0) = x_0$$
 (1)

in some interval I (with $t_0 \in I$), we mean a continuous function on I, a.c. in every compact subset of I, differentiable a.e., and that satisfies (1) a.e. on I.

The collection non-empty compact convex subsets of X will be denoted by CV(X).

2 Boundedness and periodicity of solutions

We begin by giving a result concerning the existence of a global solutions. Let $(X, \|.\|)$ be a real reflexive Banach space. Consider the multi-valued Cauchy problem

$$x'(t) \in F(t, x(t)) \tag{2}$$

$$x(0) = x_0 , \qquad (3)$$

where $F : \mathbb{R}^+ \times X \to CV(X)$ is u.s.c. and bounding.

Theorem 1 If for all $(t, x, y) \in \mathbb{R}^+ \times X \times X$, $\langle F(t, x) - F(t, y), x - y \rangle_- \leq 0$, then the Cauchy problem (2)-(3) has a unique solution defined on \mathbb{R}^+ .

Remark. This theorem is well known for the inclusion of type

$$x' \in -Ax + f(t)$$

where A is a multi-valued maximal monotone operator on a Hilbert space and f is a uni-valued map (see Brezis [4]).

Proof of Theorem 1. Since F is u.s.c. with convex values, by the approximate selection theorem (see Cellina [1]) for each $n \ge 0$ there exists a locally lipschitzean map $f_n : \mathbb{R}^+ \times X \to X$ such that

$$f_n(t,x) \in F(\mathbb{R}^+ \times X \cap B_{1/n}(t,x)) + B_{\perp}(0) \quad \forall (t,x) \in \mathbb{R}^+ \times X,$$

where $B_{1/n}(t,x)$ is a ball in $\mathbb{R}^+ \times X$ and $B_{1/n}(0)$ is a ball in X. Since F is u.s.c. at (t,x), for each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F(\mathbb{R}^+ \times X \cap B_{\delta}(t, x)) \subset F(t, x) + B_{\varepsilon}(0).$$

Then for n large we can choose δ such that $B_{1/n}(t,x) \subset B_{\delta}(t,x)$ and

$$F(\mathbb{R}^+ \times X \cap B_{1/n}(t,x)) \subset F(t,x) + B_{\varepsilon}(0).$$

Consequently, for $\varepsilon = 1/m$ with $m \ge n$ we obtain

$$f_n(t,x) \in F(t,x) + B_{1/n}(0) + B_{1/n}(0) \subset F(t,x) + B_{2/n}(0).$$

Now we show that for any a > 0 the uni-valued Cauchy problem

$$x'(t) = f_n(t, x(t)) \tag{4}$$

$$x(0) = x_0 \tag{5}$$

has a unique solution x_n on [0, a] and the sequence x_n converges uniformly to the solution of the Cauchy problem (2)-(3).

Consider f_n from $[0, a] \times X$ to X, then f_n satisfies i) f_n is continuous and locally lipschitzean with respect to x. ii) $\langle f_n(t, x) - f_n(t, y), x - y \rangle_- \leq \frac{4}{n} ||x - y||$. For proving ii), we take $f_n(t, x) \in F(t, x) + B_{2/n}(0)$ and $f_n(t, y) \in F(t, y) + B_{2/n}(0)$, so that $f_n(t, x) = a + \alpha_n$ and $f_n(t, y) = b + \beta_n$ with $a \in F(t, x), b \in F(t, y)$ and $\alpha_n, \beta_n \in B_{2/n}(0)$. Then

$$\begin{split} \langle f_n(t,x) - f_n(t,y), x - y \rangle_- &= \langle a + \alpha_n - b - \beta_n, x - y \rangle_- \\ &\leq \langle a - b, x - y \rangle_- + \langle \alpha_n - \beta_n, x - y \rangle_+ \\ &\leq \langle \alpha_n - \beta_n, x - y \rangle_- \\ &\leq \|\alpha_n - \beta_n\| \|x - y\| \\ &\leq \frac{4}{n} \|x - y\|. \end{split}$$

It is well known that by i) the uni-valued Cauchy problem (4)-(5) has a unique local solution x_n , and that by ii) this solution can be extended on [0, a]. This statement is proven by the standard procedure of bounding the derivative of x_n .

Taking y = 0 in ii), we obtain

$$\langle f_n(t,x) - f_n(t,0), x \rangle_- \le \frac{4}{n} \|x\|.$$

Therefore,

$$\begin{aligned} \langle x'_n(t), x_n(t) \rangle_- &= \langle f_n(t, x_n(t)) - f_n(t, 0) + f_n(t, 0), x_n(t) \rangle_- \\ &\leq \langle f_n(t, x_n(t)) - f_n(t, 0), x_n(t) \rangle_- + \langle f_n(t, 0), x_n(t) \rangle_+ \\ &\leq \frac{4}{n} \| x_n(t) \| + \| f_n(t, 0) \| \| x_n(t) \| \\ &\leq (1 + \sup_{t \in [0, a]} \| f_n(t, 0) \|) \| x_n(t) \|. \end{aligned}$$

We deduce that (see appendix II)

$$D^{-} \|x_n(t)\| \le 1 + \sup_{t \in [0,a]} \|f_n(t,0)\| = k_n$$

with k_n a constant which does not depend on t. This follows because there is $t_0^n \in [0, a]$ such that

$$\sup_{t \in [0,a]} \|f_n(t,0)\| = \|f_n(t_0^n,0)\|.$$

consequently, we have a sequence $x_n \in C([0, a], X)$ that satisfies

$$x'_{n}(t) \in F(t, x_{n}(t)) + B_{2/n}(0).$$
(6)

Next we show that x_n is a Cauchy sequence. Let $\Phi_{n,m}(t) = ||x_n(t) - x_m(t)||$. Then $\Phi_{n,m}(0) = 0$ and using the same technique as for proving ii) we deduce that

$$\begin{aligned} \Phi_{n,m}(t)D^{-}\Phi_{n,m}(t) &= \langle x'_{n}(t) - x'_{m}(t), x_{n}(t) - x_{m}(t) \rangle_{-} \\ &\leq (\frac{2}{n} + \frac{2}{m})\Phi_{n,m}(t) \,. \end{aligned}$$

Therefore, $\Phi_{n,m}(t) \leq (\frac{2}{n} + \frac{2}{m})a$ and then

$$\sup_{t \in [0,a]} \|x_n(t) - x_m(t)\| \to 0 \quad \text{as } n, m \to +\infty$$

Let x be the limit of x_n . Then we have in particular $x(0) = x_0$, now we have to show that x is a.e. differentiable and satisfies

$$x'(t) \in F(t, x(t))$$
 a.e. in $[0, a]$.

Since F is u.s.c. and $x_n \to x$ uniformly on [0, a], we deduce that for n large,

$$F(t, x_n(t)) \subset F(t, x(t)) + B_1(0).$$

Since F is bounding, by (6) we have $||x'_n(t)|| \leq c$ uniformly on [0, a] for some c > 0.

Put J = [0, a], then we have $x'_n \in L^{\infty}(J, X) \subset L^2(J, X)$. Since $L^2(J, X)$ is reflexive (because X is reflexive), there is a subsequence (which we denote by

EJDE-2000/24

the same symbol) such that $x'_n \rightharpoonup y \in L^2(J, X)$ so

$$\begin{aligned} x_n(t) &= x_0 + \int_0^t x'_n(s) \, ds = x_0 + \int_J \chi_{[0,t]}(s) x'_n(s) \, ds \\ & \rightharpoonup x_0 + \int_J \chi_{[0,t]}(s) y(s) \, ds = x_0 + \int_0^t y(s) ds \, . \end{aligned}$$

Since $x_n(t) \to x(t)$, it follows that $x_n(t) \rightharpoonup x(t)$. Consequently

$$x(t) = x_0 + \int_0^t y(s) ds$$
 and $x'(t) = y(t)$ a.e. in J.

We deduce that $x'_n \rightharpoonup x'$ in $L^2(J, X)$ for the weak topology $\sigma(L^2(J, X), L^2(J, X^*))$. Let $\varepsilon > 0$ and put

$$A_{\varepsilon} = \left\{ z \in L^2(J,X) : z(t) \in F(t,x(t)) + \overline{B}_{\varepsilon}(0) \text{ a.e. } \right\}$$

Then A_{ε} is nonempty (because $x_n(t) \to x(t)$ and F is u.s.c., so $x'_n \in A_{\varepsilon}$ for n large), A_{ε} is closed and convex, hence A_{ε} is weakly closed. Since $x'_n \in A_{\varepsilon}$ and $x'_n \to x'$ we deduce that

$$x'(t) \in \overline{F(t, x(t))} = F(t, x(t))$$
 a.e.

So x is a solution of the Cauchy problem (2)-(3). Since a > 0 is arbitrary we deduce that the sequence x_n converges in the Banach space $C(\mathbb{R}^+, X)$ equipped with the topology of uniform convergence in compact subsets of \mathbb{R}^+ .

That x is unique follows from the dissipativeness of F. Indeed let x and y be two solutions of the Cauchy problem (2)-(3), then we have

$$\langle x'(t) - y'(t), x(t) - y(t) \rangle_{-} \le 0$$
 and $\frac{1}{2}D^{-} ||x(t) - y(t)||^{2} \le 0$.

Hence the map $t \mapsto ||x(t) - y(t)||^2$ is non increasing, and consequently

$$\|x(t) - y(t)\| \le \|x(0) - y(0)\|.$$
(7)

Now we present a result that gives us the relationship between the existence of bounded solution and the existence of an ω -periodic solution of (2) when Fis ω -periodic. Observe that under the hypothesis of Theorem 1 the condition: There exists a positive R such that

$$< F(t, x), x >_{-} \le 0 \text{ for } ||x|| > R$$

ensures the existence of a bounded solution on $[0, +\infty)$ (see Browder [3] and Hanebaly [8]).

Theorem 2 Under the hypothesis of Theorem 1, assuming that X is uniformly convex, and $F(t + \omega, x) = F(t, x)$ ($\omega > 0$), the equation (2) has an ω -periodic solution if and only if it has a bounded solution on $[0, +\infty]$.

Proof. The necessity condition is obvious because a continuous periodic map is bounded. Conversely we consider the Poincaré map $P: X \to X$ defined by $Px_0 = x(\omega)$ where x_0 is given in X and x is a solution of (2) which satisfies $x(0) = x_0$. The map P is well defined because of the uniqueness of solutions for the Cauchy problem (2)-(3). Now let x be the solution of (2) which is bounded on $[0, +\infty]$ and put

$$x_1 = Px_0 = x(\omega)$$

$$x_2 = Px_1 = x(2\omega)$$

$$\vdots$$

$$x_n = Px_{n-1} = x(n\omega)$$

Note that the solution x is bounded, so the sequence x_n is bounded, and that P is non-expansive. Indeed, let y and z be two solutions of (2) such that $y(0) = y_0$ and $z(0) = z_0$ so by dissipativeness of F and the inequality (7) we have

$$||y(t) - z(t)|| \le ||y(0) - z(0)|| = ||y_0 - z_0||$$

Taking $t = \omega$ we deduce that

$$||Py_0 - Pz_0|| \le ||y_0 - z_0||.$$

So by the Browder-Petryshyn's fixed point theorem (see Petryshyn [2]), P has a fixed point. So there is a solution \tilde{x} of (2) which satisfies $\tilde{x}(0) = \tilde{x}(\omega)$ and \tilde{x} is ω -periodic. Indeed, put $\tilde{y}(t) = \tilde{x}(t+\omega)$ then

$$\widetilde{y'}(t) = \widetilde{x'}(t+\omega) \in F(t+\omega, \widetilde{x}(t+\omega)) = F(t, \widetilde{y}(t)).$$

Now since $\tilde{y}(0) = \tilde{x}(\omega) = \tilde{x}(0)$, by (7) we deduce that

$$\widetilde{x}(t) = \widetilde{y}(t) = \widetilde{x}(t+\omega)$$

hence \tilde{x} is ω -periodic.

Remark. Let x be an ω -periodic solution of (2), if y is another ω -periodic solution (respectively an T-periodic solution with $\frac{\omega}{T} \notin \mathbb{Q}$) then ||x(t) - y(t)|| is constant for all $t \in \mathbb{R}^+$. From the dissipativeness of F it follows that the map $t \mapsto ||x(t) - y(t)||$ is decreasing. Since it is continuous and periodic (respectively almost-periodic) we conclude that it is constant.

Example. Consider $(\mathbb{R}^n, \|.\|)$ with $\|.\|$ the Euclidean norm and $\langle ., . \rangle$ the associated inner product. We consider the differential equation

$$x' + x \|x\|^{\alpha} + \beta \operatorname{sgn}(x) = f(t)$$

where $\alpha \geq 0, \beta \geq 0, f: \mathbb{R}^+ \to \mathbb{R}^n$ is continuous and ω -periodic, and

$$\operatorname{sgn}(x) = \begin{cases} \frac{x}{\|x\|} & \text{if } x \neq 0\\ \overline{B}(0,1) & \text{if } x = 0 \end{cases}$$

 \diamond

Then the above equation becomes $x' \in F(t, x)$ where $F(t, x) = f(t) - x ||x||^{\alpha} - \beta \operatorname{sgn}(x)$ is a bounding multi-valued map with compact and convex values. To conclude that the inclusion has an ω -periodic solution, we have to prove the following lemma.

Lemma 1 1) F is upper semi-continuous on $\mathbb{R}^+ \times \mathbb{R}^n$. 2) There exist a positive c_{α} and $r_{\alpha} \geq 2$ such that for all $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^n$,

$$\langle F(t,x) - F(t,y), x - y \rangle \le -c_{\alpha} \|x - y\|^{r_{\alpha}}$$

In particular F is dissipative with respect to x 3) Every solution of the inclusion $x' \in F(t, x)$ is bounded.

Proof of 1) We have to show that for every closed $A \subset \mathbb{R}^n$, the set

$$F^{-1}(A) = \{(t, x) \in \mathbb{R}^+ \times \mathbb{R}^n : F(t, x) \cap A \neq \emptyset\}$$

is closed in $\mathbb{R}^+ \times \mathbb{R}^n$. Let $(t_n, x_n) \in \mathbb{R}^+ \times \mathbb{R}^n$ be such that $(t_n, x_n) \to (t, x)$ and $F(t_n, x_n) \cap A \neq \emptyset$. We have to show that $F(t, x) \cap A \neq \emptyset$. Let $y_n \in F(t_n, x_n) \cap A$, then $y_n = f(t_n) - x_n ||x_n||^{\alpha} - \beta \gamma_n$ with $||\gamma_n|| \leq 1$, γ_n has a subsequence (which we denote by the same) such that $\gamma_n \to \gamma$ with $(||\gamma|| \leq 1)$, so

$$y_n = f(t_n) - x_n \|x_n\|^{\alpha} - \beta \gamma_n \to y := f(t) - x \|x\|^{\alpha} - \beta \gamma \in F(t, x) \cap A.$$

Hence $F(t,x) \cap A \neq \emptyset$ and F is upper semi-continuous on $\mathbb{R}^+ \times \mathbb{R}^n$.

Proof of 2) It is easy to see that for all $x, y \in \mathbb{R}^n$, $\langle \operatorname{sgn}(x) - \operatorname{sgn}(y), x - y \rangle \ge 0$. Now let $x, y \in \mathbb{R}^n$, then

$$\begin{aligned} \langle x \| x \|^{\alpha} - y \| y \|^{\alpha}, x - y \rangle \\ &= \langle x \| x \|^{\alpha} - y \| x \|^{\alpha} + x \| y \|^{\alpha} - y \| y \|^{\alpha} + y \| x \|^{\alpha} - x \| y \|^{\alpha}, x - y \rangle \\ &= \| x - y \|^{2} (\| x \|^{\alpha} + \| y \|^{\alpha}) + \langle y \| x \|^{\alpha} - x \| y \|^{\alpha}, x - y \rangle \\ &= \frac{1}{2} \| x - y \|^{2} (\| x \|^{\alpha} + \| y \|^{\alpha}) + \frac{1}{2} \langle (x + y) \| x \|^{\alpha} - (x + y) \| y \|^{\alpha}, x - y \rangle \\ &= \frac{1}{2} \| x - y \|^{2} (\| x \|^{\alpha} + \| y \|^{\alpha}) + \frac{1}{2} (\| x \|^{\alpha} - \| y \|^{\alpha}) (\| x \|^{2} - \| y \|^{2}) \\ &\geq \frac{1}{2} \| x - y \|^{2} (\| x \|^{\alpha} + \| y \|^{\alpha}) \end{aligned}$$

The last inequality comes from the fact that the map $\varphi(t) = t^{\alpha}$ is increasing on \mathbb{R}^+ , so $(\|x\|^{\alpha} - \|y\|^{\alpha})(\|x\| - \|y\|) \ge 0$. Hence for $\alpha = 0$,

$$\langle x \| x \|^{\alpha} - y \| y \|^{\alpha}, x - y \rangle \ge \| x - y \|^{2}.$$

If $0 < \alpha \le 1$ then $||x||^{\alpha} + ||y||^{\alpha} \ge (||x|| + ||y||)^{\alpha} \ge ||x - y||^{\alpha}$, (because the map $\varphi(t) = 1 + t^{\alpha} - (1 + t)^{\alpha}$ is positive on \mathbb{R}^+), so

$$\langle x \| x \|^{\alpha} - y \| y \|^{\alpha}, x - y \rangle \ge \frac{1}{2} \| x - y \|^{\alpha+2}$$

If $\alpha \geq 1$ then the map $\varphi(t) = t^{\alpha}$ is convex on \mathbb{R}^+ , so

$$||x||^{\alpha} + ||y||^{\alpha} \ge \frac{1}{2^{\alpha-1}} (||x|| + ||y||)^{\alpha} \ge \frac{1}{2^{\alpha-1}} ||x-y||^{\alpha}.$$

Hence

$$\langle x \| x \|^{lpha} - y \| y \|^{lpha}, x - y \rangle \ge rac{1}{2^{lpha}} \| x - y \|^{lpha + 2}$$

Proof of 3) From 2) we deduce that

$$\langle F(t,x) - F(t,0), x \rangle \leq -c_{\alpha} \|x\|^{r_{\alpha}},$$

where

$$c_{\alpha} = 1 \text{ and } r_{\alpha} = 2 \qquad \text{if } \alpha = 0$$

$$c_{\alpha} = 1/2 \text{ and } r_{\alpha} = \alpha + 2 \qquad \text{if } 0 < \alpha \le 1$$

$$c_{\alpha} = 1/2^{\alpha} \text{ and } r_{\alpha} = \alpha + 2 \qquad \text{if } \alpha \ge 1$$

Let x be a solution of $x' \in F(t, x)$, and let $a \in F(t, 0)$. Then $a = f(t) - \beta \gamma$, $(||\gamma|| \le 1)$, and we have

$$\begin{aligned} \langle x'(t), x(t) \rangle &= \langle x'(t) - a + a, x(t) \rangle \\ &= \langle x'(t) - a, x(t) \rangle + \langle a, x(t) \rangle \\ &\leq -c_{\alpha} \|x(t)\|^{r_{\alpha}} + (M + \beta) \|x(t)\| \,, \end{aligned}$$

where $M = \sup_{t \in \mathbb{R}} ||f(t)||$. Therefore,

$$\frac{d}{2dt} \|x(t)\|^2 \le 0 \quad \text{for } \|x(t)\| \ge \left(\frac{M+\beta}{c_{\alpha}}\right)^{1/(r_{\alpha}-1)}.$$

Consequently

$$\sup_{t \in \mathbb{R}} \|x(t)\| \le \max \left[\|x(0)\|, (\frac{M+\beta}{c_{\alpha}})^{1/(r_{\alpha}-1)} \right]$$

because the map $t \mapsto \|x(t)\|^2$ is decreasing outside $B\left(0, \left(\frac{M+\beta}{c_{\alpha}}\right)^{1/(r_{\alpha}-1)}\right)$.

3 Almost periodic solutions

Let $(E,\|.\|)$ be a uniformly convex Banach space with E^* uniformly convex. We consider the problem

$$x'(t) \in -Ax(t) + f(t), \qquad (8)$$

where $f : \mathbb{R} \to E$ is a continuous almost periodic function (see appendix I for the definition of almost periodicity) and $A : E \to 2^E \setminus \emptyset$ is a hyper-accretive multi-valued map which means that for all $\lambda > 0$, $\text{Im}(I + \lambda A) = E$ and $\langle Ax - Ay, x - y \rangle_+ \ge 0$ for all $x, y \in E$.

Theorem 3 Problem (8) has a solution on $[t_0, +\infty[$ $(t_0 \in \mathbb{R})$, which is uniformly continuous with precompact range if and only if it has a weak almost periodic solution.

Remark. Since a continuous almost periodic map is uniformly continuous with precompact range, it is convenient to relate the existence of a solution to that of uniformly continuous with the precompact range.

Proof of Theorem 3. The proof will be divided into four steps.

Step 1. The Cauchy problem

$$x'(t) \in -Ax(t) + f(t) \tag{9}$$

$$x(t_0) = x_0 \tag{10}$$

has a unique weak solution on $[t_0, +\infty[$. (weak solution means that there are sequences x_n and f_n where x_n is a strong solution and $x_n \to x$ uniformly in every compact subset J of $[t_0, +\infty[$ and $f_n \to f$ in $L^1(J, E)$). Indeed, Since E and E^* are uniformly convex, the Cauchy problem

$$x'(t) \in -Ax(t)$$
$$x(t_0) = x_0$$

has a unique strong solution on $[t_0, +\infty[$ (see Deimling [6]). Since f is almost periodic, $f \in L^1(J, E)$ for every compact $J \subset [t_0, +\infty[$, with $t_0 \in J$, so there is a sequence f_n of stairs functions which converges uniformly to f, hence $f_n \to f$ in $L^1(J, E)$. On the other hand for every f_n there is x_n such that

$$egin{aligned} x_n'(t) \in -Ax_n(t) + f_n(t) \ x_n(t_0) = x_0 \,. \end{aligned}$$

Because if g is a stair function defined on $a = b_0 < b_1 < ... < b_p = T$ (T > a) by $g(t) = y_i$ on $[b_{i-1}, b_i]$ the Cauchy problem

$$x'(t) \in -Ax(t) + g(t)$$
$$x(t_0) = x_0$$

has also a unique strong solution x defined by $x(t) = S_i(t - b_{i-1}).x(b_{i-1})$ for $t \in [b_{i-1}, b_i]$ and $x(t_0) = x_0$ where $S_i(t)$ is the semigroup generated by the hyper-accretive operator $-(A - y_i)$.

Let us show that (x_n) is a Cauchy sequence in the Banach space $C([t_0, +\infty[, E)$ equipped with the topology of uniformly convergence in compact subsets. Since -A is dissipative, we have

$$\langle x'_n(t) - f_n(t) - x'_p(t) + f_p(t), x_n(t) - x_p(t) \rangle_{-} \le 0,$$

 E^* is uniformly convex, $\langle ., . \rangle_- = \langle ., . \rangle_+$, and $\langle ., . \rangle_-$ is linear on the first argument. Then

$$\frac{d^{-}}{2dt} \|x_n(t) - x_p(t)\|^2$$

$$= \langle x'_{n}(t) - x'_{p}(t), x_{n}(t) - x_{p}(t) \rangle_{-}$$

$$= \langle x'_{n}(t) - f_{n}(t) - x'_{p}(t) + f_{p}(t) + f_{n}(t) - f_{p}(t), x_{n}(t) - x_{p}(t) \rangle_{-}$$

$$= \langle x'_{n}(t) - f_{n}(t) - x'_{p}(t) + f_{p}(t), x_{n}(t) - x_{p}(t) \rangle_{-}$$

$$+ \langle f_{n}(t) - f_{p}(t), x_{n}(t) - x_{p}(t) \rangle_{-}$$

$$\leq \langle f_{n}(t) - f_{p}(t), x_{n}(t) - x_{p}(t) \rangle_{-}$$

$$\leq ||f_{n}(t) - f_{p}(t)||||x_{n}(t) - x_{p}(t)|||$$

Hence

$$egin{aligned} & \|x_n(t)-x_p(t)\| & \leq & \|x_n(t_0)-x_p(t_0)\| + \int_{t_0}^t \|f_n(s)-f_p(s)\| ds \ & = & \int_{t_0}^t \|f_n(s)-f_p(s)\| ds o 0 \quad ext{as } n, p o +\infty \,. \end{aligned}$$

Without loss of generality, we can assume that the Cauchy problem (9)-(10) has a strong solution. Let $x : [t_0, +\infty[\rightarrow E$ be the uniformly continuous solution of the Cauchy problem (9)-(10) with $x([t_0, +\infty[)$ precompact. Since f is almost periodic, there is $t_n \to +\infty$ such that $f(t + t_n) \to f(t)$ uniformly on \mathbb{R} (see appendix I). Consider the sequences of translated functions

$$x_n(t) = x(t+t_n)$$
 and $f_n(t) = f(t+t_n)$

which are defined on the real interval $[a, +\infty[$ when $n \ge n(a)$. Since $x([t_0, +\infty[)$ is precompact, we deduce that $\{x_n(t), t \ge a, n \ge n(a)\}$ is also precompact. On the other hand that $\{x_n, n \ge n(a)\}$ is equi-continuous follows from the following lemma which is easy to proof.

Lemma 2 Let *E* be a Banach space, $J \subset \mathbb{R}$ be an interval and \mathcal{M} a bounded subset of the Banach space $C_b(J, E)$ of continuous bounded functions. Then \mathcal{M} is uniformly equi-continuous if and only if the mapping $(\psi, t) \mapsto \psi(t)$ of $\mathcal{M} \times J \subset C_b(J, E) \times \mathbb{R}$ into *E* is uniformly continuous on $\mathcal{M} \times J$.

Now applying Ascoli's theorem in the intervals [-N, N], N = 1, 2, ... and using the diagonal procedure (see Zaidman [13]) it is possible to find a subsequence which converges uniformly in every compact subset J of \mathbb{R} . But f_n is almost periodic, so $f_n \to f$ in $L^1(J, E)$. Therefore, we obtain a weak solution x^* of (8) defined on \mathbb{R} which is uniformly continuous with range contained in the closure of $x([t_0, +\infty[)$, hence with precompact range.

Step 2. Put $K_0 = \overline{Co}(x^*(\mathbb{R}))$, so that K_0 is a compact convex subset of E. Let

$$\Omega = \left\{ x : \mathbb{R} \to E | x(\mathbb{R}) \subset K_0 \right\}$$

with x a uniformly continuous solution of (8) and $J : \Omega \to \mathbb{R}^+$ defined by $Jx = \sup_{t \in \mathbb{R}} ||x(t)||$. Put $\mu = \inf_{x \in \Omega} Jx$, so there is $x_n \in \Omega$ such that $J(x_n) \to \mu$. By Lemma 2 and Ascoli's theorem there is a subsequence of x_n which converges uniformly in every compact subset of \mathbb{R} , let \tilde{x} be this limit, then $\tilde{x} \in \Omega$ and $J\tilde{x} = \mu$.

Step 3. We show that \tilde{x} is unique. Assume that there are x_1 and x_2 in Ω such that $Jx_1 = Jx_2 = \mu$. Since f is almost periodic, there is $t_n \to -\infty$ such that $f(t+t_n) \to f(t)$ uniformly on \mathbb{R} . By Ascoli's theorem, we can extract from t_n a subsequence (which we denote by the same symbol) such that $x_1(t+t_n)$ and $x_2(t+t_n)$ converge uniformly in every compact subset of \mathbb{R} . Let

$$y_1 = \lim x_1(t+t_n)$$
 and $y_2 = \lim x_2(t+t_n)$.

Then y_1 and y_2 are weak solutions of (8), and $y_1, y_2 \in \Omega$ with $J(y_1) = J(y_2) = \mu$. Now since

$$x'_{1}(t+t_{n}) \in -Ax_{1}(t+t_{n}) + f(t+t_{n})$$

and

$$x'_{2}(t+t_{n}) \in -Ax_{2}(t+t_{n}) + f(t+t_{n})$$

and -A is dissipative, we deduce that

$$\langle x_1'(t+t_n) - x_2'(t+t_n), x_1(t+t_n) - x_2(t+t_n) \rangle_{-} \le 0$$

 So

$$\frac{d^{-}}{2dt}\|x_1(t+t_n) - x_2(t+t_n)\|^2 \le 0$$

Consequently the map $t \mapsto ||x_1(t+t_n) - x_2(t+t_n)||$ is non increasing. Since $x_i(\mathbb{R}) \subset K_0$ for i=1,2, we deduce that

$$|y_{1}(t) - y_{2}(t)|| = \lim_{n \to +\infty} ||x_{1}(t + t_{n}) - x_{2}(t + t_{n})||$$

$$= \lim_{\tau \to -\infty} ||x_{1}(\tau) - x_{2}(\tau)||$$

$$= \sup_{t \in \mathbb{R}} ||x_{1}(t) - x_{2}(t)||$$

$$= a \text{ constant}$$
 (11)

To continue, we need the following lemma.

Lemma 3 Let E be a strictly convex Banach space, C a closed convex subset of E. Let $T: C \to C$ be a non expansive map and x_0, y_0 in C such that

$$||Tx_0 - Ty_0|| = ||x_0 - y_0||.$$

Then

$$T(\frac{x_0 + y_0}{2}) = \frac{Tx_0 + Ty_0}{2}.$$

Let the operator $T_t: E \to E$ be defined by by $T_t x(0) = x(t)$ where x(.) is a weak solution of (8). Then $T_t y_1(0) = y_1(t)$ and $T_t y_2(0) = y_2(t)$ where y_1 and y_2 are in Ω . By (11),

$$||T_t y_1(0) - T_t y_2(0)|| = ||y_1(t) - y_2(t)|| = ||y_1(0) - y_2(0)||.$$

So that by Lemma 3,

$$T_t(\frac{y_1(0) + y_2(0)}{2}) = \frac{T_t y_1(0) + y_2(0)}{2} = \frac{y_1(t) + y_2(t)}{2}$$

and $y(t) := \frac{y_1(t)+y_2(t)}{2}$ is also a solution of (8) satisfying $y(0) = \frac{y_1(0)+y_2(0)}{2}$. Since K_0 is convex, $y(\mathbb{R}) \subset K_0$ and $y \in \Omega$. We have

$$Jy_1 = Jy_2 = \mu$$

So, $\mu = \inf_{x \in \Omega} Jx$ and $\frac{y_1 + y_2}{2} \in \Omega$. We deduce that

$$\mu \le J(\frac{y_1 + y_2}{2}) \le \frac{Jy_1}{2} + \frac{Jy_2}{2} = \mu$$

and consequently $Jy = \mu$. Since $J(\frac{y_1+y_2}{2}) = \frac{Jy_1}{2} + \frac{Jy_2}{2}$ we have

$$\sup_{t \in \mathbb{R}} \left\| \frac{y_1(t) + y_2(t)}{2} \right\| = \frac{1}{2} \sup_{t \in \mathbb{R}} \|y_1(t)\| + \frac{1}{2} \sup_{t \in \mathbb{R}} \|y_2(t)\|$$

So there is $s_n \in \mathbb{R}$ such that

$$\begin{array}{rcl} \mu - \frac{1}{n} & < & \left\| \frac{y_1(s_n) + y_2(s_n)}{2} \right\| \\ & \leq & \frac{\|y_1(s_n)\|}{2} + \frac{\|y_2(s_n)\|}{2} \\ & \leq & \mu \end{array}$$

and since $y_1(s_n) \in K_0$; $y_2(s_n) \in K_0$ there is a subsequence (which we denote by the same symbol) such that $y_1(s_n) \to l_1$ and $y_2(s_n) \to l_2$. Then

$$\left\|\frac{l_1+l_2}{2}\right\| = \frac{\|l_1\|}{2} + \frac{\|l_2\|}{2} = \mu.$$

On the other hand $||y_i(s_n)|| \leq \mu$ implies $||l_i|| \leq \mu$ and $\frac{||l_1||}{2} + \frac{||l_2||}{2} = \mu$ implies $||l_i|| \geq \mu$ for i = 1, 2. Hence $||l_1|| = ||l_2|| = \mu$. Since the norm of E is strictly convex, we deduce that $l_1 = l_2$ and consequently

$$\begin{aligned} \|l_1 - l_2\| &= \|y_1(t) - y_2(t)\| \\ &= \lim_{\tau \to -\infty} \|x_1(\tau) - x_2(\tau)\| \\ &= \|x_1(-\infty) - x_2(-\infty)\| \\ &= \sup_{t \in \mathbb{R}} \|x_1(t) - x_2(t)\| \end{aligned}$$

So $x_1(t) = x_2(t)$ for every $t \in \mathbb{R}$.

Remark. In the case of a Hilbert space, by the parallelogram formula and by (11), we deduce directly that $x_1(t) = x_2(t)$ for all $t \in \mathbb{R}$.

Step 4. Finally we show that \tilde{x} the unique element of Ω which satisfies $J\tilde{x} = \inf_{x \in \Omega} Jx$ is almost periodic. For this purpose, we use the 2^{nd} Bochner's characterization of almost periodicity (see appendix I). Let t_n and s_n be two real sequences, then by Ascoli's theorem there is a subsequence of t_n (which we denote by the same symbol) such that $\tilde{x}(t + t_n) \to y(t)$ uniformly in every compact subset of \mathbb{R} . Then y(.) is a weak solution of

$$x' \in -Ax + g(t) \,, \tag{12}$$

where $g(t) = \lim f(t+t_n)$. Now consider $\tilde{x}(t+t_n+s_n)$ and $y(t+s_n)$, then by Ascoli's theorem we can extract from t_n and s_n sub-sequences such that $\tilde{x}(t+t_n+s_n) \to z_1(t)$ and $y(t+s_n) \to z_2(y)$, but $f(t+t_n+s_n)$ and $g(t+s_n)$ have the same limit which we denote by h(t). Then $z_1(.)$ and $z_2(.)$ are weak solutions of

$$x' \in -Ax + h(t) \tag{13}$$

so $\mu = J_f(K_0) = J_h(K_0) \le Jz_i$ i = 1, 2 where

$$J_f(K_0) = \inf \left\{ Jx : x \text{ is a weak solution of } (8), x(\mathbb{R}) \subset K_0 \right\}$$

and

$$J_h(K_0) = \inf \left\{ Jx : x \text{ is a weak solution of } (13), x(\mathbb{R}) \subset K_0 \right\}.$$

We have $\mu = Jz_1 = Jz_2$, but the equation (13) has the same property as the equation (8) because the map h(.) is almost periodic. Therefore, there is a unique solution which satisfies

$$J_h(K_0) = \inf \{ Ju : u \text{ is a weak solution of } (13), u(\mathbb{R}) \subset K_0 \}.$$

Consequently $z_1 = z_2$. Also $\tilde{x}(t + t_n + s_n)$ and $y(t + s_n)$ have the same limit, hence \tilde{x} is almost periodic.

Example. Let $E = (\mathbb{R}^n, \|.\|)$ with the Euclidean norm $\|.\|$, and let $\varphi(x) = \|x\|$. Consider

$$Ax = \partial \varphi(x) + kx$$

where k > 0 and $\partial \varphi$ is the sub-differential of φ . Since φ is continuous and convex,

$$\overbrace{\mathrm{Dom}(\varphi)}^{\circ} \subset \mathrm{Dom}(\partial \varphi) \quad \mathrm{so} \quad \mathrm{Dom}(A) = \mathbb{R}^n.$$

The problem

$$x' \in -Ax + f(t) \,,$$

with $f : \mathbb{R} \to \mathbb{R}^n$ continuous and almost periodic, has a strong solution defined on $[t_0, +\infty[$ ($t_0 \in \mathbb{R}$) (see Brezis [4]). Now since $0 \in \partial \varphi(0)$ we have

$$\langle f(t) - kx - x'(t), x(t) \rangle \ge 0.$$

Therefore,

$$egin{array}{rl} \langle x'(t), x(t)
angle &\leq & \langle f(t), x(t)
angle - k \| x(t) \|^2 \ &\leq & (M - k \| x(t) \|) \| x(t) \| \end{array}$$

where $M = \sup_{t \in \mathbb{R}} \|f(t)\|.$ We deduce that

$$D^- \|x(t)\| \le M$$

and

$$\frac{d}{2dt} \|x(t)\|^2 \le 0 \quad \text{for } \|x(t)\| \ge \frac{M}{k}.$$

The first inequality shows that x is lipschitzean, hence uniformly continuous and the second one shows that the map $t \mapsto ||x(t)||$ is non increasing outside of the ball $B(0, \frac{M}{k})$. Consequently

$$\|x(t)\| \le \sup(\|x(t_0)\|, \frac{M}{k}) \quad \forall t \ge t_0.$$

So that the problem $x' \in -Ax + f(t)$ has a uniformly continuous solution which is bounded, hence with precompact range, so it has an almost periodic solution. \diamond

Appendix I

Let *E* be a real Banach space, a map $f : \mathbb{R} \to E$ is said to be almost periodic if for each $\varepsilon > 0$ there exists l_{ε} such that for all $a \in \mathbb{R}$ there exists $\tau \in [a, a + l_{\varepsilon}]$ such that

$$\|f(t+\tau) - f(t)\| \le \varepsilon \quad \forall t \in \mathbb{R}.$$

If f is almost periodic then there exist $t_n \to +\infty$ and $s_n \to -\infty$ such that $f(t+t_n) \to f(t)$ and $f(t+s_n) \to f(t)$ uniformly on \mathbb{R} . In practice, we use the following Bochner's characterizations of almost periodicity (Yoshisawa [12]).

First characterization. $f \in C(\mathbb{R}, E)$ is almost periodic if and only if from every real sequence t'_n one can extract a subsequence t_n such that $\lim f(t + t_n)$ exists uniformly on the real line, furthermore the limit is also almost periodic.

Second characterization. $f \in C(\mathbb{R}, E)$ is almost periodic if and only if for every pair of real sequences h'_n and k'_n there are sub-sequences h_n and k_n such that $f(t+h_n)$ has a pointwise limit g(t) on \mathbb{R} , and $f(t+h_n+k_n)$ and $g(t+k_n)$ have a same limit h(t) on \mathbb{R} , and h is also almost periodic.

14

EJDE-2000/24

Appendix II

Let E be a real Banach space and $x : [a, b] \subset \mathbb{R} \to E$ differentiable, and put $\Phi(t) = ||x(t)||$. Then

$$\Phi(t)D^{-}\Phi(t) = \langle x'(t), x(t) \rangle_{-}$$

where

$$D^{-}\Phi(t) = \limsup_{h \to 0^{-}} \frac{\Phi(t+h) - \Phi(t)}{h}$$

is the upper Dini's derivative of Φ (see e.g Deimling [6]).

References

- J. Aubin, A. Cellina, Differential inclusions multivalued maps and viability theory, Springer-Verlag (1984).
- [2] F. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bul Amer Math Soc, 72 (1966), 571–575.
- [3] F. Browder, Periodic solutions of nonlinear equations of evolution in infinite dimensional spaces, "Lecture in differential equations" A.K Aziz. ed, V1 Van Norstrand, Newyork, (1969), 71–96.
- [4] H. Brezis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North-Holand Amsterdam (1973).
- [5] J. Baillon A. Haraux, Comportement à l'infinie pour les équations d'évolution avec forcing périodique, Arch. Rat. Mec. Anal, 67 (1977), 101– 109.
- [6] K. Deimling, Nonlinear functional analysis, Springer-Verlag (1985).
- [7] E. Hanebaly, Solutions périodiques d'équations différentielles non linéaires en dimension infinite, C.R.A.S, Serie A (1979), 623–626.
- [8] E. Hanebaly, Solutions presque-périodiques d'équations différentielles monotones, C.R.A.S, 296 Serie I (1983), 263.
- [9] E. Hanebaly, Contribution à l'étude des solutions périodiques et presquepériodiques des équations différentielles non linéaires sur les espaces de Banach, Thèse d'état Université de Pau I.U.R.S (1988).
- [10] E. Hanebaly, Un théorème du point fixe et solutions périodiques d'équations différentielles V-dissipatives, πP.R.N.M.S (252) Fixed point theory and applications, (1991), 221–230. Edit=82 par J.B.Baillon M.A. thera.
- [11] G. Lumer, Semi-inner product spaces, Trans. Math. Math. Soc, (1961), 29– 43.

- [12] T. Yoshisawa, stability theory and the existence of periodic solutions and almost periodic solutions, Spriger-Verlag (1975).
- [13] S. Zaidman, Solution of almost periodic abstract differential equations with relatively compact range, J. Nonlinear analysis, Vol. 8, No. 9 (1984), 1091– 1093.

E. HANEBALY

Université Mohammed V Faculté des Sciences Département de Mathématiques, Rabat, Maroc. e-mail: hanebaly@fsr.ac.ma

BRAHIM MARZOUKI

Université Mohammed I Faculté des Sciences Département de Mathématiques, Oujda, Maroc. e-mail: marzouki@sciences.univ-oujda.ac.ma