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Non-degenerate implicit evolution inclusions ∗

Kenneth Kuttler

Abstract

We prove the existence of solutions for the implicit evolution inclusion

(B(t)u(t))′ +A(t, u(t)) 3 f(t)

under conditions that are easy to verify on the set valued operator A(t, ·)
and that do not imply the operator is monotone. We also present an
example where our existence theorem applies to a time dependent implicit
inclusion.

1 Introduction

There are many works which deal in the theory of implicit evolution equations
of the form

(Bu)′ +Au = f.

In the case where A is monotone and B is linear, the book by Carroll and
Showalter [1], gives many of the best theorems allowing the equation to be
replaced by 3 thus including evolution inclusions. Equations of this form have
also been discussed by many authors in the case where A is some sort of single
valued operator from a Banach space to its dual which may fail to be monotone.
See for example, Lions [2], Bardos and Brezis [3], [4], or [5]. More recently
these theorems have been generalized to include the case where A may be non
monotone and set valued, a recent paper being [6].
The paper [6] includes as a special case the situation where V and W are

separable reflexive Banach spaces satisfying

V ↪→W ↪→ W ′ ↪→ V ′ (1.1)

and V is dense in W along with a family of linear operators, B(t) ∈ L(W,W ′)
satisfying

〈B(t)u, v〉 = 〈B(t)v, u〉, (1.2)

〈B(t)u, u〉 ≥ 0, (1.3)

B(t) = B(0) +
∫ t
0
B′(s) ds, (1.4)
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2 Non-degenerate implicit evolution inclusions EJDE–2000/34

for all u, v ∈W , and B′ ∈ L∞(0, T ;L(W,W ′)).
In the above formulae, 〈·, ·〉 denotes the duality pairing of the Banach space,

W , with its dual space. We will use this notation in the present paper, the
exact specification of which Banach space being determined by the context in
which this notation occurs. Thus in the above, it is clear from context, since
B(t) ∈ L(W,W ′), that the Banach space is W . We use this notation through-
out the present paper to make the presentation less cluttered with symbols.
Occasionally, when it is desired to emphasize which Banach space is meant, we
will write the symbol in the form 〈v, u〉X′,X , thus indicating the duality pairing
between X and X ′. We will also use the notation, ‖u‖Y to denote the norm of
u in the space Y where Y is a Banach space or in the form ‖u‖ when it is clear
which space is meant. The symbol, Lp(0, T ;Y ) denotes the space of strongly
measurable Y valued functions, f , for which∫ T

0

‖f(t)‖pY dt <∞

in the case where p ≥ 1, and the essential supremum of the function, t→ ‖f(t)‖
in the case where p =∞. For further discussion of these spaces we refer to [7].
In [6], there is also a set valued operator, A, pseudo-monotone in the sense

of [8], which maps elements of a solution space, X , defined below, to P(X ′) the
power set of X ′. The function, f ∈ Lp

′
(0, T ;V ′) ≡ V ′ is also given. The paper,

[6] includes existence theorems for the following implicit inclusion,

(Bu)′ +Au 3 f in V ′, Bu(0) = B(0)u0, u0 ∈W, (1.5)

where the prime denotes differentiation in the sense of V ′ valued distributions.
Thus, for φ ∈ C∞c (0, T ),

(Bu)′(φ) ≡ −

∫ T
0

B(t)u(t)φ′(t) dt

The solution, u, is found in the space of solutions, X where

X ≡
{
u ∈ Lp(0, T ;V ) ≡ V : (Bu)′ ≡ Lu ∈ Lp

′

(0, T ;V ′) ≡ V ′
}

(1.6)

and p ≥ 2 is always assumed. Thus, u is a solution to (1.5) if u ∈ V , (Bu)′ ∈ V ′,
and there exists ξ ∈ Au ⊆ V ′ such that along with the initial condition, whose
precise meaning is given below, we have the following equation.

(Bu)′ + ξ = f .

The meaning of the initial condition is dependent on the following theorem
about the space of solutions, X , a special case of one proved in [6]. It is less
general because in [6], it is not assumed V is dense in W and more general
function spaces are considered. See also [5] for a slightly less general version of
the same theorem.
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Theorem 1.1 Let u, v ∈ X, then the following hold.

1. t → 〈B(t)u(t), v(t)〉W ′ ,W equals an absolutely continuous function a.e. t,
denoted by 〈Bu, v〉(·).

2. 〈Lu(t), u(t)〉 = 1
2 [〈Bu, u〉

′(t) + 〈B′(t)u(t), u(t)〉] a.e. t.

3. |〈Bu, v〉(t)| ≤ C‖u‖X‖v‖X for some C > 0 and for all t ∈ [0, T ].

4. t→ B(t)u(t) equals a function in C(0, T ;W ′), a.e. t, denoted by Bu(·).

5. sup{‖Bu(t)‖W ′ , t ∈ [0, T ]} ≤ C||u||X for some C > 0.

6. Let K : X → X ′ be given by

〈Ku, v〉X′,X ≡

∫ T
0

〈Lu(t), v(t)〉dt+ 〈Bu, v〉(0) .

Then K is linear, continuous and weakly continuous.

7. 〈Ku, u〉 = 1
2 [〈Bu, u〉(T ) + 〈Bu, u〉(0)] +

1
2

∫ T
0 〈B

′(t)u(t), u(t)〉dt.

In proving this theorem it is shown that C∞([0, T ] ;V ), the space of infinitely
differentiable functions having values in V is dense in X . Therefore, we also
obtained the following formula which is valid for all u ∈ X .

Bu(t) = Bu(0) +

∫ t
0

(Bu)′(s)ds (1.7)

Here Bu(0) ∈W ′.
From this theorem we see that we can define a continuous function which

equals B(t)u(t) a.e. and therefore, we can give a meaning to the expression
Bu(0) = B(0)u. The operator A is assumed to be a set valued pseudo-monotone
map from X to P(X ′). Following [8] these operators are given according to the
following definition.

Definition 1.2 We say A : X → P(X ′) is pseudo-monotone if the following
hold.

1. The set Au is non-empty, bounded, closed and convex for all u ∈ X.

2. If F is a finite dimensional subspace of X, u ∈ F , and if U is a weakly
open set in V ′ such that Au ⊆ U , then there exists a δ > 0 such that if
v ∈ Bδ(u) ∩ F then Av ⊆ U .

3. If ui → u weakly in X and u∗i ∈ Aui is such that

lim sup
i→∞
〈u∗i , ui − u〉 ≤ 0, (1.8)

then, for each v ∈ X, there exists u∗(v) ∈ Au such that

lim inf
i→∞
〈u∗i , ui − v〉 ≥ 〈u

∗(v), u− v〉. (1.9)
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The following lemma shows the second condition in the above list follows
as a special case of something which can be proved if it is assumed that A is
bounded in addition to Conditions (3) and (1). First we give a definition of
what we mean by bounded.

Definition 1.3 Let A : X → P(X ′) be a set valued map. We say A is bounded
if for each bounded set, G ⊆ X,

sup {‖z‖ : z ∈ Ax, x ∈ G} <∞.

Thus A is bounded if the norms of all possible elements of Ax for x ∈ G are
bounded above.

Lemma 1.4 Let A : X → P(X ′) satisfy conditions (1) and (3) above and
suppose A is bounded. Then if xn → x in X, and if U is a weakly open set
containing Ax, then Axn ⊆ U for all n large enough.

Proof: If this is not true, there exists xn → x, a weakly open set, U , containing
Ax and zn /∈ Axn, but zn /∈ U . Taking a subsequence if necessary, we obtain a
sequence which satisfies zn ⇀ z /∈ U in addition to this. Then

lim sup
n→∞

〈zn, xn − x〉 = 0

so if y ∈ X there exists z(y) ∈ Ax such that 〈z, x−y〉 = lim infn→∞〈zn, xn−y〉 ≥
〈z(y), x− y〉. Letting w = x − y, this shows, since y ∈ X is arbitrary, that the
following inequality holds for every w ∈ X .

〈z, w〉 ≥ 〈z(x− w), w〉.

In particular, we may replace w with −w and obtain

〈z,−w〉 ≥ 〈z(x+ w),−w〉,

which implies
〈z(x− w), w〉 ≤ 〈z, w〉 ≤ 〈z(x+ w), w〉.

Therefore, there exists

zλ(y) ≡ λz(x− w) + (1− λ)z(x+ w) ∈ Ax

such that 〈z, w〉 = 〈zλ(y), w〉. But this is a contradiction to z /∈ Ax because if
z /∈ Ax there exists w ∈ X such that 〈z, w〉 > 〈z1, w〉 for all z1 ∈ Ax. Therefore,
z ∈ Ax which contradicts the assumption that zn and consequently z are not
contained in U .
This condition which implies Condition 2 above is known as Upper semi-

continuity with respect to the strong topology on X and the weak topology
on X ′. If A were single valued, this would be called demicontinuity because it
would imply that the image of strongly convergent sequences converges weakly.
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The importance of this lemma is that it shows Condition 2 is redundant if it is
assumed that A satisfies the other two conditions and is bounded.
For B(t) defined above, we may consider the operators, B′ and B as maps

from V to V ′ according to the definition,

〈B′u, v〉 ≡

∫ T
0

〈B′(t)u(t), v(t)〉dt, 〈Bu, v〉 ≡

∫ T
0

〈B(t)u(t), v(t)〉dt

and we shall follow this convention throughout the paper. Note the same no-
tation also applies to these operators considered as maps from L2(0, T ;W ) to
L2(0, T ;W ′) since p ≥ 2 and V is assumed to be dense in W .
In [6] an existence theorem is given which contains the following result as a

special case.

Theorem 1.5 Let B,X,W , and V be as defined above, f ∈ V ′, u0 ∈ W , and
suppose A : V → P(V ′) is such that A is set valued, bounded as a map from V
to P(V ′), and pseudo-monotone when considered as a map from X to P(X ′).
Then if A+ 12B

′ is coercive,

lim
‖u‖V→∞

〈Au, u〉+ 12 〈B
′u, u〉

‖u‖V
=∞,

it follows there exists a solution, u ∈ X to

(Bu)′ +Au 3 f, Bu(0) = Bu0. (1.10)

Furthermore, u is a solution to (1.10) if and only if u is a solution to the
following equation which holds for all v ∈ X.

〈Ku, v〉+ 〈u∗, v〉 = 〈f, v〉 + 〈Bv(0), u0〉 (1.11)

for some u∗ ∈ Au.

While this theorem is very general, even allowing A to depend on the history
of the function, u, the hypotheses are sometimes difficult to verify. Therefore, it
is important to consider the special case in which the operator, A, is of the form
Au(t) = A(t, u(t)) and to determine easy to verify conditions on the operators,
A(t, ·) which will imply the above conditions on A.
A paper by Bian andWebb, [9] gives such convenient conditions in the special

case where B = I and W = H , a Hilbert space with H = H ′. Conditions are
given on the operators, A(t, ·) which make it possible to obtain an existence
theorem for the evolution inclusion, (1.5) in the case where u0 ∈ V . We will
demonstrate that under appropriate conditions on B, including the case when
B = I, their conditions actually imply the operator, A is Pseudo-monotone on
the space, X , which makes possible the consideration of more general initial
data. In the context of evolution inclusions they considered, it will mean we
can take the initial data in H rather than only in V . When this theorem has
been proved, we apply it to some existence theorems which follow from it and
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Theorem 1.5. Next we consider a model problem for an implicit inclusion in
which the nonlinear operators are obtained as a sum of operators considered by
Browder [10] and a set valued operator. We conclude by giving a proof of a
measurability result. Throughout the paper the symbol ⇀ will mean weak or
weak ∗ convergence and the symbol → will mean strong convergence.

2 Pointwise pseudo-monotone maps

We will need to consider some sort of measurability condition for set valued
operators, S(t, ·) mapping the Banach space, V , described above, to P(V ′).
There is quite a well developed theory of set valued maps found in [11], but for
our purposes, we will say the operators, S(t, ·) are measurable if the following
condition holds.
If

∅ 6= F (t) ≡ {w ∈ S(t, x(t)) : 〈w, x(t) − y(t)〉 ≤ α(t)} (2.1)

for α measurable and x, y ∈ V , then there exists z ∈ V ′ such that z(t) ∈ F (t)
a.e.
The next three conditions are modifications of conditions proposed by Bian

and Webb, [9]. We let V and W be the reflexive Banach spaces defined in (1.1).

1. v → A(t, v) is a set valued pseudo-monotone map from V to P(V ) sat-
isfying conditions 1 and 3 in the definition of pseudo-monotone given in
Section 1.

2. There exists b1 ≥ 0 and b2 ∈ Lp
′
(0, T ) such that

‖z‖V ′ ≤ b1‖u‖
p−1
V + b2(t) for all z ∈ A(t, u)

3. There exists b3 > 0, α ∈ (0, p), b4 ≥ 0, and b5 ∈ L1(0, T ) such that

inf
z∈A(t,u)

〈z, u〉+
1

2
〈B′(t)u, u〉 ≥ b3‖u‖

p
V − b4‖u‖

α
V − b5(t)

and
inf

z∈A(t,u)
〈z, u〉 ≥ b3‖u‖

p
V − b4‖u‖

α
V − b5(t).

To these three conditions, we append the following.

4. The operators, A(t, ·) are measurable in the sense of (2.1).

In Section 5 we show how Condition 4 follows from standard definitions of
measurability, in particular, the assumptions in Bian and Webb, [9]. The first
inequality of 3. implies we are assuming that B′(t) cannot be too negative and
we require both inequalities to hold.
In the case that A(t, ·) is single valued, Condition 4 would be satisfied in

the context of conditions (1) - (3) if we assumed, as it is reasonable to do,
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that t → A(t, v) is measurable. This is because the operators, A(t, ·), being
pseudo-monotone and bounded would be demicontinuous also. Therefore, if
x ∈ V we could obtain x as a pointwise limit of simple functions, sn for which
t → A(t, sn(t)) is measurable and use the demicontinuity of A(t, ·) to conclude
t → A(t, x(t)) is measurable. Then F (t) = A(t, x(t)) and the given estimates
would imply t→ A(t, x(t)) is in V ′.
We will need the following definition.

Definition 2.1 We define an operator, Â : V → P(V ′) by

Â(u) ≡ {z ∈ V ′ : z(t) ∈ A(t, u(t)) a.e.t ∈ [0, T ]}

The following is the main theorem in this section.

Theorem 2.2 Suppose conditions 1 - 4 hold and B(t) is one-to-one for a.e. t.

Then Â is pseudo-monotone as a map from X to P(X ′).

Proof: First we need to verify Âu is nonempty closed and convex. It is clear
that this is convex and closed. We need to verify this set is nonempty. Let
u, v ∈ V and let

F (t)

≡
{
w ∈ A(t, u(t)) : 〈w, u(t)− v(t)〉 ≤

[
b1‖u(t)‖

p−1
V + b2(t)

]
‖u(t)− v(t)‖

}
.

Note that by 2, F (t) is nonempty. Letting

α(t) ≡
[
b1‖u(t)‖

p−1
V + b2(t)

]
‖u(t)− v(t)‖,

it follows from Condition 4 that there exists z ∈ V ′ such that z(t) ∈ F (t) a.e.

Thus z ∈ Âu.
Next we must verify the pseudo-monotone limit condition for Â on X . Let

un ⇀ u in X , zn ∈ Âun, and suppose

lim sup
n→∞

〈zn, un − u〉V′,V ≤ 0. (2.2)

We note there is a set of measure zero, Σ1 such that for t /∈ Σ1, we have the
following holding for all n.

zn(t) ∈ A(t, un(t)), Bu(t) = B(t)u(t),

Bun(t) = B(t)un(t), and B(t) is one-to-one.

First we verify the following claim.

Claim: Let un ⇀ u in X and let t /∈ Σ1. Then

lim inf
n→∞

〈zn(t), un(t)− u(t)〉 ≥ 0.
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Proof of the claim: Fix t /∈ Σ1 and suppose to the contrary that

lim inf
n→∞

〈zn(t), un(t)− u(t)〉 < 0. (2.3)

Then there exists a subsequence, nk such that

lim
k→∞

〈znk(t), unk(t)− u(t)〉 = lim inf
n→∞

〈zn(t), un(t)− u(t)〉 < 0. (2.4)

Therefore, for all k large enough, the second formula in 3 implies

b3‖unk(t)‖
p
V − b4‖unk(t)‖

α
V − b5(t) < ‖znk(t)‖V ′‖u(t)‖V

≤ (b1‖unk(t)‖
p−1
V + b2(t))‖u(t)‖V

which implies ‖unk(t)‖V and consequently ‖znk(t)‖V ′ are bounded. ( ‖znk(t)‖V ′
is bounded independent of nk because of the assumption that A(t, ·) is bounded
and we just showed ‖unk(t)‖V is bounded.) Now by (1.7),

Bunk(t) = Bunk(0) +

∫ t
0

(Bunk)
′(s)ds, Bu(t) = Bu(0) +

∫ t
0

(Bu)′(s)ds (2.5)

where the initial values Bunk(0) and Bu(0) are in W
′. From Theorem 1.1

Bunk(0) is bounded inW
′. Also from this theorem, the mapping, w → Bw(0) is

a continuous and linear map from X toW ′ and so, taking a further subsequence
if necessary, we may obtain

Bunk(0)⇀ Bu(0) in W
′

and also unk(t)⇀ ξ in V . From (2.5), and the assumption that un ⇀ u in X ,

B(t)unk(t) = Bunk(t)⇀ Bu(t) = B(t)u(t) in W
′.

Since B(t) is continuous, it is also closed and hence weakly closed. Therefore,
the above implies

B(t)u(t) = B(t)ξ in W ′

and since B(t) is one-to-one, ξ = u(t). Now from (2.4), and (2.3),

lim
k→∞

〈znk(t), unk(t)− u(t)〉 < 0,

and so the pseudo-monotone limit condition for A(t, ·) implies that there exists
z∞ in A(t, u(t)) such that

lim inf
k→∞

〈znk(t), unk(t)− u(t)〉 ≥ 〈z∞, u(t)− u(t)〉 = 0

> lim
k→∞

〈znk(t), unk(t)− u(t)〉,

a contradiction. This proves the claim.
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We now continue with the proof of the theorem. It follows from this claim
that for a.e. t, in fact any t /∈ Σ1, we have

lim inf
n→∞

〈zn(t), un(t)− u(t)〉 ≥ 0. (2.6)

Now also from the coercivity condition, 3, if y ∈ V ,

〈zn(t), un(t)− y(t)〉 ≥ b3‖un(t)‖
p
V − b4‖un(t)‖

α
V − b5(t)

−(b1‖un(t)‖
p−1 + b2(t))‖y(t)‖V .

Using p−1 = p
p′
, where 1

p
+ 1
p′
= 1, the right side of the above inequality equals

b3‖un(t)‖
p
V − b4‖un(t)‖

α
V − b5(t)− b1‖un(t)‖

p/p′‖y(t)‖V − b2(t)‖y(t)‖V .

Now using Young’s inequality, we can obtain a constant, C(b3, b4), depending
on b3 and b4 such that

b4‖un(t)‖
α
V ≤

b3

2
‖un(t)‖

p
V + C(b3, b4)

and another constant, C(b1, b3) depending on b1 and b3 such that

b1‖un(t)‖
p/p′‖y(t)‖V ≤

b3

2
‖un(t)‖

p
V + C(b1, b3)‖y(t)‖

p
V .

Letting k(t) = b5(t) + C(b3, b4) and C = C(b1, b3), it follows k ∈ L1(0, T ) and

〈zn(t), un(t)− y(t)〉 ≥ −k(t)− C‖y(t)‖
p
V . (2.7)

Letting y = u, we may use Fatou’s lemma to write

lim inf
n→∞

∫ T
0

(〈zn(t), un(t)− u(t)〉+ k(t) + C‖y(t)‖
p
V ) dt

≥

∫ T
0

lim inf
n→∞

〈zn(t), un(t)− u(t)〉+ (k(t) + C‖y(t)‖
p
V ) dt

≥

∫ T
0

(k(t) + C‖y(t)‖pV ) dt .

Consequently,

0 ≥ lim sup
n→∞

〈zn, un − u〉V′,V ≥ lim inf
n→∞

∫ T
0

〈zn(t), un(t)− u(t)〉dt

= lim inf
n→∞

〈zn, un − u〉V′,V ≥

∫ T
0

lim inf
n→∞

〈zn(t), un(t)− u(t)〉dt ≥ 0

showing that
lim
n→∞

〈zn, un − u〉V′,V = 0 . (2.8)
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We need to show that for all y ∈ X there exists z(y) ∈ Âu such that

lim inf
n→∞

〈zn, un − y〉V′,V ≥ 〈z(y), u− y〉V′,V .

Suppose to the contrary that for some y ∈ X ,

lim inf
n→∞

〈zn, un − y〉V′,V < 〈z, u− y〉V′,V

for all z ∈ Âu. Taking a subsequence if necessary, we assume

lim inf
n→∞

〈zn, un − y〉V′,V = lim
n→∞

〈zn, un − y〉V′,V

From (2.7),
0 ≤ 〈zn(t), un(t)− u(t)〉

− ≤ k(t) + C‖u(t)‖pV .

Thanks to (2.6), we know that for a.e. t, 〈zn(t), un(t) − u(t)〉 ≥ −ε for all n
large enough. Therefore, for such n, 〈zn(t), un(t) − u(t)〉− ≤ ε if 〈zn(t), un(t) −
u(t)〉 < 0 and 〈zn(t), un(t) − u(t)〉− = 0 if 〈zn(t), un(t) − u(t)〉 ≥ 0. There-
fore, limn→∞〈zn(t), un(t) − u(t)〉− = 0 and so we may apply the dominated
convergence theorem and conclude

lim
n→∞

∫ T
0

〈zn(t), un(t)− u(t)〉
−dt =

∫ T
0

lim
n→∞

〈zn(t), un(t)− u(t)〉
−dt = 0

from (2.6). Now by (2.8) and the above equation,

lim
n→∞

∫ T
0

〈zn(t), un(t)− u(t)〉
+ dt

= lim
n→∞

∫ T
0

〈zn(t), un(t)− u(t)〉+ 〈zn(t), un(t)− u(t)〉
− dt

= lim
n→∞

〈zn, un − u〉V′,V = 0 .

Therefore,

lim
n→∞

∫ T
0

|〈zn(t), un(t)− u(t)〉| dt = 0

so there exists a subsequence, nk such that

〈znk(t), unk(t)− u(t)〉 → 0 a.e. (2.9)

Therefore, by the pseudo-monotone limit condition for A(t, ·), there exists wt in
A(t, u(t)) such that for a.e. t,

α(t) ≡ lim inf
k→∞

〈znk(t), unk(t)− y(t)〉 ≥ 〈wt, u(t)− y(t)〉.

Let
F (t) ≡ {w ∈ A(t, u(t)) : 〈w, u(t) − y(t)〉 ≤ α(t)}
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By the condition on measurability, 4, there exists z ∈ V ′ such that z(t) ∈ F (t)

a.e. Therefore, z ∈ Âu and for a.e. t,

lim inf
k→∞

〈znk(t), unk(t)− y(t)〉 ≥ 〈z(t), u(t)− y(t)〉.

From (2.7) and Fatou’s lemma,

∫ T
0

lim inf
k→∞

{〈znk(t), unk(t)− y(t)〉+ k(t) + C‖y(t)‖
p
V } dt

≤ lim inf
k→∞

∫ T
0

{〈znk(t), unk(t)− y(t)〉+ k(t) + C‖y(t)‖
p
V } dt

which implies

lim inf
k→∞

〈znk , unk − y〉V′,V ≥

∫ T
0

lim inf
k→∞

〈znk(t), unk(t)− y(t)〉dt

≥

∫ T
0

〈z(t), u(t)− y(t)〉dt

= 〈z, u− y〉V′,V

> lim
k→∞

〈znk , unk − y〉V′,V ,

a contradiction that completes the present proof.

3 Existence theorems

In this section we generalize the main existence theorem of Bian and Webb, [9]
to the case of implicit evolution inclusions and more general initial data. With
the result of Section 2, we may state the following corollary of Theorem 1.5
which generalizes the main result of [9].

Theorem 3.1 Let B, Â,X,W , and V be as defined above, f ∈ V ′, u0 ∈ W ,
and suppose Â is given by Definition 2.1 where A(t, ·) satisfies the conditions
1 - 4 of Section 2. Then if B(t) is one to one a.e. t, there exists a solution,
u ∈ X to

(Bu)′ + Âu 3 f, Bu(0) = Bu0

Proof: Theorem 2.2 implies Â is pseudo-monotone as a map from X to P(X ′)

and so the estimates 3 and 2 of Section 2 apply to give Â+ 12B
′ is bounded and

coercive. Therefore, Theorem 1.5 implies the desired conclusion.

There is an easy generalization to Theorem 3.1 which we state next. Suppose
B satisfies (1.2) - (1.4) and we modify the conditions 1 - 4 of Section 2. For
some λ ≥ 0, we have
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1. u → λBλ(t)u + A(t, u) is a set valued pseudo-monotone map satisfying
Conditions 1 and 3 in the definition of pseudo-monotone given in Section
1 where

Bλ(t)u = B(t)e
−λtu.

2. There exists b1 ≥ 0 and b2 ∈ Lp
′
(0, T ) such that

‖z‖V ′ ≤ b1‖u‖
p−1
V + b2(t) for all z ∈ A(t, u)

3. There exists b3 > 0, α ∈ (0, p), b4 ≥ 0, and b5 ∈ L1(0, T ) such that

inf
z∈λBλ(t)u+A(t,u)

〈z, u〉+
e−λt

2
〈B′(t)u, u〉 ≥ b3‖u‖

p
V − b4‖u‖

α
V − b5(t).

and

inf
z∈λBλ(t)u+A(t,u)

〈z, u〉 ≥ b3‖u‖
p
V − b4‖u‖

α
V − b5(t)

4. The operators, λB + A(t, ·) are measurable in the sense of the condition
on measurability, (2.1).

Corollary 3.2 Let B, Â,X,W , and V be as defined above, f ∈ V ′, u0 ∈ W , and
suppose Â is given by Definition 2.1 where A(t, ·) and B satisfy the conditions
1 - 4 above. Then if B is one-to-one, there exists a solution, u ∈ X to

(Bu)′ + Âu 3 f, Bu(0) = Bu0. (3.1)

Proof: We define a new dependent variable, y, by u(t) = eλty(t). Then the
evolution inclusion of this corollary, written in terms of y becomes

(By)′ + λBy + Âλ(y) 3 g,By(0) = Bu0, (3.2)

where g(t) = e−λtf(t) and

Aλ(t, v) ≡ e
−λtA(t, eλtv).

It is almost immediate that Condition 2 of Section 2 holds for λB + Aλ. Con-
dition 3 above implies Condition 3 of Section 2 for λB + Âλ with modified
bi.

{w ∈ λBx(t) +Aλ(t, x(t)) : 〈w, x(t) − y(t)〉 ≤ α(t)}

=
{
w ∈ λBv(t) +A(t, v(t)) : 〈w, v(t) − eλty(t)〉 ≤ eλtα(t)

}
,

where v(t) = exp(λt)x(t). So the measurability condition (2.1) holds for λB +
Aλ. It is also clear that λB +Aλ is set valued pseudo-monotone if Condition 1
above holds. Therefore, we apply Theorem 3.1 to the inclusion (3.2).
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4 An example

We give a simple example in this section, a modification of that in [9]. Let Ω
be a bounded open set in R3 having Lipschitz boundary and let V be a closed
subspace of H1(Ω),W ≡ L6(Ω) and b : [0, T ]× Ω→ R is Borel measurable and
for a.e. t,

b(t, x) > 0 a.e x,

b(t, x) = b(0, x) +

∫ t
0

bt(s, x) ds

where b(0, x) ∈ L3/2(Ω) and

sup
s∈[0,T ]

∫ T
0

|bt(s, x)|
3/2
dx <∞

Then we define an operator, B(t) : W → W ′ by B(t)u(x) ≡ b(t, x)u(x). Thus
B(t) is one-to-one for a.e. t. We define a time dependent operator, A(t, ·)
mapping V to V ′ as follows.

〈A(t, u), v〉 ≡

∫
Ω

(
3∑
i=1

ai(t, x, u,∇u)∂iv) + a0(t, x, u,∇u)v dx .

We make the following assumptions on the functions ai.

1. (t, x)→ ai(t, x, z) is measurable while z→ ai(t, x, z) is continuous.

2. There exist constants, C1, C2, C3 > 0 and functions k1 ∈ L2([0, T ] × Ω)
and k2 ∈ L1([0, T ]× Ω), k3 ∈ L1(Ω), such that

|ai(t, x, u,p)| ≤ C(|p|+ |u|) + k1(t, x),

and for some λ,

λe−λtb(t, x)u2 +

3∑
i=1

ai(t, x, u,p)pi + a0(t, x, u,p)u+
e−λt

2
bt(t, x)u

2

≥ C2(|p|
2 + |u|2)− k2(t, x)

and

λe−λtb(t, x)u2 +

3∑
i=1

ai(t, x, u,p)pi + a0(t, x, u,p)u ≥ C3 |p|
2 − k3(x)

3. For all (u,p) and (u, p̂), if p 6=p̂

3∑
i=1

(ai(t, x, u,p)− ai(t, x, u, p̂))(pi − p̂i) > 0 .
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Now we define a set valued operator, G : [0, T ] × Ω × R → P(R) \ {∅} as
follows.

1. G(t, x, u) = [g1(t, x, u), g2(t, x, u)] where (t, u)→ G(t, x, u) is upper semi-
continuous, meaning that for each x,

G(s, x, v) ⊆ [g1(t, x, u)− ε, g2(t, x, u) + ε]

whenever |v − u|+|s− t| is small enough. Also assume gi : [0, T ]×Ω×R→
R is Borel measurable.

2. There exist C3 > 0 and C4 ∈ [0, C2), k3 ∈ L2(Ω), and k4 ∈ L1(Ω) such
that G satisfies the estimates

|G(t, x, u)| = max {|g1(t, x, u)| , |g2(t, x, u)|} ≤ C3 |u|+ k3(x),

inf {ug1(t, x, u), ug2(t, x, u)} ≥ −C4 |u|
2 − k4(x).

We define w ∈ G(t, u) if and only if w(x) ∈ G(t, x, u(x)) a.e. so G : V →
P(H) ⊆ P(V ′) where H ≡ L2(Ω).

We will consider the abstract evolution inclusion

(Bu)′ + Â+G 3 0, Bu(0) = Bu0, u0 ∈ L
6(Ω) . (4.1)

Solutions to (4.1) yield weak solutions to the nonlinear differential inclusion

(b(t, x)u)t −
3∑
i=1

∂i(ai(t, x, u,∇u)) + a0(t, x, u,∇u) ∈ −G(t, x, u)

u(0, x) = u0(x),

along with appropriate boundary conditions depending on the choice of V . We
need to verify the hypotheses of the main existence theorem. First we deal with
the measurability issue for the function, G.

Lemma 4.1 If conditions 1 and 2 hold for G, then for all closed convex subset
P of H,

G−(P ) ≡ {(t, u) ∈ [0, T ]× V : G(t, u) ∩ P 6= ∅}

is a closed set.

Proof: Let (tn, un) ∈ G−(P ) and suppose (tn, un) → (t, u) in [0, T ] × H .
Taking a subsequence, still denoted by (tn, un), we may also assume un(x) →
u(x) for a.e. x. By the assumption that (tn, un) ∈ G−(P ), there exists wn ∈
H ∩ P such that for a.e. x,

g1(tn, x, un(x)) ≤ wn(x) ≤ g2(tn, x, un(x)).
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By the given estimates, we see wn is bounded in H and so we may take a further
subsequence, still denoted by wn such that wn ⇀ w ∈ H . Now let

Bε ≡ {x ∈ Ω : w(x) ≤ g1(t, x, u(x)) − ε} .

We know from Estimate 2 given above for G that∫
Bε

−C3 |un(x)| − k3(x)dx

≥

∫
Bε

[(g1(tn, x, un(x)) − (C3 |un(x)| + k3(x))) − wn(x)] dx .

Adding 3
∫
Bε
C3 |un(x)|+ k3(x)dx to both sides in order to get both integrands

positive, we obtain

2

∫
Bε

C3 |un(x)|+ k3(x)dx

≥

∫
Bε

[(g1(tn, x, un(x)) − wn(x)) + 2(C3 |un(x)|+ k3(x))] dx .

Taking the lim inf of both sides and using Fatou’s lemma,

2

∫
Bε

C3 |u(x)|+ k3(x)dx

≥

∫
Bε

lim inf
n→∞

(g1(tn, x, un(x)) − wn(x))dx + 2

∫
Bε

(C3 |u(x)|+ k3(x))

and so from the upper semi-continuity of G,

0 ≥

∫
Bε

lim inf
n→∞

(g1(tn, x, un(x)) − wn(x))dx

=

∫
Bε

(g1(t, x, u(x)) − w(x))dx ≥

∫
Bε

εdx

showing that m(Bε) = 0. Thus, since ε > 0 is arbitrary, it follows w(x) ≥
g1(t, x, u(x)) a.e. Similar reasoning shows w(x) ≤ g2(t, x, u(x)) a.e. Since P is
a closed and convex subset of H , w ∈ P as well. Thus (t, u) ∈ G−(P ), and this
shows this set is closed as claimed.

We just showed that

{(t, v) : G(t, v) ∩ P 6= ∅} (4.2)

is a Borel set whenever P is convex and closed.

Lemma 4.2 For G defined above, G is measurable in the sense of (2.1).
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Proof: This follows from Lemma 5.3 which is proved in the next section be-
cause we have just shown the hypothesis of Lemma 5.3 are satisfied in 4.2. Since
A(t, ·) is single valued, it follows the sum A(t, ·) +G(t, ·) satisfies the measura-
bility condition, (2.1).
Next we must consider the question of whether the operators are pseudo-

monotone. That λBλ(t) + A(t, ·) is pseudo-monotone follows from results of
Browder [10]. Therefore, we must verify G(t, ·) is set valued pseudo-monotone.
It remains to verify Conditions 1 and 3 in the list of conditions for Pseudo-
monotone because the assumed estimates imply G(t, ·) is bounded. Since weak
convergence in V implies strong convergence in L2(Ω) ≡ H , it is easy to verify
that G(t, u) is a closed and convex subset of H ⊆ V ′. From estimates on gi it
follows gi(t, ·, u(·)) ∈ L2(Ω) and so G(t, u) 6= ∅. It remains to verify condition
3, the limit condition for pseudo-monotone. Suppose un ⇀ u in V . We show
for each v ∈ V , there exists u∗∞ ∈ G(t, u) such that

lim inf
n→∞

〈u∗n, un − v〉 ≥ 〈u
∗
∞, u− v〉.

The weak convergence of un in V implies un → u inH and taking a subsequence,
we may assume that un(x) → u(x) a.e. Let u∗n ∈ G(t, un) ⊆ H . By the
estimates, u∗n is bounded in H ≡ L

2(Ω) and so, taking a subsequence, we
may assume that u∗n converges weakly in H to u

∗
∞. By the compactness of

the embedding of V into H , it follows that the embedding of H into V ′ is
also compact and so u∗n converges strongly to u

∗
∞ in V

′. We need to verify
u∗∞ ∈ G(t, u). Define

Bε ≡ {x : u
∗
∞(x) ≥ g2(t, x, u(x)) + ε} .

We know

−

∫
Bε

C3 |un(x)| + k3(x)dx

≤

∫
Bε

−u∗n(x)dx −

∫
Bε

[C3 |un(x)| + k3(x) − g2(t, x, un(x))] dx

so taking the lim sup of both sides using the assumed weak convergence of u∗n
to u∗∞,

−

∫
Bε

C3 |u(x)|+ k3(x)dx

≤

∫
Bε

−u∗∞(x)dx − lim inf

∫
Bε

[C3 |un(x)| + k3(x) − g2(t, x, un(x))] dx .

Using Fatou’s lemma as in the proof of Lemma 4.1 and the upper semi-continuity
of (t, u)→ G(t, x, u), we obtain

−

∫
Bε

C3 |u(x)|+ k3(x)dx
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≤

∫
Bε

−u∗∞(x)dx −

∫
Bε

[C3 |u(x)|+ k3(x)− lim sup g2(t, x, un(x))] dx

≤

∫
Bε

−u∗∞(x)dx −

∫
Bε

[C3 |u(x)|+ k3(x)− g2(t, x, u(x))] dx,

which implies

0 ≤

∫
Bε

g2(t, x, u(x)) − u
∗
∞(x)dx ≤ −εm(Bε)

so m(Bε) = 0. Therefore, letting ε be replaced by
1
n , taking the union of

B1/n, we see that u
∗
∞(x) ≤ g2(x, u(x)) a.e. and a similar argument shows

u∗∞(x) ≥ g1(x, u(x)) a.e. We have shown that if un ⇀ u in V , there exists a
subsequence, unk such that u

∗
nk
⇀ u∗∞ ∈ G(t, u) in H . Therefore, by the strong

convergence of u∗n to u
∗
∞ in V

′ and the weak convergence of unk to u in V , it
follows that for any v ∈ V ,

lim
k→∞

〈u∗nk , unk − v〉V ′,V = 〈u
∗
∞, u− v〉V ′,V

If for some v ∈ V , there exists a sequence, un ⇀ u in V such that

lim inf
n→∞

〈u∗n, un − v〉V ′,V < 〈u
∗, u− v〉V ′,V ,

for all u∗ ∈ G(u), this is a contradiction to what was just shown. Therefore, we
have verified the pseudo-monotone limit condition.
It follows λBλ(t)+A(t, ·)+G(t, ·), being a sum of pseudo-monotone operators

is pseudo-monotone [8]. The assumed estimates give the rest of the hypotheses
of Corollary 3.2. Therefore, there exists a solution to (4.1).

5 Measurability

In this section we demonstrate that the conditions on measurability given by
Bian and Webb imply Condition 4 of Section 2. The following definition of
measurability, used in [9], is the one referred to as strong measurability in [11].

Definition 5.1 We say S : [0, T ] × V → P(V ′) is measurable if whenever,
H ⊆ V ′ is a closed set, the set {(t, v) : S(t, v) ∩ H 6= ∅} is a Borel set in [0, T ]×V .

The following lemma is an immediate consequence of the above definition.

Lemma 5.2 If S is measurable as just described and if x : [0, T ]→ V is mea-
surable, then for H a closed set in V ′, the set {t ∈ [0, T ] : S(t, x(t)) ∩ H 6= ∅} is
measurable.

Now we verify the following lemma which is the main result of this section.

Lemma 5.3 Suppose S satisfies the condition of Definition 5.1 for all H a
closed convex set where S(t, v) equals a closed convex nonempty subset of V ′.
Then S(t, ·) is measurable in the sense of (2.1).
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Proof: We show that if α is real valued and measurable, and x, y are strongly
measurable V valued functions, then F : [0, T ]→ P(V ′) given by

F (t) ≡ {w ∈ S(t, x(t)) : 〈w, x(t) − y(t)〉 ≤ α(t)}

has the property that {t : F (t) ∩ U 6= ∅} is measurable whenever U is an open
set. We define

Fmn (t) ≡

{
w ∈ S(t, x(t)) : 〈w, xn(t)− yn(t)〉 ≤ αn(t) +

1

m

}

where here xn, yn, αn are simple functions converging pointwise to x, y, and α
respectively. Thus there exist disjoint measurable subsets of [0, T ], {Eni }

mn
i=1

such that each of xn, yn, and αn are constant on E
n
i . If H is a closed convex set

in V ′

{t ∈ [0, T ] : Fmn (t) ∩ H 6= ∅} = ∪
mn
i=1 {t ∈ E

n
i : F

m
n (t) ∩ H 6= ∅} . (5.1)

On the set, Eni denote the values of xn, yn and αn as x
i
n, y

i
n, and α

i
n respectively.

Then
Fmn (t) ∩ H = S(t, x(t)) ∩ H ∩ C

i
n

where

Cin ≡

{
w ∈ V ′ : 〈w, xin − y

i
n〉 ≤ α

i
n +

1

m

}
and is a closed set. Therefore,

{t ∈ Eni : F
m
n (t) ∩ H 6= ∅} =

{
t ∈ Eni : S(t, x(t)) ∩ H̃ 6= ∅

}
where H̃ ≡ H ∩ Cin, a closed convex set. Therefore, by our hypotheses, the set
{t ∈ Eni : F

m
n (t) ∩ H 6= ∅} is measurable and so it follows from (5.1) that the set

{t ∈ [0, T ] : Fmn (t) ∩H 6= ∅} is also measurable.

Claim: Let H be a closed ball. Then

{t : F (t) ∩ H 6= ∅} = ∩∞m=1 ∪
∞
k=1 ∩n≥k {t : F

m
n (t) ∩ H 6= ∅} . (5.2)

Proof of the claim: If t ∈ {t : F (t) ∩ H 6= ∅}, then there exists w ∈ S(t, x(t))∩
H such that 〈w, x(t) − y(t)〉 ≤ α(t). Therefore, for that w it follows that for
each m,

〈w, xn(t)− yn(t)〉 ≤ αn(t) +
1

m

for all n large enough. Therefore, t is an element of the right side of (5.2).
Now let t be an element of the right side. Then for all m, there exists wmn

in S(t, x(t)) ∩ H such that

〈wmn , xn(t)− yn(t)〉 ≤ αn(t) +
1

m
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for all n large enough. Since S(t, x(t)) ∩ H is closed and bounded and convex,
we can take a subsequence, wmnk which converges weakly to w

m ∈ S(t, x(t))∩H.
Therefore, taking a limit as k → ∞, using the strong convergence of xn(t) and
yn(t) to x(t) and y(t) respectively, we obtain

〈wm, x(t)− y(t)〉 ≤ α(t) +
1

m
.

Now take another subsequence, wmk converging weakly to w ∈ S(t, x(t)) ∩ H
and take a limit as k →∞ to obtain

〈w, x(t) − y(t)〉 ≤ α(t).

It follows t is an element of the left side of (5.2), proving the claim.
Now if U is an arbitrary open set, we know that since V and consequently,

V ′ are separable, U is the union of countably may closed balls, U = ∪∞k=1Hk
and

{t : F (t) ∩ U 6= ∅} = ∪∞k=1 {t : F (t) ∩ Hk 6= ∅} ,

a measurable set.
We have just verified that for all U open, {t : F (t) ∩ U 6= ∅} is a measurable

set. This is a sufficient condition for the existence of a measurable, selector,
z(t) ∈ F (t). [12], [13]. From the assumed estimates, it follows z ∈ V ′ whenever
x ∈ V .
We did not gain any generality by only requiring the closed set, H to be

convex. To see this, note that our argument is concluded by verifying that the
set {t : F (t) ∩ U 6= ∅} is measurable for all U open. It is known [12], [13] this is
equivalent under certain conditions, including the case where Lebesgue measure
is used on the Lebesgue measurable sets of [0, T ] to the set {t : F (t) ∩H 6= ∅}
being measurable for all H closed or even Borel. Nevertheless, it is easier to verify
the measurability condition for closed convex sets than for arbitrary closed sets.

Summary. The paper has given an existence theorem for implicit evolution
inclusions of the form (Bu)′+Au 3 f under assumptions that B(t) is one-to-one
a.e. It would be very interesting to obtain similar theorems involving reasonable
pointwise conditions on the operators A(t, ·) using different methods, and also
to include the case where B(t) could be a degenerate operator as in [6].

Acknowledgments. I am grateful to the anonymous referee for pointing out
several errors in the original manuscript.
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