Uniqueness of solutions to a system of differential inclusions *

Chunpeng Wang \& Jingxue Yin

Abstract

In this paper we study the uniqueness of solutions to the initial and Dirichlet boundary-value problem of differential inclusions $$
\Delta u_{i}+\nabla \cdot \vec{B}_{i}\left(u_{1}, u_{2}, \ldots, u_{N}\right) \in \frac{\partial F_{i}\left(u_{i}\right)}{\partial t}, \quad i=1,2, \ldots, N
$$ where $\vec{B}_{i}\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ is an n-dimensional vector continuously differentiable on \mathbb{R}^{N}, and $F_{i}\left(u_{i}\right)=\left\{w_{i}: u_{i}=A_{i}\left(w_{i}\right)\right\}, i=1,2, \ldots, N$ with $A_{i}(s)$ continuously differentiable functions on \mathbb{R} and $A_{i}^{\prime}(s) \geq 0$.

1 Introduction

This paper concerns with the system of differential inclusions

$$
\begin{equation*}
\Delta u_{i}+\nabla \cdot \vec{B}_{i}\left(u_{1}, u_{2}, \ldots, u_{N}\right) \in \frac{\partial F_{i}\left(u_{i}\right)}{\partial t}, \quad(x, t) \in Q_{T}, \quad i=1,2, \ldots, N \tag{1.1}
\end{equation*}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, Q_{T}=\Omega \times(0, T)$, with $T>0, n$ and N are positive integers, $\vec{B}_{i}\left(s_{1}, s_{2}, \ldots, s_{N}\right)$ is an n-dimensional vector continuously differentiable on \mathbb{R}^{N}, and

$$
F_{i}\left(u_{i}\right)=\left\{w_{i}: u_{i}=A_{i}\left(w_{i}\right)\right\}, \quad i=1,2, \ldots, N
$$

with $A_{i}(s)$ continuously differentiable functions on \mathbb{R} and $A_{i}^{\prime}(s) \geq 0$. Note that if $A_{i}(s)$ is strictly increasing, then $F_{i}\left(u_{i}\right)$ is single-valued, and (1.1) becomes equality. However, we are interested in the case when some or all $A_{i}(s)$'s are only nondecreasing, and so the $F_{i}\left(u_{i}\right)$'s are interval-valued functions.

System (1.1) arises from mathematical models describing the nonlinear diffusion phenomena which exist in nature extensively. An important classical case of (1.1) is that with $\vec{B}_{i}=\overrightarrow{0}$ and $N=1$. In this case (1.1) can be changed to

$$
\frac{\partial w}{\partial t}=\Delta A(w) .
$$

[^0]Brézis and Crandall [2] proved the uniqueness of bounded measurable solutions for the Cauchy problem of the equation, where the nonlinear function $A(s)$ is assumed to be only non-decreasing. In other words, if $A(s)$ is differentiable, then

$$
A^{\prime}(s) \geq 0
$$

namely, the equation is permitted to be strongly degenerate. Thereafter some authors tried to extend the uniqueness results to the equation with convection, i.e.,

$$
\frac{\partial w}{\partial t}=\Delta A(w)+\nabla \cdot \vec{B}(w)
$$

However, in most of those works, the nonlinear function $A(s)$ is assumed to be strictly increasing. In other words, the equation is weakly degenerate, see for example $[4,3,8,9]$.

In this paper we study the uniqueness of solutions of the initial and Dirichlet boundary-value problem of (1.1). The initial-boundary conditions are

$$
\begin{gather*}
u_{i}=0, \quad(x, t) \in \partial \Omega \times[0, T], \quad i=1,2, \ldots, N \tag{1.2}\\
F_{i}\left(u_{i}\right)(x, 0)=\left\{f_{i}(x)\right\}, \quad x \in \Omega, \quad i=1,2, \ldots, N \tag{1.3}
\end{gather*}
$$

Definition For $i=1,2, \ldots, N$, let f_{i} 's be bounded and measurable functions. $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ is called a solution of the initial and Dirichlet boundary-value problem (1.1)-(1.3), if the u_{i} 's are bounded and measurable functions and there exist bounded measurable functions $w_{i} \in F_{i}\left(u_{i}\right)$ such that for arbitrary test function φ in $C^{\infty}\left(\overline{Q_{T}}\right)$ with value zero for $x \in \partial \Omega$ and for $t=T$, the following integral equalities hold

$$
\begin{aligned}
& \iint_{Q_{T}}\left(u_{i} \Delta \varphi-\vec{B}_{i}\left(u_{1}, u_{2}, \ldots, u_{N}\right) \cdot \nabla \varphi+w_{i} \frac{\partial \varphi}{\partial t}\right) d x d t \\
& +\int_{\Omega} f_{i}(x) \varphi(x, 0) d x=0, \quad i=1,2, \ldots, N
\end{aligned}
$$

The main result of this paper is the following theorem.
Theorem 1 The initial and Dirichlet boundary-value problem (1.1)-(1.3) has at most one solution.

The method of the proof is inspired by Brézis and Crandall [2]. Here what we consider is not the Cauchy problem but the initial and Dirichlet boundary-value problem, so we adopt the self-adjoint operators with homogeneous Dirichlet boundary condition to prove the uniqueness instead of the self-adjoint operators on the whole space. Moreover, the problem which we consider is a system of differential inclusions with convection, so we must overcome some other technical difficulties.

2 Proof of the main theorem

We first introduce a family of operators. The L^{2} theory for elliptic equations (see, e.g., [5]) implies that for each $\lambda>0$ and $f \in H^{-1}(\Omega)$, the Dirichlet problem

$$
\begin{gather*}
-\Delta u+\lambda u=f, \quad x \in \Omega \tag{2.1}\\
u=0, \quad x \in \partial \Omega \tag{2.2}
\end{gather*}
$$

has a unique solution $u \in H_{0}^{1}(\Omega)$. For $0<\lambda<1$, we define the operator

$$
T_{\lambda}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega), \quad f \mapsto u
$$

where u is the unique solution to (2.1)-(2.2). It is easy to see that T_{λ} is selfadjoint, namely, for arbitrary $f, g \in H^{-1}(\Omega)$,

$$
\left\langle f, T_{\lambda} g\right\rangle=\left\langle g, T_{\lambda} f\right\rangle
$$

holds, where $\langle\cdot, \cdot\rangle$ represents the dual product between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$. Specially, for $f \in L^{2}(\Omega)$ and $g \in H^{-1}(\Omega)$, we have

$$
\left\langle f, T_{\lambda} g\right\rangle=\int_{\Omega} f T_{\lambda} g d x
$$

In addition, for arbitrary $f \in L^{2}(\Omega)$, the L^{2} theory for elliptic equations also implies $T_{\lambda} f \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and

$$
\begin{equation*}
\left\|T_{\lambda} f\right\|_{H^{2}(\Omega)} \leq C_{0}\|f\|_{L^{2}(\Omega)} \tag{2.3}
\end{equation*}
$$

here C_{0} is a constant depending only on n and Ω, but independent of λ.
Proof of Theorem 1. Let $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ and $\left(\hat{u}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{N}\right)$ be two solutions to (1.1)-(1.3). For $i=1,2, \ldots, N$, the bounded measurable functions in $F_{i}\left(u_{i}\right)$ and $F_{i}\left(\hat{u}_{i}\right)$ satisfying the definition are denoted by w_{i} and \hat{w}_{i} correspondingly. For $i=1,2, \ldots, N$, we set

$$
\begin{gathered}
v_{i}=u_{i}-\hat{u}_{i}, \quad z_{i}=w_{i}-\hat{w}_{i} \\
\vec{H}_{i}=\vec{B}_{i}\left(u_{1}, u_{2}, \ldots, u_{N}\right)-\vec{B}_{i}\left(\hat{u}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{N}\right)
\end{gathered}
$$

The definition of solutions implies that z_{i}, v_{i} and $\vec{H}_{i} \quad(i=1,2, \ldots, N)$ are all bounded measurable functions, and for arbitrary test function φ, namely, $\varphi \in C^{\infty}\left(\overline{Q_{T}}\right)$ with $\varphi=0$ for $x \in \partial \Omega$ and for $t=T$, the integral equalities

$$
\begin{equation*}
\iint_{Q_{T}}\left(v_{i} \Delta \varphi-\vec{H}_{i} \cdot \nabla \varphi+z_{i} \frac{\partial \varphi}{\partial t}\right) d x d t=0, \quad i=1,2, \ldots, N \tag{2.4}
\end{equation*}
$$

hold. Let $\psi \in C^{\infty}([0, T])$ with $\psi(T)=0$ and $k \in C_{0}^{\infty}(\Omega)$. Then we see that $T_{\lambda} k \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. By an approximate process, we may choose $\psi T_{\lambda} k$ as a test function. Letting $\varphi=\psi T_{\lambda} k$ in (2.4), we get

$$
\iint_{Q_{T}}\left(\lambda \psi v_{i} T_{\lambda} k-\psi v_{i} k-\psi \vec{H}_{i} \cdot \nabla T_{\lambda} k+\frac{\partial \psi}{\partial t} z_{i} T_{\lambda} k\right) d x d t=0
$$

Using integration by parts and the self-adjointness of T_{λ}, we get

$$
\iint_{Q_{T}}\left(\lambda \psi k T_{\lambda} v_{i}-\psi k v_{i}+\psi k T_{\lambda}\left(\nabla \cdot \vec{H}_{i}\right)-\psi k \frac{\partial T_{\lambda} z_{i}}{\partial t}\right) d x d t=0
$$

Owing to the arbitrariness of ψ and k, we see that

$$
\begin{equation*}
\frac{\partial T_{\lambda} z_{i}}{\partial t}=\lambda T_{\lambda} v_{i}-v_{i}+T_{\lambda}\left(\nabla \cdot \vec{H}_{i}\right) \tag{2.5}
\end{equation*}
$$

in the sense of distribution. It follows that $\frac{\partial T_{\lambda} z_{i}}{\partial t} \in L^{2}\left(Q_{T}\right)$ and $T_{\lambda} z_{i} \in H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$. Let $\psi \in C^{\infty}([0, T])$ with $\psi(T)=0$. By an approximate process, we may choose $\psi T_{\lambda} z_{i}$ as a test function. Letting $\varphi=\psi T_{\lambda} z_{i}$ in (2.4), we get

$$
\begin{equation*}
\iint_{Q_{T}}\left(\lambda \psi v_{i} T_{\lambda} z_{i}-\psi v_{i} z_{i}-\psi \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i}+\frac{\partial \psi}{\partial t} z_{i} T_{\lambda} z_{i}+\psi z_{i} \frac{\partial T_{\lambda} z_{i}}{\partial t}\right) d x d t=0 \tag{2.6}
\end{equation*}
$$

Combining (2.5) with (2.6), we see that

$$
\begin{aligned}
& \iint_{Q_{T}}\left(\lambda \psi v_{i} T_{\lambda} z_{i}+\lambda \psi z_{i} T_{\lambda} v_{i}-2 \psi v_{i} z_{i}+\psi z_{i} T_{\lambda}\left(\nabla \cdot \vec{H}_{i}\right)\right. \\
&\left.-\psi \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i}+\frac{\partial \psi}{\partial t} z_{i} T_{\lambda} z_{i}\right) d x d t=0
\end{aligned}
$$

Using integration by parts and the self-adjointness of T_{λ}, for $i=1,2, \ldots, N$, we get

$$
\begin{equation*}
\iint_{Q_{T}}\left(2 \lambda \psi v_{i} T_{\lambda} z_{i}-2 \psi v_{i} z_{i}-2 \psi \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i}+\frac{\partial \psi}{\partial t} z_{i} T_{\lambda} z_{i}\right) d x d t=0 \tag{2.7}
\end{equation*}
$$

Let

$$
g_{i \lambda}(t)=\int_{\Omega} z_{i} T_{\lambda} z_{i} d x, \quad t \in[0, T], \quad i=1,2, \ldots, N
$$

Now we prove that $g_{i \lambda}(t)$ converges to zero on $[0, T]$ uniformly as $\lambda \rightarrow 0$ for $i=1,2, \ldots, N$.

First, we show that $g_{i \lambda}(t)$ is absolutely continuous. From (2.7), we get

$$
\iint_{Q_{T}}\left(2 \lambda \psi v_{i} T_{\lambda} z_{i}-2 \psi v_{i} z_{i}-2 \psi \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i}-\psi \frac{\partial\left(z_{i} T_{\lambda} z_{i}\right)}{\partial t}\right) d x d t=0
$$

From the arbitrariness of ψ, we see that

$$
\begin{aligned}
g_{i \lambda}^{\prime}(t) & =\frac{d}{d t} \int_{\Omega} z_{i} T_{\lambda} z_{i} d x=\int_{\Omega} \frac{\partial\left(z_{i} T_{\lambda} z_{i}\right)}{\partial t} d x \\
& =2 \lambda \int_{\Omega} v_{i} T_{\lambda} z_{i} d x-2 \int_{\Omega} v_{i} z_{i} d x-2 \int_{\Omega} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i} d x, \quad \text { a.e. } t \in[0, T] .
\end{aligned}
$$

Since z_{i}, v_{i} and \vec{H}_{i} are all bounded measurable functions and (2.3) holds, we get that $g_{i \lambda}^{\prime}(t) \in L^{1}(0, T)$. Thus $g_{i \lambda}(t)$ is absolutely continuous.

Next, we show that $g_{i \lambda}(0+0) \equiv \lim _{t \rightarrow 0^{+}} g_{i \lambda}(t)=0$. Let

$$
\psi_{\varepsilon}(t)=\int_{t}^{+\infty} \alpha_{\varepsilon}(s-\varepsilon) d s, \quad \alpha_{\varepsilon}(s)=\frac{1}{\varepsilon} \alpha\left(\frac{s}{\varepsilon}\right)
$$

where $\alpha(s)$ denotes the kernel of one-dimensional mollifier, namely, α is in the space $C_{0}^{\infty}(-\infty,+\infty), \alpha \geq 0, \operatorname{supp} \alpha=[-1,1]$ and $\int_{-1}^{1} \alpha(s) d s=1$. Thus $\psi_{\varepsilon} \in$ $C^{\infty}([0, T])$ and $\psi_{\varepsilon}(T)=0$ for sufficiently small $\varepsilon>0$. Letting $\psi=\psi_{\varepsilon}$ in (2.7), we get

$$
\iint_{Q_{T}}\left(2 \lambda \psi_{\varepsilon} v_{i} T_{\lambda} z_{i}-2 \psi_{\varepsilon} v_{i} z_{i}-2 \psi_{\varepsilon} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i}-\alpha_{\varepsilon}(t-\varepsilon) z_{i} T_{\lambda} z_{i}\right) d x d t=0
$$

The dominated convergence theorem implies

$$
\begin{aligned}
g_{i \lambda}(0+0)= & \lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{2 \varepsilon} \alpha_{\varepsilon}(t-\varepsilon) g_{i \lambda}(t) d t \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \iint_{Q_{T}} \alpha_{\varepsilon}(t-\varepsilon) z_{i} T_{\lambda} z_{i} d x d t \\
= & 2 \lambda \lim _{\varepsilon \rightarrow 0^{+}} \iint_{Q_{T}} \psi_{\varepsilon} v_{i} T_{\lambda} z_{i} d x d t-2 \lim _{\varepsilon \rightarrow 0^{+}} \iint_{Q_{T}} \psi_{\varepsilon} v_{i} z_{i} d x d t \\
& -2 \lim _{\varepsilon \rightarrow 0^{+}} \iint_{Q_{T}} \psi_{\varepsilon} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i} d x d t
\end{aligned}
$$

Since z_{i}, v_{i} and \vec{H}_{i} are all bounded measurable functions and (2.3) holds, we get that $g_{i \lambda}(0+0)=0$.

Finally, we prove that $g_{i \lambda}(t)$ converges to zero on $[0, T]$ uniformly as $\lambda \rightarrow 0$. It follows easily from the above arguments that

$$
\begin{aligned}
g_{i \lambda}(t)= & g_{i \lambda}(0+0)+\int_{0}^{t} g_{i \lambda}^{\prime}(s) d s \\
= & 2 \lambda \int_{0}^{t} \int_{\Omega} v_{i} T_{\lambda} z_{i} d x d s-2 \int_{0}^{t} \int_{\Omega} v_{i} z_{i} d x d s \\
& -2 \int_{0}^{t} \int_{\Omega} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i} d x d s
\end{aligned}
$$

Since w_{i} and \hat{w}_{i} are bounded measurable and A_{i} and \vec{B}_{i} are continuously differentiable, there exist three positive constants M_{0}, M_{1} and M_{2} such that for $i=1,2, \ldots, N$, the following estimates hold

$$
\left|z_{i}\right| \leq M_{0}, \quad\left|v_{i}\right| \leq M_{1}\left|z_{i}\right|, \quad\left|\vec{H}_{i}\right| \leq M_{2}\left(\sum_{j=1}^{N} v_{j}^{2}\right)^{1 / 2}
$$

Noticing that z_{i} and v_{i} have the same sign for $A_{i}^{\prime}(s) \geq 0$, we get

$$
v_{i} z_{i}=\left|v_{i}\right|\left|z_{i}\right| \geq \frac{1}{M_{1}} v_{i}^{2}
$$

By Schwarz's inequality and Young's inequality, we get

$$
\begin{aligned}
& \left|\int_{\Omega} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i} d x\right| \\
& \quad \leq\left(\int_{\Omega}\left|\vec{H}_{i}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega}\left|\nabla T_{\lambda} z_{i}\right|^{2} d x\right)^{1 / 2} \\
& \quad \leq M_{2} \sum_{j=1}^{N}\left(\int_{\Omega} v_{j}^{2} d x\right)^{1 / 2}\left(\int_{\Omega}\left|\nabla T_{\lambda} z_{i}\right|^{2} d x\right)^{1 / 2} \\
& \quad \leq \frac{1}{N M_{1}} \sum_{j=1}^{N} \int_{\Omega} v_{j}^{2} d x+\frac{N^{2} M_{1} M_{2}^{2}}{4} \int_{\Omega}\left(\nabla T_{\lambda} z_{i} \nabla T_{\lambda} z_{i}\right) d x \\
& \quad=\frac{1}{N M_{1}} \sum_{j=1}^{N} \int_{\Omega} v_{j}^{2} d x+\frac{N^{2} M_{1} M_{2}^{2}}{4} \int_{\Omega}\left(-T_{\lambda} z_{i} \Delta T_{\lambda} z_{i}\right) d x \\
& \quad=\frac{1}{N M_{1}} \sum_{j=1}^{N} \int_{\Omega} v_{j}^{2} d x+\frac{N^{2} M_{1} M_{2}^{2}}{4} \int_{\Omega}\left(-\lambda\left(T_{\lambda} z_{i}\right)^{2}+z_{i} T_{\lambda} z_{i}\right) d x \\
& \quad \leq \frac{1}{N M_{1}} \sum_{j=1}^{N} \int_{\Omega} v_{j}^{2} d x+\frac{N^{2} M_{1} M_{2}^{2}}{4} g_{i \lambda}(t)
\end{aligned}
$$

Let

$$
g_{\lambda}(t)=\sum_{i=1}^{N} g_{i \lambda}(t)
$$

Therefore,

$$
\begin{aligned}
& g_{\lambda}(t) \\
&= 2 \sum_{i=1}^{N}\left(\lambda \int_{0}^{t} \int_{\Omega} v_{i} T_{\lambda} z_{i} d x d s-\int_{0}^{t} \int_{\Omega} v_{i} z_{i} d x d s-\int_{0}^{t} \int_{\Omega} \vec{H}_{i} \cdot \nabla T_{\lambda} z_{i} d x d s\right) \\
& \leq 2 \sum_{i=1}^{N}\left(\lambda \int_{0}^{t} \int_{\Omega} v_{i} T_{\lambda} z_{i} d x d s-\frac{1}{M_{1}} \int_{0}^{t} \int_{\Omega} v_{i}^{2} d x d s\right. \\
&\left.+\frac{1}{N M_{1}} \sum_{j=1}^{N} \int_{0}^{t} \int_{\Omega} v_{j}^{2} d x d s+\frac{N^{2} M_{1} M_{2}^{2}}{4} \int_{0}^{t} g_{i \lambda}(s) d s\right) \\
& \leq 2 \lambda \sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega}\left|v_{i} T_{\lambda} z_{i}\right| d x d s+\frac{N^{2} M_{1} M_{2}^{2}}{2} \int_{0}^{t} g_{\lambda}(s) d s .
\end{aligned}
$$

Moreover, it follows that

$$
g_{\lambda}(t) \geq 0
$$

by

$$
g_{i \lambda}(t)=\int_{\Omega} z_{i} T_{\lambda} z_{i} d x
$$

$$
\begin{aligned}
& =\int_{\Omega}\left(-\Delta T_{\lambda} z_{i} T_{\lambda} z_{i}+\lambda T_{\lambda} z_{i} T_{\lambda} z_{i}\right) d x \\
& =\int_{\Omega}\left(\nabla T_{\lambda} z_{i} \nabla T_{\lambda} z_{i}+\lambda T_{\lambda} z_{i} T_{\lambda} z_{i}\right) d x \\
& \geq 0
\end{aligned}
$$

Hence by Gronwall's inequality, we get

$$
g_{\lambda}(t) \leq C_{1} \lambda
$$

where C_{1} is a constant depending only on $N, M_{0}, M_{1}, M_{2}, C_{0}, T$ and the measure of Ω, but independent of λ and t. So $g_{\lambda}(t)$ converges to zero on $[0, T]$ uniformly as $\lambda \rightarrow 0$. Noticing that $g_{i \lambda}(t) \geq 0$, we get that $g_{i \lambda}(t)$ converges to zero on $[0, T]$ uniformly as $\lambda \rightarrow 0$.

Now we prove

$$
z_{i}(x, t)=0, \quad \text { a.e. }(x, t) \in Q_{T}, \quad i=1,2, \ldots, N .
$$

For any $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$, we have

$$
\begin{aligned}
& \left|\iint_{Q_{T}} z_{i} \varphi d x d t\right|^{2} \\
& \quad=\left|\iint_{Q_{T}}\left(-\Delta T_{\lambda} z_{i}+\lambda T_{\lambda} z_{i}\right) \varphi d x d t\right|^{2} \\
& \quad=\left|\iint_{Q_{T}}\left(\nabla T_{\lambda} z_{i} \nabla \varphi+\lambda \varphi T_{\lambda} z_{i}\right) d x d t\right|^{2} \\
& \quad \leq 2\|\nabla \varphi\|_{L^{2}\left(Q_{T}\right)}^{2}\left\|\nabla T_{\lambda} z_{i}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+2 \lambda^{2}\|\varphi\|_{L^{2}\left(Q_{T}\right)}^{2}\left\|T_{\lambda} z_{i}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \\
& \quad \leq C_{2}\left(\iint_{Q_{T}}\left|\nabla T_{\lambda} z_{i}\right|^{2} d x d t+\lambda \iint_{Q_{T}}\left(T_{\lambda} z_{i}\right)^{2} d x d t\right) \\
& \quad \leq C_{2} \iint_{Q_{T}}\left(-\Delta T_{\lambda} z_{i}+\lambda T_{\lambda} z_{i}\right) T_{\lambda} z_{i} d x d t \\
& \quad=C_{2} \iint_{Q_{T}} z_{i} T_{\lambda} z_{i} d x d t \\
& \quad \leq C_{2} T \sup _{t \in[0, T]} g_{i \lambda}(t) \rightarrow 0, \quad(\lambda \rightarrow 0)
\end{aligned}
$$

where $C_{2}=2\|\nabla \varphi\|_{L^{2}\left(Q_{T}\right)}^{2}+2\|\varphi\|_{L^{2}\left(Q_{T}\right)}^{2}$ independent of λ. Therefore,

$$
\iint_{Q_{T}} z_{i} \varphi d x d t=0, \quad \forall \varphi \in C_{0}^{\infty}\left(Q_{T}\right)
$$

It follows that

$$
z_{i}(x, t)=0, \quad \text { a.e. }(x, t) \in Q_{T}, \quad i=1,2, \ldots, N
$$

Thus

$$
w_{i}(x, t)=\hat{w}_{i}(x, t), \quad \text { a.e. }(x, t) \in Q_{T}, \quad i=1,2, \ldots, N
$$

which implies

$$
u_{i}(x, t)=\hat{u}_{i}(x, t), \quad \text { a.e. }(x, t) \in Q_{T}, \quad i=1,2, \ldots, N
$$

The proof is complete.

References

[1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.
[2] H. Brézis and M. G. Crandall, Uniqueness of solutions of the initial value problem for $u_{t}-\Delta \varphi=0$, J. Math. Pures et Appl., 58 (1979), 153-163.
[3] Y. Chen, Uniqueness of weak solutions of quasilinear degenerate parabolic equations, Proceedings of the 1982 Changchun Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, China, 317332.
[4] G. Dong and Q. Ye, On the uniqueness of nonlinear degenerate parabolic equations, Chinese Annals of Math., 3(3) (1982), 279-284.
[5] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag Heidelberg, New York, 1977.
[6] B. H. Gilding, A nonlinear degenerate parabolic equations, Annali della Scuo, Norm. Sup. di Pisa, 4(3) (1977), 379-432.
[7] D. Wu, Uniqueness of the weak solution of quasilinear degenerate parabolic equations, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, 3, Beijing, 1980.
[8] Z. Wu and J. Yin, Some properties of functions in $B V_{x}$ and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 5(4) (1989), 153-165.
[9] J. Yin, On the uniqueness and stability of $B V$ solutions for nonlinear diffusion equation, Comm. PDE, 15(12) (1990), 1671-1683.
[10] J. Zhao, Uniqueness of solutions of quasilinear degenerate parabolic equations, Northeastern Math. J., 1(2) (1985), 153-165.

Chunpeng Wang \& Jingxue Yin
Department of Mathematics, JiLin University,
Changchun, Jilin 130023, People's Republic of China
e-mail: yjx@mail.jlu.edu.cn

[^0]: *Mathematics Subject Classifications: 35K50, 35K65, 35A05, 35D99.
 Key words: differential inclusions, degeneracy, uniqueness.
 (c) 2000 Southwest Texas State University and University of North Texas.

 Submitted May 15, 2000. Published June 12, 2000.

