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Uniqueness of solutions to a system of differential

inclusions ∗

Chunpeng Wang & Jingxue Yin

Abstract

In this paper we study the uniqueness of solutions to the initial and
Dirichlet boundary-value problem of differential inclusions

∆ui +∇·
→
Bi (u1, u2, . . . , uN ) ∈

∂Fi(ui)

∂t
, i = 1, 2, . . . , N,

where
→
Bi (s1, s2, . . . , sN) is an n-dimensional vector continuously differ-

entiable on RN , and Fi(ui) = {wi : ui = Ai(wi)}, i = 1, 2, . . . , N with
Ai(s) continuously differentiable functions on R and A

′
i(s) ≥ 0.

1 Introduction

This paper concerns with the system of differential inclusions

∆ui +∇·
→
Bi (u1, u2, . . . , uN) ∈

∂Fi(ui)

∂t
, (x, t) ∈ QT , i = 1, 2, . . . , N, (1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, QT = Ω×(0, T ),

with T > 0, n andN are positive integers,
→
Bi (s1, s2, . . . , sN ) is an n-dimensional

vector continuously differentiable on RN , and

Fi(ui) = {wi : ui = Ai(wi)}, i = 1, 2, . . . , N

with Ai(s) continuously differentiable functions on R and A
′
i(s) ≥ 0. Note that

if Ai(s) is strictly increasing, then Fi(ui) is single-valued, and (1.1) becomes
equality. However, we are interested in the case when some or all Ai(s)’s are
only nondecreasing, and so the Fi(ui)’s are interval-valued functions.
System (1.1) arises from mathematical models describing the nonlinear dif-

fusion phenomena which exist in nature extensively. An important classical case

of (1.1) is that with
→
Bi=

→
0 and N = 1. In this case (1.1) can be changed to

∂w

∂t
= ∆A(w).
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2 A system of differential inclusions EJDE–2000/43

Brézis and Crandall [2] proved the uniqueness of bounded measurable solutions
for the Cauchy problem of the equation, where the nonlinear function A(s) is
assumed to be only non-decreasing. In other words, if A(s) is differentiable,
then

A′(s) ≥ 0 ;

namely, the equation is permitted to be strongly degenerate. Thereafter some
authors tried to extend the uniqueness results to the equation with convection,
i.e.,

∂w

∂t
= ∆A(w) +∇·

→
B (w).

However, in most of those works, the nonlinear function A(s) is assumed to be
strictly increasing. In other words, the equation is weakly degenerate, see for
example [4, 3, 8, 9].

In this paper we study the uniqueness of solutions of the initial and Dirichlet
boundary-value problem of (1.1). The initial-boundary conditions are

ui = 0, (x, t) ∈ ∂Ω× [0, T ], i = 1, 2, . . . , N, (1.2)

Fi(ui)(x, 0) = {fi(x)}, x ∈ Ω, i = 1, 2, . . . , N. (1.3)

Definition For i = 1, 2, . . . , N , let fi’s be bounded and measurable functions.
(u1, u2, . . . , uN ) is called a solution of the initial and Dirichlet boundary-value
problem (1.1)–(1.3), if the ui’s are bounded and measurable functions and there
exist bounded measurable functions wi ∈ Fi(ui) such that for arbitrary test
function ϕ in C∞(QT ) with value zero for x ∈ ∂Ω and for t = T , the following
integral equalities hold

∫∫
QT

(
ui∆ϕ−

→
Bi (u1, u2, . . . , uN ) · ∇ϕ+ wi

∂ϕ

∂t

)
dx dt

+

∫
Ω

fi(x)ϕ(x, 0)dx = 0, i = 1, 2, . . . , N.

The main result of this paper is the following theorem.

Theorem 1 The initial and Dirichlet boundary-value problem (1.1)–(1.3) has
at most one solution.

The method of the proof is inspired by Brézis and Crandall [2]. Here what we
consider is not the Cauchy problem but the initial and Dirichlet boundary-value
problem, so we adopt the self-adjoint operators with homogeneous Dirichlet
boundary condition to prove the uniqueness instead of the self-adjoint operators
on the whole space. Moreover, the problem which we consider is a system of
differential inclusions with convection, so we must overcome some other technical
difficulties.
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2 Proof of the main theorem

We first introduce a family of operators. The L2 theory for elliptic equations
(see, e.g., [5] ) implies that for each λ > 0 and f ∈ H−1(Ω), the Dirichlet
problem

−∆u+ λu = f, x ∈ Ω, (2.1)

u = 0, x ∈ ∂Ω, (2.2)

has a unique solution u ∈ H10 (Ω). For 0 < λ < 1, we define the operator

Tλ : H
−1(Ω)→ H10 (Ω), f 7→ u,

where u is the unique solution to (2.1)–(2.2). It is easy to see that Tλ is self-
adjoint, namely, for arbitrary f, g ∈ H−1(Ω),

〈f, Tλg〉 = 〈g, Tλf〉

holds, where 〈·, ·〉 represents the dual product between H−1(Ω) and H10 (Ω).
Specially, for f ∈ L2(Ω) and g ∈ H−1(Ω), we have

〈f, Tλg〉 =

∫
Ω

fTλgdx.

In addition, for arbitrary f ∈ L2(Ω), the L2 theory for elliptic equations also
implies Tλf ∈ H2(Ω) ∩H10 (Ω) and

‖Tλf‖H2(Ω) ≤ C0‖f‖L2(Ω), (2.3)

here C0 is a constant depending only on n and Ω, but independent of λ.

Proof of Theorem 1. Let (u1, u2, . . . , uN ) and (û1, û2, . . . , ûN) be two solu-
tions to (1.1)–(1.3). For i = 1, 2, . . . , N , the bounded measurable functions in
Fi(ui) and Fi(ûi) satisfying the definition are denoted by wi and ŵi correspond-
ingly. For i = 1, 2, . . . , N , we set

vi = ui − ûi, zi = wi − ŵi,
→
Hi=

→
Bi (u1, u2, . . . , uN )−

→
Bi (û1, û2, . . . , ûN).

The definition of solutions implies that zi, vi and
→
Hi (i = 1, 2, . . . , N) are

all bounded measurable functions, and for arbitrary test function ϕ, namely,
ϕ ∈ C∞(QT ) with ϕ = 0 for x ∈ ∂Ω and for t = T , the integral equalities∫∫

QT

(
vi∆ϕ−

→
Hi ·∇ϕ+ zi

∂ϕ

∂t

)
dx dt = 0, i = 1, 2, . . . , N (2.4)

hold. Let ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and k ∈ C∞0 (Ω). Then we see that
Tλk ∈ H2(Ω) ∩H10 (Ω). By an approximate process, we may choose ψTλk as a
test function. Letting ϕ = ψTλk in (2.4), we get∫∫

QT

(
λψviTλk − ψvik − ψ

→
Hi ·∇Tλk +

∂ψ

∂t
ziTλk

)
dx dt = 0.
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Using integration by parts and the self-adjointness of Tλ, we get∫∫
QT

(
λψkTλvi − ψkvi + ψkTλ(∇·

→
Hi)− ψk

∂Tλzi

∂t

)
dx dt = 0.

Owing to the arbitrariness of ψ and k, we see that

∂Tλzi

∂t
= λTλvi − vi + Tλ(∇·

→
Hi) (2.5)

in the sense of distribution. It follows that ∂Tλzi∂t ∈ L
2(QT ) and Tλzi ∈ H2(Ω)∩

H10 (Ω). Let ψ ∈ C∞([0, T ]) with ψ(T ) = 0. By an approximate process, we
may choose ψTλzi as a test function. Letting ϕ = ψTλzi in (2.4), we get∫∫

QT

(
λψviTλzi − ψvizi − ψ

→
Hi ·∇Tλzi +

∂ψ

∂t
ziTλzi + ψzi

∂Tλzi

∂t

)
dx dt = 0.

(2.6)
Combining (2.5) with (2.6), we see that

∫∫
QT

(
λψviTλzi + λψziTλvi − 2ψvizi + ψziTλ(∇·

→
Hi)

−ψ
→
Hi ·∇Tλzi +

∂ψ

∂t
ziTλzi

)
dx dt = 0 .

Using integration by parts and the self-adjointness of Tλ, for i = 1, 2, . . . , N , we
get ∫∫

QT

(
2λψviTλzi − 2ψvizi − 2ψ

→
Hi ·∇Tλzi +

∂ψ

∂t
ziTλzi

)
dx dt = 0. (2.7)

Let

giλ(t) =

∫
Ω

ziTλzidx, t ∈ [0, T ], i = 1, 2, . . . , N.

Now we prove that giλ(t) converges to zero on [0, T ] uniformly as λ → 0 for
i = 1, 2, . . . , N .
First, we show that giλ(t) is absolutely continuous. From (2.7), we get∫∫

QT

(
2λψviTλzi − 2ψvizi − 2ψ

→
Hi ·∇Tλzi − ψ

∂(ziTλzi)

∂t

)
dx dt = 0.

From the arbitrariness of ψ, we see that

g′iλ(t) =
d

dt

∫
Ω

ziTλzidx =

∫
Ω

∂(ziTλzi)

∂t
dx

= 2λ

∫
Ω

viTλzidx− 2

∫
Ω

vizidx− 2

∫
Ω

→
Hi ·∇Tλzidx, a.e. t ∈ [0, T ].

Since zi, vi and
→
Hi are all bounded measurable functions and (2.3) holds, we

get that g′iλ(t) ∈ L
1(0, T ). Thus giλ(t) is absolutely continuous.
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Next, we show that giλ(0 + 0) ≡ limt→0+ giλ(t) = 0. Let

ψε(t) =

∫ +∞
t

αε(s− ε)ds, αε(s) =
1

ε
α
(s
ε

)
,

where α(s) denotes the kernel of one-dimensional mollifier, namely, α is in the

space C∞0 (−∞,+∞), α ≥ 0, suppα = [−1, 1] and
∫ 1
−1 α(s) ds = 1. Thus ψε ∈

C∞([0, T ]) and ψε(T ) = 0 for sufficiently small ε > 0. Letting ψ = ψε in (2.7),
we get∫∫

QT

(2λψεviTλzi − 2ψεvizi − 2ψε
→
Hi ·∇Tλzi − αε(t− ε)ziTλzi) dx dt = 0.

The dominated convergence theorem implies

giλ(0 + 0) = lim
ε→0+

∫ 2ε
0

αε(t− ε)giλ(t)dt

= lim
ε→0+

∫∫
QT

αε(t− ε)ziTλzi dx dt

= 2λ lim
ε→0+

∫∫
QT

ψεviTλzi dx dt− 2 lim
ε→0+

∫∫
QT

ψεvizi dx dt

−2 lim
ε→0+

∫∫
QT

ψε
→
Hi ·∇Tλzi dx dt .

Since zi, vi and
→
Hi are all bounded measurable functions and (2.3) holds, we

get that giλ(0 + 0) = 0.
Finally, we prove that giλ(t) converges to zero on [0, T ] uniformly as λ→ 0.

It follows easily from the above arguments that

giλ(t) = giλ(0 + 0) +

∫ t
0

g′iλ(s)ds

= 2λ

∫ t
0

∫
Ω

viTλzi dx ds − 2

∫ t
0

∫
Ω

vizi dx ds

−2

∫ t
0

∫
Ω

→
Hi ·∇Tλzi dx ds .

Since wi and ŵi are bounded measurable and Ai and
→
Bi are continuously dif-

ferentiable, there exist three positive constants M0, M1 and M2 such that for
i = 1, 2, . . . , N , the following estimates hold

|zi| ≤M0, |vi| ≤M1|zi|, |
→
Hi | ≤M2


 N∑
j=1

v2j



1/2

.

Noticing that zi and vi have the same sign for A
′
i(s) ≥ 0, we get

vizi = |vi||zi| ≥
1

M1
v2i .
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By Schwarz’s inequality and Young’s inequality, we get

∣∣ ∫
Ω

→
Hi ·∇Tλzi dx

∣∣

≤

(∫
Ω

|
→
Hi |

2dx

)1/2(∫
Ω

|∇Tλzi|
2dx

)1/2

≤ M2

N∑
j=1

(∫
Ω

v2j dx

)1/2(∫
Ω

|∇Tλzi|
2dx

)1/2

≤
1

NM1

N∑
j=1

∫
Ω

v2jdx +
N2M1M

2
2

4

∫
Ω

(∇Tλzi∇Tλzi)dx

=
1

NM1

N∑
j=1

∫
Ω

v2jdx +
N2M1M

2
2

4

∫
Ω

(−Tλzi∆Tλzi)dx

=
1

NM1

N∑
j=1

∫
Ω

v2jdx +
N2M1M

2
2

4

∫
Ω

(
−λ(Tλzi)

2 + ziTλzi
)
dx

≤
1

NM1

N∑
j=1

∫
Ω

v2jdx +
N2M1M

2
2

4
giλ(t).

Let

gλ(t) =

N∑
i=1

giλ(t).

Therefore,

gλ(t)

= 2

N∑
i=1

(
λ

∫ t
0

∫
Ω

viTλzi dx ds−

∫ t
0

∫
Ω

vizi dx ds−

∫ t
0

∫
Ω

→
Hi ·∇Tλzi dx ds

)

≤ 2

N∑
i=1

(
λ

∫ t
0

∫
Ω

viTλzi dx ds−
1

M1

∫ t
0

∫
Ω

v2i dx ds

+
1

NM1

N∑
j=1

∫ t
0

∫
Ω

v2j dx ds+
N2M1M

2
2

4

∫ t
0

giλ(s)ds
)

≤ 2λ

N∑
i=1

∫ T
0

∫
Ω

|viTλzi| dx ds+
N2M1M

2
2

2

∫ t
0

gλ(s)ds.

Moreover, it follows that
gλ(t) ≥ 0

by

giλ(t) =

∫
Ω

ziTλzidx
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=

∫
Ω

(−∆TλziTλzi + λTλziTλzi)dx

=

∫
Ω

(∇Tλzi∇Tλzi + λTλziTλzi)dx

≥ 0 .

Hence by Gronwall’s inequality, we get

gλ(t) ≤ C1λ,

where C1 is a constant depending only on N , M0, M1, M2, C0, T and the
measure of Ω, but independent of λ and t. So gλ(t) converges to zero on [0, T ]
uniformly as λ → 0. Noticing that giλ(t) ≥ 0, we get that giλ(t) converges to
zero on [0, T ] uniformly as λ→ 0.
Now we prove

zi(x, t) = 0, a.e. (x, t) ∈ QT , i = 1, 2, . . . , N.

For any ϕ ∈ C∞0 (QT ), we have

∣∣ ∫∫
QT

ziϕdxdt
∣∣2

=

∣∣∣∣
∫∫
QT

(−∆Tλzi + λTλzi)ϕdxdt

∣∣∣∣
2

=

∣∣∣∣
∫∫
QT

(∇Tλzi∇ϕ+ λϕTλzi) dx dt

∣∣∣∣
2

≤ 2‖∇ϕ‖2L2(QT )‖∇Tλzi‖
2
L2(QT )

+ 2λ2‖ϕ‖2L2(QT )‖Tλzi‖
2
L2(QT )

≤ C2

(∫∫
QT

|∇Tλzi|
2 dx dt+ λ

∫∫
QT

(Tλzi)
2 dx dt

)

≤ C2

∫∫
QT

(−∆Tλzi + λTλzi)Tλzi dx dt

= C2

∫∫
QT

ziTλzi dx dt

≤ C2T sup
t∈[0,T ]

giλ(t)→ 0, (λ→ 0),

where C2 = 2‖∇ϕ‖2L2(QT ) + 2‖ϕ‖
2
L2(QT )

independent of λ. Therefore,

∫∫
QT

ziϕdxdt = 0, ∀ϕ ∈ C∞0 (QT ).

It follows that

zi(x, t) = 0, a.e. (x, t) ∈ QT , i = 1, 2, . . . , N.
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Thus
wi(x, t) = ŵi(x, t), a.e. (x, t) ∈ QT , i = 1, 2, . . . , N,

which implies

ui(x, t) = ûi(x, t), a.e. (x, t) ∈ QT , i = 1, 2, . . . , N.

The proof is complete.
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