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One-dimensional elliptic equation with concave

and convex nonlinearities ∗

Justino Sánchez & Pedro Ubilla

Abstract

We establish the exact number of positive solutions for the boundary-
value problem

−(|u′|m−2u′)′ = λuq + up in (0, 1)

u(0) = u(1) = 0 ,

where 0 ≤ q < m− 1 < p and λ is positive.

1 Introduction

We establish the exact number of positive solutions for the boundary-value
problem

−(|u′|m−2u′)′ = λuq + up in (0, 1)

u(0) = u(1) = 0 ,
(1)

where 0 ≤ q < m− 1 < p and λ > 0. Problem (1) with m = 2 was suggested by
Ambrosetti, Brezis, and Cerami in [2]. Indeed, the equation

−∆u = λuq + up in Ω

u = 0 on ∂Ω ,

with 0 < q < 1 < p and Ω a bounded domain of RN is studied in [2]. There,
it was proved that there exists Λ > 0 such that: if λ ∈ (0,Λ), then the latter
problem has at least two positive solutions; if λ = Λ, then it has at least one
positive solution; finally, if λ > Λ, then it has no positive solution.

∗Mathematics Subject Classifications: 34B15.
Key words: m-Laplacian, concave-convex nonlinearities, exactness results, time-maps.
c©2000 Southwest Texas State University and University of North Texas.
Submitted February 1, 2000. Published June 25, 2000.
(J.S.) Partially supported by FONDECYT Grant # 1990183.
(P.U.) Partially supported by FONDECYT Grants # 1990183 and # 1980812,
and by a DICYT-USACH grant.

1
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Using shooting methods, the existence and multiplicity of solutions for the
quasi-linear problem

−(|u′|p−2u′)′ = |u|p − µ in (0, 1)

u(0) = u(1) = 0
(2)

was studied recently by Addou and Benmezäı [1]. For µ > 0, they determine
a lower bound on the number of solutions of the problem (2), and their nodal
properties. In the case µ ≤ 0, they also obtained the exact number of solutions.
We note that if λ = −µ, m = p and q = 0, then the equation studied in

[1], with µ < 0, turns out to be a particular case of our equation (1). This fact
inspired us to apply the techniques developed by Addou and Benmezäı [1]. The
strategy is to localize the critical points of a time mapping on a bounded inter-
val J . We point out that this problem was simultaneously and independently
studied by I. Addou and A. Benmezäı. We remark that the novelty of our result
is that we obtain the exact number of solutions for an equation with concave-
convex nonlinearity, as well as their asymptotic behavior for small parameter λ.
Finally, we should note that in [2, 3, 4], the problem of determining the exact
number of solution is not solved.

2 Results and Methods Employed

We first state our main result.

Theorem 1 There exists a number λ∗ > 0 such that:

(a) If λ > λ∗, then (1) has no solutions.

(b) If λ = λ∗, then (1) has exactly one positive solution.

(c) If 0 < λ < λ∗, then (1) has exactly two positive solutions, uλ and vλ.

(d) The solutions uλ and vλ satisfy limλ→0 ‖uλ‖∞ = 0 and

(2m
m′
Imp (p+ 1)

)1/(p−m+1)
≤ lim
λ→0
‖vλ‖∞ ≤

(2m
m′
Imq (p+ 1)

)1/(p−m+1)
,

where Ir =
∫ 1
0 (1 − t

r+1)−1/m dt .

In this article we use a shooting method. More precisely, we study the ordinary
differential equation

−(|u′|m−2u′)′ = λ|u|q−1u+ |u|p−1u in (0, 1)

u(0) = 0, u′(0) = E > 0 .
(3)

The solution to this problem is 4T -periodic function, with

T = T (λ, S) = (m′)−1/mS
m−1−q
m

∫ 1
0

(
Sp−q

(1− tp+1)

p+ 1
+ λ
(1 − tq+1)

q + 1

)−1/m
dt ,
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where S = S(λ,E) is the first zero of the function Em −m′G(λ, ·),

G(λ, u) =
λuq+1

q + 1
+
up+1

p+ 1
,

and m′ is defined by 1/m+ 1/m′ = 1. See, e.g. [3, 4].

The solution u to Problem (3) satisfies the following conditions

• u(2kT ) = 0, with k ∈ Z.

• u(x) > 0, for x ∈ (0, 2T ) and u(x) < 0, for x ∈ (2T, 4T ).

• Every hump of u is symmetrical about the center of the interval of its
definition, where we call hump of u its restriction to the open interval
I = (x1, x2), with x1 and x2 two consecutive zeros of u.

• Every positive (resp. negative) hump of u may be obtained by translating
the first positive (resp. negative) hump.

• The derivative of each hump of u vanishes once and only once.

Thus, when T = 1/2, we obtain positive solutions of Problem (1). In order to
prove Theorem 1, we need the following technical lemma.

Lemma 1 (a) S(λ, ·) is an increasing function,

S(λ, 0) = 0 and lim
E→+∞

S(λ,E) = +∞ .

(b) lim
E→+∞

T (λ, S(λ,E)) = lim
E→0+

T (λ, S(λ,E)) = 0 .

(c) T (λ, S(λ, ·)) has a unique maximum for each λ > 0 .

(d) λ→ T (λ, S∗λ) is a decreasing function that satisfies

lim
λ→0+

T (λ, S∗λ) = +∞ and lim
λ→+∞

T (λ, S∗λ) = 0

where S∗λ = S(λ,E
∗(λ)) and E∗(λ) is the unique critical point of the

function T (λ, S(λ, ·)).

(e) For each λ sufficiently small, the solutions S1 and S2 of T (λ, S) = 1/2
satisfy

S1 ≤
(
λ
(m− 1− q
p−m+ 1

) (p+ 1)
(q + 1)

)1/(p−q)
,

2m

m′
Imp (p+ 1) ≤ S

p−m+1
2 ≤

2m

m′
Imq (p+ 1) .
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3 Proof of the Main Results

Proof of Theorem 1. By Lemma 1 and the continuity of the function λ →
T (λ, S∗λ), there exists λ

∗ which satisfies T (λ∗, S∗λ∗) = 1/2 and such that:

• If λ > λ∗, then T (λ, S(λ,E)) < 1
2 , for each E > 0.

• If λ = λ∗, then max
E>0
T (λ, S(λ,E)) = 1/2.

• If λ < λ∗, then max
E>0
T (λ, S(λ,E)) > 1/2 and for each λ sufficiently small

we have that

‖uλ‖∞ ≤

(
λ

(
m− 1− q

p−m+ 1

)
(p+ 1)

(q + 1)

)1/(p−q)

and(
2m

m′
Imp (p+ 1)

)1/(p−m+1)
≤ ‖vλ‖∞ ≤

(
2m

m′
Imq (p+ 1)

)1/(p−m+1)
.

From these three statements and Lemma 1, Theorem 1 follows.

Proof of Lemma 1. The proof of (a) and (b) can be found in [3] and [4].
Concerning (c), using statements (a) and (b) it suffices to show that the function
S → T (λ, S) has a unique critical point for each λ > 0.
On the other hand, it is easy to prove that

∂T

∂S
= (m′)−

1
m

∫ S
0

A(λ, S) −A(λ, η)

mS(G(λ, S)−G(λ, η))
m+1
m

dη

where A(λ, u) =
(
m−1−q
q+1

)
λuq+1 −

(
p−m+1
p+1

)
up+1. Direct computations show

that

∂T

∂S
> 0 , for S ∈ [0, ρ1] and

∂T

∂S
< 0 , for S ∈ [ρ2,+∞) (4)

where

ρ1 =

(
λ

(
m− 1− q

p−m+ 1

))1/(p−q)
and ρ2 =

(
λ
(m− 1− q)(p+ 1)

(p−m+ 1)(q + 1)

)1/(p−q)
.

(5)

Moreover, A(λ, 0) = A(λ, ρ2) = 0 and ρ2 > ρ1. Thus the critical points of
T (λ, ·) belong to the interval J := [ρ1, ρ2].
By the same arguments as in Lemma 7 of [1], it is not difficult to verify that

∂2T

∂S2
= (m′)−1/m

∫ 1
0

S(1− ηp+1)2P (x(η))

m2(G(λ, S) −G(λ, ηS))(2m+1)/m
dη ,
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where

x(η) =

{ q+1
p+1 if η = 1

1−ηq+1

1−ηp+1 if η ∈ [0, 1)

and

P (x) =
(q −m+ 1)

q + 1
λ2S2qx2 − C(m, p, q)λSp+qx+

(p−m+ 1)

p+ 1
S2p .

Since 0 ≤ q < m− 1 < p, there exists x1 < 0 < x2 such that:

• P (x1) = P (x2) = 0;

• P (x) > 0, x ∈ (x1, x2);

• P (x) < 0, x ∈ (−∞, x1) ∪ (x2,+∞).

Indeed,

x2 =
Sp−q

2λ(p+ 1)(m− 1− q)

×
(√
µ− (m(p2 + q2)− 2(m+ 1)pq + (m− 2)(p+ q) + 2(m− 1))

)
,

where

µ = (m(p2 + q2)− 2(m+ 1)pq + (m− 2)(p+ q) + 2(m− 1))2

+4(p+ 1)(q + 1)(p−m+ 1)(m− 1− q) .

On the other hand, using that

α(x) = (p+ 1)xq+1 − (q + 1)xp+1, for 0 ≤ x ≤ 1,

is an increasing function, it is easy to see that

x(η) ∈

[
q + 1

p+ 1
, 1

]
, for all η ∈ [0, 1].

We note that the function S → x2(S) is an increasing function that satisfies

x2(ρ2) =

√
µ− (m(p2 + q2)− 2(m+ 1)pq + (m− 2)(p+ q) + 2(m− 1))

2(q + 1)(p−m+ 1)
.

We now claim that

x2(ρ2) <
q + 1

p+ 1
.

For this, we consider the function

F (x) = ((m+ 1)q + 1)x3 − (2(m+ 1)q2 + q + (m− 1))x2

+q((m+ 1)q2 − q + 2(m− 1))x− q2(m− 1− q) .
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Let us show that the function F satisfies

F (x) > 0, for x > m− 1 .

This statement will follow, if we prove that F (m − 1) ≥ 0, F ′(m− 1) > 0 and
F is convex in [m− 1,+∞). In fact,

F (m− 1) = (m− 1)
(
(m+ 1)q3 − (2m2 − 1)q2 +m2(m− 1)q

)
− q2(m− 1− q)

= m2q3 − 2m2(m− 1)q2 +m2(m− 1)2q

= m2q(q −m+ 1)2 ≥ 0

On the other hand,

F ′(x) = 3((m+1)q+1)x2−2(2(m+1)q2+q+m−1)x+q((m+1)q2−q+2(m−1)) .

Thus

F ′(m− 1) = (m− 1)(3(m− 1)((m+ 1)q + 1)− 2(2(m+ 1)q2 + q +m− 1))

+(m+ 1)q3 − q2 + 2(m− 1)q

= (m− 1)(−4(m+ 1)q2 + (3m2 − 5)q +m− 1) + (m+ 1)q3

−q2 + 2(m− 1)q

= (m+ 1)q3 − (4m2 − 3)q2 + 3(m− 1)2(m+ 1)q + (m− 1)2.

We note that the point x = m− 1 is a zero of the algebraic equation

(m+ 1)x3 − (4m2 − 3)x2 + 3(m− 1)2(m+ 1)x+ (m− 1)2 = 0 .

Thus

F ′(m− 1) = (q −m+ 1)((m+ 1)q2 − (3m2 − 2)q −m+ 1)

= (q −m+ 1)((q −m+ 1)((m+ 1)q + 1)− 2m2q) > 0 .

We now prove that F is convex in [m− 1,+∞). Note that

F (x) = αx3 + βx2 + γx+ δ

where
α = (m+ 1)q + 1 , β = −(2(m+ 1)q2 + q +m− 1) ,

γ = q((m+ 1)q2 − q + 2(m− 1)) , δ = −q2(m− 1− q) .

Then it easily follows that F ′′(x) > 0 if and only if x > −β/(3α). Thus, F is
convex in [m− 1,+∞) when

m− 1 ≥ −
β

3α
=
2(m+ 1)q2 + q +m− 1

3((m+ 1)q + 1)

which is equivalent to saying that

G(q) = 2(m+ 1)q2 + (4− 3m2)q − 2(m− 1) ≤ 0
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But G(q) ≤ 0, when q ∈ (r1, r2), where

r1 =
3m2 − 4−m

√
9m2 − 8

4(m+ 1)
and r2 =

3m2 − 4 +m
√
9m2 − 8

4(m+ 1)
.

Since r1 < 0 < m − 1 < r2, we obtain that G(q) ≤ 0, for each q ∈ [0,m − 1).
Hence F is convex in [m− 1,+∞). Thus[

q + 1

p+ 1
, 1

]
⊆ (x2(S),+∞), for each S ∈ [ρ1, ρ2] .

Now using that P (x) < 0 for each x ∈ (−∞, x1) ∪ (x2,+∞) , we have that
P (x(η)) < 0, for all η ∈ [0, 1]. Hence

∂2T

∂S2
< 0, for each S ∈ [ρ1, ρ2] ,

which proves (c), that is, the uniqueness of the critical point of the function
T (λ, S(λ, ·)).
To prove (d), we note that

d

dE
(T (λ, S(λ,E)) = (m′)−1/m

∂S

∂E

∫ S
0

A(λ, S) −A(λ, η)

mS(G(λ, S)−G(λ, η))
m+1
m

dη

and

∂T

∂λ
= (m′)−

1
m
∂S

∂λ

∫ S
0

A(λ, S)−A(λ, η)

mS(G(λ, S)−G(λ, η))
m+1
m

dη

−(m′)−
1
m

∫ S
0

Sq+1 − ηq+1

m(q + 1)(G(λ, S) −G(λ, η))
m+1
m

dη .

Let ∆ = −∂S
∂λ

d
dE
(T (λ, S(λ,E)) + ∂S

∂E
∂T
∂λ
. Thus

∆ = −(m′)−
1
m
∂S

∂E

∫ S
0

Sq+1 − ηq+1

m(q + 1)(G(λ, S)−G(λ, η))
m+1
m

dη .

Hence ∆ < 0, for each E > 0 and λ > 0.
Using that d

dE
(T (λ, S(λ,E∗(λ))) = 0 and by part (a), we see that

∂T

∂λ
(λ, S(λ,E∗(λ))) < 0, for each λ > 0.

Therefore T (λ, S∗λ) is a decreasing function of λ.
On the other hand, we know that the function T (λ, S(λ, ·)) is increasing in

(0, E1(λ)), where E1(λ) = (m
′G(λ, ρ1))

1/m, hence E∗(λ) is the unique maxi-
mum of the function T (λ, S(λ, ·)). Then E∗(λ) ≥ E1(λ). By part (a), we have
that

S(λ,E∗(λ)) ≥ S(λ,E1(λ)) .
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Thus

T (λ, S(λ,E∗(λ)) ≤ (m′)−1/mρ
m−1−p
m

1

∫ 1
0

(
1− tp+1

p+ 1

)−1/m
dt.

Since lim
λ→+∞

ρ1 = lim
λ→+∞

(
λ
(m− 1− q)

(p−m+ 1)

)1/(p−q)
= +∞, it follows that

lim
λ→+∞

T (λ, S∗λ) = 0 .

From the fact that ρ1 = S(λ,E1(λ)), then after some computations, we
obtain that

T (λ, S(λ,E1(λ)) = λ
m−1−p
m(p−q) (m′)−

1
m

(
m− 1− q

p−m+ 1

)m−1−q
m(p−q)

×

∫ 1
0

((
m− 1− q

p−m+ 1

)(
1− tp+1

p+ 1

)
+
1− tq+1

q + 1

)− 1
m

dt .

Hence

lim
λ→0+

T (λ, S(λ,E∗(λ)) ≥ lim
λ→0+

T (λ, S(λ,E1(λ)) = +∞ ,

which proves (d). In order to prove (e), using the concavity of the function
T (λ, ·) and assertions (4) and (5), we obtain that S1 < ρ2 which prove the first
inequality of (e). Using the hypothesis that T (λ, S) = 1/2, we have

2m

m′
Imp S

p ≤
Sp+1

p+ 1
+ λ
Sq+1

q + 1
≤
2m

m′
Imq S

m.

Since S2 > ρ1, the above inequalities imply

2m

m′
Imp (p+ 1) ≤ S

p−m+1
2 ≤

2m

m′
Imq (p+ 1).

Hence the proof of Lemma 1 is now complete.

Remark 1. If λ = 0, then it is easy to prove that the time mapping function
is a decreasing function of S. Therefore (1) has a unique positive solution.

Remark 2. Using the methods developed in this article, it is possible to find
the exact number of solutions with k nodes in the interval (0, 1) for the problem

−(|u′|m−2u′)′ = λ|u|q−1u+ |u|p−1u, in (0, 1)

u(0) = u(1) = 0 .

In this case the same time mapping T (λ, S) may be used.
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Remark 3. We conjecture that the same techniques developed in [1] may be
applied to determine a lower bound on the number of solutions together with
their nodal properties for the problem (1) , with λ < 0.

Acknowledgments The authors thank the referee for his careful reading of
the manuscript and his valuable suggestions.

References

[1] I. Addou and A. Benmezäı, Boundary Value Problems for the one dimen-
sional p-Laplacian with even super-linear Nonlinearity, Elect. J. of Differen-
tial Equations, Vol. 9 (1999), 1–29.

[2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and
convex nonlinearities in some elliptic problems, J. Funct. Anal. 122, 2 (1994),
519–543.
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