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SMOOTHNESS OF SOLUTIONS OF CONJUGATE

BOUNDARY-VALUE PROBLEMS ON A MEASURE CHAIN

ERIC R. KAUFMANN

Abstract. In this paper we consider the nth order ∆-differential equation
(often refered to as a differential equation on a measure chain)

u∆n (t) = f(t, u(σ(t)), . . . , u∆n−1(σ(t)))

satisfying n-point conjugate boundary conditions. We show that solutions
depend continuously and smoothly on the boundary values.

1. Introduction

Differential equations on a measure chain (also called differential equations on
time scales) have received much attention since Hilger’s [17] work unifying contin-
uous and discrete calculus. Subsequent works by Agarwal and Bohner [1], Aulback
and Hilger [3], Erbe and Hilger [8], and Kaymakcalan, et al. [18] have furthered
the development of calculus on measure chains. There are many recent papers that
consider a variety of different problem for differential equations on a measure chain.
See [2, 4, 9, 10] for example.
In this paper we are concerned with the continuous dependence and smoothness

of solutions of differential equations on a measure chain with respect to boundary
values. The results of this paper are patterned after those found in Henderson
and Lee [16] and Henderson [13]. In [16], the authors considered the continu-
ous dependence and smoothness of solutions of conjugate boundary-value problems
for difference equations with respect to boundary conditions. In [13], the author
considered the continuous dependence and smoothness of solutions of conjugate
boundary-value problems for differential equations with respect to boundary condi-
tions. Other works devoted to continuous dependence and smoothness of solutions
with repsect to boundary values include [5, 6, 7, 11, 14, 15] and references therein.
Let T be a nonempty closed subset of R, and let T have the subspace topology

inherited from the Euclidean topology on R. Then T is called a measure chain, (in
some of the literature T is called a time scale).
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Definition 1.1. For t < supT and r > inf T , we define the forward jump operator,
σ, and the backward jump operator, ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T,

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said
to be right dense. If ρ(r) < r, r is said to be left scattered, and if ρ(r) = r, r is
said to be left dense.

Definition 1.2. For x : T → R and t ∈ T (assume t is not left scattered if t =
supT ), we define the delta derivative of x(t), x∆(t), to be the number (when it
exists), with the property that, for each ε > 0, there is a neighborhood, U, of t such
that ∣∣∣[x(σ(t)) − x(s)] − x∆(t)[σ(t) − s]

∣∣∣ ≤ ε
∣∣∣σ(t)− s

∣∣∣,
for all s ∈ U . Higher order delta derivatives are defined recursively,

x∆n(t) = (x∆n−1)∆(t).

For convenience, we will use the notation x∆0(t) to represent the function x(t).
That is, x∆0(t) = x(t).
Remarks: If x : T → R is continuous at t ∈ T, t < supT, and t is right

scattered, then

x∆(t) =
x(σ(t)) − x(t)

σ(t)− t
.

In particular, if T = Z, the integers, then

x∆(t) = ∆x(t) = x(t+ 1)− x(t),

whereas, if t is right dense, then

x∆(t) = x′(t).

Let a, b ∈ T . We define the closed interval [a, b] by [a, b] = {t ∈ T |a ≤ t ≤ b}.
Other closed, open, and half-open intervals in T are similarly defined.
We consider solutions of the ∆-differential equation

u∆n(t) = f(t, u(σ(t)), u∆(σ(t)), . . . , u∆n−1(σ(t)), ) t ∈ T, (1)

We will assume throughout that

(A) f(t, x1, x2, . . . , xn) : T × Rn → Rn is continuous.

At times we will need to assume that

(B) ∂f
∂xi
(t, x1, x2, . . . , xn) : T × Rn → Rn is continuous, 1 ≤ i ≤ n.

Given a solution, u(t), of (1), we will also have need of the variational equation
along u(t),

z∆n(t) =

n∑
i=1

∂f

∂xi
(t, u(σ(t)), u∆(σ(t)), . . . , u∆n−1(σ(t)))z∆i(σ(t)), (2)

In Section 2 we state two results for solutions of initial-value problems of (1). The
first result is that solutions of initial-value problems depend continuously on initial
data provided condition (A) holds. The second results states that if conditions
(A) and (B) hold then solutions of initial-value problems can be differentiated with
respect to initial values.
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In Section 3 we state our main results which are analogues of the Theorems in
section 2 for n-point conjugate boundary-value problems. The proofs of these The-
oresm depend on the uniqueness of solutions of conjugate boundary value problems.

2. Smoothness with Respect to Initial Values

In this section we present theorems on continuous dependence and smoothness of
solutions of initial-value problems with respect to initial values. The ∆-differential
equation along with the conditions

u∆i(t0) = ci+1, 0 ≤ i ≤ n− 1, (3)

where t0 ∈ T is called an initial-value problem. The authors in [18] have shown that
under a weaker condition than (A) initial value problems of the form (1), (3) have
unique solutions. Furthermore they have shown that that the initial-value problem
(1), (3) depends continuously on the initial values under this weaker condition.
Theorem 2.1 is similar to the theorem on continuous dependence presented in [18].

Theorem 2.1 (Continuous Dependence on Initial Values). Suppose that condition
(A) is satisfied. Let u(t; t0, c1, c2, . . . , cn) be the solution of (1), (3) where t0 ∈ T
and c1, c2, . . . cn ∈ R. Then for each ε > 0 and τ such that t0 + τ ∈ T there exists
a δ(ε, t0, τ, c1, . . . , cn) such that if |ci − di| < δ, 1 ≤ i ≤ n then

|u(t; t0, c1, c2, . . . , cn)− u(t; t0, d1, d2, . . . , dn)| < ε

for all t ∈ [t0, t0 + τ ].

Theorem 2.2. Assume that conditions (A) and (B) are satisfied. Let u(t) =
u(t; t0, c1, c2, . . . , cn) denote the solution of the initial-value problem (1), (3) where
t0 ∈ T and c1, c2, . . . cn ∈ R. Then, given γ1, . . . , γn ∈ R, for each 1 ≤ j ≤ n

βj(t) =
∂u

∂cj
(t; t0, γ1, . . . , γn)

exists and is the solution of the variational equation

β∆nj (t) =

n∑
i=1

∂f

∂xi
(t, u(σ(t); t0, γ1, . . . , γn), u

∆(σ(t); t0, γ1, . . . , γn),

. . . , u∆n−1(σ(t); t0, γ1, . . . , γn))β
∆i
j (σ(t))

and satisfies

β∆ij (t0) = δi,j , 1 ≤ i ≤ n,

where

δi,j =

{
1, i = j,
0, i 6= j.

3. Smoothness with Respect to Boundary Values

In this section we state and prove analogues to Theorems 2.1 and 2.2 for n-point
conjugate boundary-value problems.

Definition 3.1. Let t1 < t2 < · · · < tn ∈ T and let u1, u2, . . . , un ∈ R. A
boundary-value problem satisfying

u(ti) = ui, 1 ≤ i ≤ n, (4)

is called an n-point conjugate boundary-value problem.
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We give some conditions characterizing disconjugacy for linear ∆-differential
equations in terms of generalized zeros. These conditions parallel those given by
Hartman [12] for the disconjugacy for difference equations.

Definition 3.2. Let u : T → R. We say that u has a generalized zero at t0 if
either u(t0) = 0 or if there is a k ∈ N such that (−1)ku(ρk(t0))u(t0) > 0 and
u(ρ(t0)) = u(ρ

2(t0)) = · · · = u(ρk−1(t0)) = 0.

Definition 3.3. The nonlinear ∆-differential (1) is said to be n-point disconjugate
on T provided that whenever u(t) and v(t) are solutions of (1) such that if u(t)−v(t)
has n generalized zeros at t1 < t2 < · · · < tn ∈ T then u(t)− v(t) ≡ 0 on [t1,+∞).

In the case when (1) is linear, say

v∆n(t) =

n∑
i=1

αi(t)v
∆i−1(σ(t)), (5)

where αi : T → R, 1 ≤ i ≤ n, we may reformulate Definition 3.3 as follows.

Definition 3.4. The linear equation (5) is said to be n-point disconjugate on T
provided no nontrivial solution u of (5) has n-generalized zeros on T .

We adopt the following notation to distinguish initial-value problems from bound-
ary value problems. Given t0 ∈ T and c1, . . . , cn ∈ R, let v(t) = v(t; t0, c1, . . . , cn)
denote the solution of the initial-value problem (1), (3). Given t1, . . . , tn ∈ T
and v1, . . . , vn ∈ R, let v(t) = v(t; t1, . . . , tn, v1, . . . , vn) denote the solution of the
boundary value problem (1), (4).
We will use the Brouwer Theorem on Invariance of Domain, Theorem 3.5 below,

to prove that solutions of (1) depend continuously on the boundary values when (1)
is n-point disconjugate. To show that (1) depends smoothly on the boundary values
we must further assume that the variational equation, (2), is n-point disconjugate.

Theorem 3.5. If U is an open subset of Rn, n dimensional Euclidean space, and
ϕ : U → Rn is one-to-one and continuous on U then ϕ is a homeomorphism and
ϕ(U) is an open subset of Rn.

Theorem 3.6 (Continuous Dependence on Boundary Values). Suppose that con-
dition (A) is satisfied and that (1) is n-point disconjugate on T . Let y(t) be a
solution of (1) on [t1,+∞) and let t1 < t2 < · · · < tn ∈ T be given. Then there
exists an ε > 0 such that if γi ∈ R, 1 ≤ i ≤ n where |γi| < ε, 1 ≤ i ≤ n, then the
boundary-value problem (1) satisfying

u(ti) = y(ti) + γi, 1 ≤ i ≤ n,

has a unique solution u(t; t1, . . . , tn, y(t1) + γ1, . . . , y(tn) + γn). Furthermore we
have u(t; t1, . . . , tn, y(t1) + γ1, . . . , y(tn) + γn) converging to y(t) as ε→ 0.

Proof: Let t1 < t2 < · · · < tn ∈ T be given and define a mapping ϕ : Rn → Rn

by ϕ(c1, c2, . . . , cn) = (v(t1), v(t2), . . . , v(tn)) where v(t) = v(t; t1, c1, . . . cn) is the
solution of the (1) satisfying the initial conditions

v∆i−1(t1) = ci, 1 ≤ i ≤ n.

We will show that ϕ is one-to-one and continuous. It will then follow from Theorem
3.5, that ϕ is a homeomorphism.
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Suppose that ϕ(c1, c2, . . . , cn) = ϕ(c
′
1, c
′
2, . . . , c

′
n). Then,

(v(t1; t1, c1, . . . , cn), v(t2; t1, c1, . . . , cn), . . . , v(tn; t1, c1, . . . , cn))

= (v(t1; t1, c
′
1, . . . , c

′
n), v(t2; t1, c

′
1, . . . , c

′
n), . . . , v(tn; t1, c

′
1, . . . , c

′
n)).

Now, equation (1) is n-point disconjugate on T and hence solutions to (1), (4) are
unique. And so, for all t ∈ [t1,+∞) we have

v(t; t1, c1, . . . , cn) = v(t; t1, c
′
1, . . . , c

′
n).

In particular,

v∆i−1(t1; t1, c1, . . . , cn) = v
∆i−1(t1; t1, c

′
1, . . . , c

′
n), 1 ≤ i ≤ n.

Recalling our notation, we see that (c1, c2, . . . , cn) = (c
′
1, c
′
2, . . . , c

′
n). Hence ϕ is

one-to-one.
To show that ϕ is continuous we consider a sequence {(c`1, c

`
2, . . . , c

`
n)}
∞
`=1 which

converges to (c1, c2, . . . , cn) as ` → ∞. By the continuous dependence on initial
values, Theorem 2.1, v(t; t1, c

`
1, . . . , c

`
n) → v(t; t1, c1, . . . , cn) for all t ∈ [t1,+∞) as

`→∞. That is,

lim
`→∞

v(t; t1, c
`
1, . . . , c

`
n) = v(t; t1, c1, . . . , cn).

Thus, {ϕ(c`1, c
`
2, . . . , c

`
n)} converges to ϕ(c1, c2, . . . , cn) as `→∞ and so ϕ is contin-

uous. By the Brouwer Theorem on Invariance of Domain, ϕ is a homeomorphism
onto its range, ϕ(Rn), and ϕ(Rn) is open in Rn.
Let y(t) be a solution of (1). Then (y(t1), . . . , y(tn)) ∈ ϕ(Rn). Since ϕ(Rn)

is open, there exists an ε > 0 such that if |γi| < ε, 1 ≤ i ≤ n, then (y(t1) +
γ1, . . . , y(tn) + γn) ∈ ϕ(Rn). Since ϕ is one-to-one there exists a unique r =
(r1, . . . , rn) ∈ Rn such that ϕ(r1, . . . , rn) = (y(t1) + γ1, . . . , y(tn) + γn). By our
definition,

ϕ(r1, . . . , rn) = (v(t1; t1, r1, . . . , rn), . . . , v(tn; t1, r1, . . . , rn))

where v(t; t1, r1, . . . , rn) is the solution of (1) satisfying the initial conditions

v∆i−1(t1) = ri, 1 ≤ i ≤ n.

Thus,

(y(t1) + γ1, . . . , y(tn) + γn) = (v(t1; t1, r1, . . . , rn), . . . , v(tn; t1, r1, . . . , rn)).

That is, v(t; t1, r1, . . . , rn) is the solution of (1) satisfying the boundary conditions,

v(ti; t1, r1, . . . , rn) = y(ti) + γi, 1 ≤ i ≤ n.

Now consider a sequence {(y(t1)+γ`1, . . . , y(tn)+γ
`
n)}

∞
`=1 ⊂ ϕ(R

n) where |γ`i | < ε,
1 ≤ i ≤ n and

lim
`→∞
(y(t1) + γ

`
1, . . . , y(tn) + γ

`
n) = (y(t1), . . . , y(tn)).

Let

u`(t) = u(t; t1, . . . , tn, y(t1) + γ
`
1, . . . , y(tn) + γ

`
n).

Since ϕ is a homeomorphism then ϕ−1 is continuous and so,

lim
`→∞

ϕ−1(u`(t1), . . . , u`(tn)) = lim
`→∞

ϕ−1(y(t1) + γ
`
1, . . . , y(tn) + γ

`
n)

= ϕ−1( lim
`→∞

y(t1) + γ
`
1, . . . , lim

`→∞
y(tn) + γ

`
n)

= ϕ−1(y(t1), . . . , y(tn)).
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That is, the initial values of u`(t) converge to the initial values of y(t). By
Theorem 2.1 u`(t) converges uniformly to y(t) on each compact subset of [t1,+∞).
Thus, u(t; t1, . . . , tn, y(t1) + γ

`
1, . . . , y(tn) + γ

`
n) converges to y(t) as ε→ 0 and the

proof is complete.

Theorem 3.7. Assume that f satisfies (A) and (B), that (1) is n-point discon-
jugate on T , and that the variational equation (2) is n-point disconjugate along
all solutions of (1). Let u(t) = u(t; t1, . . . tn, u1, . . . , un) be the solution of (1), (4)
on [t1,+∞). Then for 1 ≤ j ≤ n,

∂u
∂uj
exists on [t1,+∞) and zj(t) =

∂u
∂uj
is the

solution of the variational equation (2) along u(t) and satisfies

zj(ti) = δij , 1 ≤ i ≤ n.

Proof: Fix j, 1 ≤ j ≤ n. Let ε > 0 be as Theorem 3.6 and let h be such that
0 < |h| < ε. Define the difference quotient

zjh(t) =
1

h
[u(t; t1, . . . , tn, u1, . . . , uj + h, . . . , un)− u(t; t1, . . . , tn, u1, . . . , un)]

It suffices to show that limh→∞ zjh(t) exists on [t1,+∞). Note that for all h 6= 0,

zjh(ti) = δij , 1 ≤ i ≤ n.

For each 2 ≤ i ≤ n, define αi = u∆i−1(tj ; t1, . . . , tn, u1, . . . un) and εi = εi(h) =
u(ti; t1, . . . , tn, u1, . . . , ui + h, . . . , un) − αi. Recalling our notation we see that
u(ti; t1, . . . , tn, u1, . . . , ui+h, . . . , un) = ui+h and u(ti; t1, . . . , tn, u1, . . . , un) = ui.
As a consequence of Theorem 3.6 εi → 0 as h→ 0 for 2 ≤ i ≤ n.
Recall that v(t; tj , v1, v2, . . . vn) is the solution of (1) satisfying the initial condi-

tions

v∆i−1(tj) = vi, 1 ≤ i ≤ n.

In particular, v(t; tj , uj, α2, . . . , αn) is the solution of (1) satisfying v(tj) = uj and
for 2 ≤ i ≤ n, v∆i−1(tj) = αi. Likewise v(t; tj , uj + h, α2 + ε2, . . . , αn + εn) is the
solution of (1) satisfying v(tj) = uj + h and for 2 ≤ i ≤ n, v∆i−1(tj) = αi + εi.
Since solutions to initial-value problems are unique then v(t; tj , uj, α2, . . . , αn) =
u(t; t1, . . . , tn, u1, . . . , un). Similarly, we have v(t; tj , uj + h, α2+ ε2, . . . , αn+ εn) =
u(t, t1, . . . , tn, u1, . . . , uj + h, . . . , un).
Using a telescoping sum, we have

zjh(t)

=
1

h
[u(t; t1, . . . , tn, u1, . . . , uj + h, . . . , un)− u(t; t1, . . . , tn, u1, . . . , un)]

=
1

h
[v(t; tj , uj + h, α2 + ε2, . . . , αn + εn)− v(t; tj , uj , α2, . . . , αn)]

=
1

h
[[v(t; tj , uj + h, α2 + ε2, . . . , αn + εn)− v(t; tj , uj , α2 + ε2, . . . , αn + εn)]

+[v(t; tj , uj, α2 + ε2, . . . , αn + εn)− v(t; tj , uj, α2, . . . , αn + εn)]

+ · · ·+ [v(t; tj , uj, α2, . . . , αn−1, αn + εn)− v(t; tj , uj, α2, . . . , αn−1, αn)]]

By Theorem 2.2, solutions of (1) can be differentiated with respect to initial values.
That is β1 =

∂v
∂v1
, β2 =

∂v
∂v2
, . . . , βn =

∂v
∂vn
exist. By Theorem 2.2 and the Mean
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Value Theorem, we see that

zjh(t) =
1

h
[β1(t, v(t; t1, uj + h̄, α2 + ε2, . . . , αn + εn))h (6)

+ β2(t, v(t; t1, uj, α2 + ε̄2, . . . , αn + εn))ε2

+ . . . + βn(t; v(t, t1, uj, α2, . . . , αn ++ε̄n))εn]

where

β1(t; v(t; t1, uj + h̄, α2 + ε2, . . . , αn + εn))

=
∂v

∂v1
(t; t1, uj + h̄, α2 + ε2, . . . , αn + εn)

...

βn(t; v(t; t1, uj, α2, . . . , αn + ε̄n)) =
∂v

∂vn
(t; t1, uj , α2, . . . , αn ++ε̄n)

and h̄ is between 0 and h and ε̄` is between 0 and ε`, 2 ≤ ` ≤ n. That is,
β1(t; v(t, t1, uj + h̄, α2+ ε2, . . . , αn+ εn)) is the solution of the variational equation

(2) along v(t; t1, uj + h̄, α2 + ε2, . . . , αn + εn) satisfying β
∆i−1
1 (tj) = δi1, 1 ≤ i ≤ n.

For 2 ≤ ` ≤ n, β`(t; v(t; t1, uj, α2 + ε2, . . . , α` + ε̄`, . . . , αn + εn)) is the solution
of the variational equation (2) along v(t; t1, uj, α2 + ε2, . . . , α` + ε̄`, . . . , αn + εn)

satisfying β
∆i−1
` (tj) = δi`, 1 ≤ i ≤ n. In particular note that

β2(tj) = · · · = βn(tj) = 0.

Distribute the factor 1
h
in equation (6).

zjh(t) = β1(t, v(t; t1, uj + h̄, α2 + ε2, . . . , αn + εn)) (7)

+ β2(t, v(t; t1, uj, α2 + ε̄2, . . . , αn + εn))
ε2

h

+ · · ·+ βn(t; v(t, t1, uj , α2, . . . , αn ++ε̄n))
εn

h
.

To show that limh→0 zjh(t) exists, it suffices to show that limh→0
ε`
h
exists for

2 ≤ ` ≤ n.
Recall that zjh(t1) = · · · = zjh(tj−1) = zjh(tj+1) = · · · = zjh(tn) = 0. Evaluate

(7) at t`, 1 ≤ ` ≤ n, ` 6= j to obtain the system of equations

−β(t`; v(tj ;uj + h̄, α2 + ε2, . . . , αn + εn)

= β2(t`; v(tj ;uj, α2 + ε̄2, . . . , αn + εn)
ε2

h

+ · · ·+ βn(t`; v(tj ;uj, α2, . . . , αn + ε̄n)
εn

h
, 1 ≤ ` ≤ n, ` 6= j.

This is a system of n− 1 equations in the n− 1 unknowns ε2h ,
ε3
h , . . . ,

εn
h .
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By Cramer’s rule we have, (after surpressing the variable dependency in v(·)),

ε2

h
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−β1(t1; v(·)) β3(t1; v(·)) · · · βn(t1; v(·))
...

...
...

−β1(tj−1; v(·)) β3(tj−1; v(·)) · · · βn(tj−1; v(·))
−β1(tj+1; v(·)) β3(tj+1; v(·)) · · · βn(tj+1; v(·))

...
...

...
−β1(tn; v(·)) β3(tn; v(·)) · · · βn(tn; v(·))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D(h)

,

...

εn

h
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β2(t1; v(·)) β3(t1; v(·)) · · · −β1(t1; v(·))
...

...
...

β2(tj−1; v(·)) β3(tj−1; v(·)) · · · −β1(tj−1; v(·))
β2(tj+1; v(·)) β3(tj+1; v(·)) · · · −β1(tj+1; v(·))

...
...

...
β1(tn; v(·)) β3(tn; v(·)) · · · −β1(tn; v(·))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D(h)

,

provided that

D(h) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β2(t1; v(·)) β3(t1; v(·)) · · · βn(t1; v(·))
...

...
...

β2(tj−1; v(·)) β3(tj−1; v(·)) · · · βn(tj−1; v(·))
β2(tj+1; v(·)) β3(tj+1; v(·)) · · · βn(tj+1; v(·))

...
...

...
β1(tn; v(·)) β3(tn; v(·)) · · · βn(tn; v(·))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0.

To see that D(h) 6= 0 for small values of h, consider the determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β2(t1; v(t; tj , uj , α2, . . . , αn)) · · · βn(t1; v(t; tj , uj, α2, . . . , αn))
...

...
β2(tj−1; v(t; tj , uj, α2, . . . , αn)) · · · βn(tj−1; v(t; tj , uj, α2, . . . , αn))
β2(tj+1; v(t; tj , uj, α2, . . . , αn)) · · · βn(tj+1; v(t; tj , uj , α2, . . . , αn))

...
...

β1(tn; v(t; tj , uj , α2, . . . , αn)) · · · βn(tn; v(t; tj , uj, α2, . . . , αn))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If D = 0 then there exists a set of numbers r2, . . . , rn, at least one of which is
nonzero, such that

γ(t) =

n∑
`=2

r`β`(t; v(t; tj , uj, α2, . . . , αn))

is a nontrivial solution of (2) along v(t; tj , uj, α2, . . . , αn) that vanishes at t =
t1, . . . tj−1, tj+1, . . . , tn. Since β`(tj) = 0 for 2 ≤ ` ≤ n then γ(tj) = 0. That is
γ(t) is a nontrivial solution of (2) that has n zeros in T contradicting the n-point
disconjugacy of the variational equation.
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Consequently D 6= 0. By continuity, D(h) 6= 0 for h sufficiently small. Thus
limh→0

ε`
h exists for each 2 ≤ ` ≤ n. Let

lim
h→0

ε`

h
= k`, 2 ≤ ` ≤ n.

Then,

zj(t) = lim
h→0
zjh(t)

= β1(t; v(tj ;uj, α2, . . . , αn)) +

n∑
`=2

k`β`(t; v(tj ;uj, α2, . . . , αn))

exists. That is, ∂u
∂uj
(t; t1, . . . , tn, u1, . . . , un) exists and zj(t) =

∂u
∂uj
. Furthermore,

since each β`(t; v(t; tj , uj , α2, . . . , αn)), 1 ≤ ` ≤ n is a solution of the variational
equation (2) along v(t; tj , uj , α2, . . . , αn) = u(t; t1, . . . , tn, u1, . . . , un) then zj(t) =
∂u
∂uj
is also a solution of (2) along u(t; t1, . . . , tn, u1, . . . , un). Finally we note that

zj(ti) = lim
h→0
zjh(ti) = δij , 1 ≤ i ≤ n

and the proof is complete.
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