ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2000**(2000), No. 60, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

High-order mixed-type differential equations with weighted integral boundary conditions *

M. Denche & A. L. Marhoune

Abstract

In this paper, we prove the existence and uniqueness of strong solutions for high-order mixed-type problems with weighted integral boundary conditions. The proof uses energy inequalities and the density of the range of the operator generated.

1 Introduction

Let α be a positive integer and Q be the set $(0,1) \times (0,T)$. We consider the equation

$$\mathcal{L}u := \frac{\partial^2 u}{\partial t^2} + (-1)^{\alpha} a(t) \frac{\partial^{2\alpha+1} u}{\partial x^{2\alpha} \partial t} = f(x,t), \tag{1}$$

where the function a(t) and its derivative are bounded on the interval [0, T]:

$$0 < a_0 \le a(t) \le a_1 \,, \tag{2}$$

$$\frac{da(t)}{dt} \le a_2 \,. \tag{3}$$

To equation (1) we attach the initial conditions

$$l_1 u = u(x,0) = \varphi(x), \quad l_2 u = \frac{\partial u}{\partial t}(x,0) = \psi(x) \quad x \in (0,1),$$
(4)

the boundary conditions

$$\frac{\partial^{i}}{\partial x^{i}}u(0,t) = \frac{\partial^{i}}{\partial x^{i}}u(1,t) = 0, \quad \text{for } 0 \le i \le \alpha - k - 1, \ t \in (0,T), \tag{5}$$

and integral conditions

$$\int_0^1 x^i u(x,t) dx = 0, \text{ for } 0 \le i \le 2k - 1, \quad 1 \le k \le \alpha \quad t \in (0,T).$$
(6)

^{*}Mathematics Subject Classifications: 35B45, 35G10, 35M10.

Key words: Integral boundary condition, energy inequalities, equation of mixed type. ©2000 Southwest Texas State University.

Submitted March 27, 2000. Published September 21, 2000.

where φ and ψ are known functions which satisfy the compatibility conditions given in (5)-(6).

Various problems arising in heat conduction [3, 4, 8, 9], chemical engineering [6], underground water flow [7], thermo-elasticity [14], and plasma physics [12] can be reduced to the nonlocal problems with integral boundary conditions. This type of boundary value problems has been investigated in [1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 16] for parabolic equations and in [11, 15] for hyperbolic equations. The basic tool in [2, 10, 16] is the energy inequality method which, of course, requires appropriate multipliers and functional spaces. In this paper, we extend this method to the study of a high-order mixed-type partial differential equations.

2 Preliminaries

In this paper, we prove existence and uniqueness of a strong solution of problem (1)-(6). For this, we consider the problem (1)-(6) as a solution of the operator equation

$$Lu = \mathcal{F},\tag{7}$$

where $L = (\mathcal{L}, l_1, l_2)$, with domain of definition D(L) consisting of functions $u \in W_2^{2\alpha,2}(Q)$ such that $\frac{\partial^i}{\partial x^i}(\frac{\partial^{\alpha-k+1}u}{\partial x^{\alpha-k}\partial t}) \in L_2(Q)$, $i = \overline{0, \alpha+k-1}$ and u satisfies conditions (5)-(6); the operator L is considered from E to F, where E is the Banach space consisting of functions $u \in L_2(Q)$, satisfying (5)-(6), with the finite norm

$$\|u\|_{E}^{2} = \int_{Q} \left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} + \sum_{i=0}^{\alpha-k} \left|\frac{\partial^{i+1} u}{\partial x^{i} \partial t}\right|^{2} dx dt \qquad (8)$$
$$+ \sup_{0 \le t \le T} \int_{0}^{1} \sum_{i=0}^{\alpha-k} \left|\frac{\partial^{i} u}{\partial x^{i}}\right|^{2} + \left|\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right|^{2} dx,$$

where $J^k u = \int_0^x \int_0^{\xi_1} \dots \int_0^{\xi_{k-1}} u(\xi, t) d\xi$. Here *F* is the Hilbert space of vectorvalued functions $\mathcal{F} = (f, \varphi, \psi)$ obtained by completing of the space $L_2(Q) \times W_2^{2\alpha}(0, 1) \times W_2^{2\alpha}(0, 1)$ with respect to the norm

$$\left\|\mathcal{F}\right\|_{F}^{2} = \int_{Q} \left|f\right|^{2} dx \, dt + \int_{0}^{1} \sum_{i=0}^{\alpha-k} \left|\frac{\partial^{i}\varphi}{\partial x^{i}}\right|^{2} + \left|\frac{\partial^{\alpha-k}\psi}{\partial x^{\alpha-k}}\right|^{2} dx \,. \tag{9}$$

Then we establish an energy inequality

$$\|u\|_{E} \le C_1 \,\|Lu\|_{F}\,,\tag{10}$$

and we show that the operator L has the closure \overline{L} .

Definition A solution of the operator equation $\overline{L}u = \mathcal{F}$ is called a strong solution of the problem (1)-(6).

EJDE-2000/60

Inequality (10) can be extended to $u \in D(\overline{L})$, i.e.,

$$\|u\|_{E} \leq C_{1} \|\overline{L}u\|_{F}, \quad \forall u \in D(\overline{L}).$$

From this inequality we obtain the uniqueness of a strong solution if it exists, and the equality of sets $R(\overline{L})$ and $\overline{R(L)}$. Thus, to prove the existence of a strong solution of the problem (1)-(6) for any $\mathcal{F} \in F$, it remains to prove that the set R(L) is dense in F.

Lemma 2.1 For any function $u \in E$, we have

$$\int_0^1 \left| J^{2k} \frac{\partial^2 u}{\partial t^2} \right|^2 dx \le 4^k \int_0^1 \left| J^k \frac{\partial^2 u}{\partial t^2} \right|^2 dx \,. \tag{11}$$

Proof Integrating $-\int_0^1 x J^k \frac{\partial^2 u}{\partial t^2} J^{k+1} \frac{\partial^2 \overline{u}}{\partial t^2} dx$ by parts, and using elementary inequalities we obtain (11).

Lemma 2.2 For $u \in E$ and $0 \le i \le \alpha - k$, we have

$$\int_{0}^{1} \left| \frac{\partial^{i+1}u}{\partial x^{i}\partial t} \right|^{2} dx \leq 4^{(\alpha-k)-i} \int_{0}^{1} \left| \frac{\partial^{\alpha}}{\partial x^{\alpha}} (J^{k} \frac{\partial u}{\partial t}) \right|^{2} dx.$$
(12)

Proof Integrating by parts $-\int_0^1 x \frac{\partial^{\alpha-i}}{\partial x^{\alpha-i}} (J^k \frac{\partial u}{\partial t}) \frac{\partial^{\alpha-i-1}}{\partial x^{\alpha-i-1}} (J^k \frac{\partial \overline{u}}{\partial t}) dx$ and using elementary inequalities yield (12).

Lemma 2.3 For $u \in E$ satisfying the condition (4) we have

$$\sum_{i=0}^{\alpha-k} \int_{0}^{1} \exp(-c\tau) \left| \frac{\partial^{i} u(x,\tau)}{\partial x^{i}} \right|^{2} dx$$

$$\leq \sum_{i=0}^{\alpha-k} \int_{0}^{1} (1-x) \left| \frac{\partial^{i} \varphi}{\partial x^{i}} \right|^{2} dx$$

$$+ \frac{1}{3} (4^{\alpha-k+1} - 1) \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| \frac{\partial^{\alpha}}{\partial x^{\alpha}} (J^{k} \frac{\partial u}{\partial t}) \right|^{2} dx dt,$$
(13)

where $c \geq 1$ and $0 \leq \tau \leq T$.

Proof Integrating by parts $\int_0^{\tau} \exp(-ct) \frac{\partial^{i+1}u}{\partial x^i \partial t} \frac{\partial^i u}{\partial x^i} dt$ for $i = \overline{0, \alpha - k - 1}$, using elementary inequalities, and lemma 2.2, we obtain (13).

3 An energy inequality and its applications

Theorem 3.1 For any function $u \in D(L)$, we have

$$\|u\|_{E} \le C_1 \,\|Lu\|_{F}\,,\tag{14}$$

where $C_1 = \exp(cT) \max(8.4^k, \frac{a_1}{2}) / \min(\frac{a_0}{2}, \frac{7}{8})$, with the constant c satisfying

$$c \ge 1$$
 and $3(ca_0 - a_2) \ge 2(4^{\alpha - k - 1} - 1).$ (15)

Proof Let

$$Mu = (-1)^k J^{2k} \frac{\partial^2 u}{\partial t^2}.$$

For a constant c satisfying (15), we consider the quadratic form

$$\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \mathcal{L} u \overline{Mu} \, dx \, dt, \tag{16}$$

which is obtained by multiplying (1) by $\exp(-ct)\overline{Mu}$, then integrating over Q^{τ} , with $Q^{\tau} = (0,1) \times (0,\tau), 0 \leq \tau \leq T$, and then taking the real part. Integrating by parts in (16) with the use of boundary conditions (5) and (6), we obtain

$$\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \mathcal{L}u \overline{Mu} \, dx \, dt$$

$$= \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| J^{k} \frac{\partial^{2} u}{\partial t^{2}} \right|^{2} \, dx \, dt$$

$$+ \operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) a(t) \frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t} \frac{\partial^{\alpha-k+2} \overline{u}}{\partial x^{\alpha-k} \partial t^{2}} \, dx \, dt \,.$$
(17)

By substituting the expression of Mu in (16), using elementary inequalities and Lemma 2.1 we obtain

$$\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \mathcal{L}u \overline{Mu} \, dx \, dt \leq 8.4^{k} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| \mathcal{L}u \right|^{2} \, dx \, dt \quad (18)$$
$$+ \frac{1}{8} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| J^{k} \frac{\partial^{2} u}{\partial t^{2}} \right|^{2} \, dx \, dt \, .$$

By integrating the last term on the right-hand side of (17) and combining the obtained results with the inequalities (15), (18) and lemmas 2.2, 2.3 we obtain

$$8.4^{k} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| \mathcal{L}u \right|^{2} dx \, dt + \frac{1}{2} \int_{0}^{1} a(0) \left| \frac{\partial^{\alpha-k}\psi}{\partial x^{\alpha-k}} \right|^{2} dx + \sum_{i=0}^{\alpha-k} \int_{0}^{1} \left| \frac{\partial^{i}\varphi}{\partial x^{i}} \right|^{2} dx$$

$$\geq \frac{7}{8} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| J^{k} \frac{\partial^{2}u}{\partial t^{2}} \right|^{2} dx \, dt + \sum_{i=0}^{\alpha-k} \int_{0}^{1} \exp(-c\tau) \left| \frac{\partial^{i}u(x,\tau)}{\partial x^{i}} \right|^{2} dx$$

$$+ \sum_{i=0}^{\alpha-k} \int_{0}^{\tau} \int_{0}^{1} \exp(-ct) \left| \frac{\partial^{i+1}u}{\partial x^{i}\partial t} \right|^{2} dx \, dt \qquad (19)$$

$$+ \frac{1}{2} \int_{0}^{1} \exp(-c\tau) a(\tau) \left| \frac{\partial^{\alpha-k+1}u(x,\tau)}{\partial x^{\alpha-k}\partial t} \right|^{2} dx$$

Using elementary inequalities and (2) we obtain

$$8.4^k \int_Q \left| \mathcal{L}u \right|^2 dx \, dt + \frac{a_1}{2} \int_0^1 \left| \frac{\partial^{\alpha-k}\psi}{\partial x^{\alpha-k}} \right|^2 dx + \sum_{i=0}^{\alpha-k} \int_0^1 \left| \frac{\partial^i \varphi}{\partial x^i} \right|^2 dx$$

4

$$\geq \exp(-cT) \left[\frac{7}{8} \int_0^\tau \int_0^1 \left| J^k \frac{\partial^2 u}{\partial t^2} \right|^2 dx \, dt + \sum_{i=0}^{\alpha-k} \int_0^1 \left| \frac{\partial^i u(x,\tau)}{\partial x^i} \right|^2 dx \quad (20)$$
$$+ \sum_{i=0}^{\alpha-k} \int_0^\tau \int_0^1 \left| \frac{\partial^{i+1} u}{\partial x^i \partial t} \right|^2 dx \, dt + \frac{a_0}{2} \int_0^1 \left| \frac{\partial^{\alpha-k+1} u(x,\tau)}{\partial x^{\alpha-k} \partial t} \right|^2 dx \right]$$

As the left hand side of (20) is independent of τ , by replacing the right hand side by its upper bound with respect to τ in the interval [0, T], we obtain the desired inequality. \diamondsuit

Lemma 3.2 The operator L from E to F admits a closure.

Proof Suppose that $(u_n) \in D(L)$ is a sequence such that

$$u_n \to 0 \quad \text{in } E \tag{21}$$

and

$$Lu_n \to \mathcal{F} \quad \text{in } F.$$
 (22)

We need to show that $\mathcal{F} = (f, \varphi_1, \varphi_2) = 0$. The fact that $\varphi_i = 0$; i = 1, 2; results directly from the continuity of the trace operators l_i .

Introduce the operator

$$\mathcal{L}_0 v = \frac{\partial^2 ((1-x)^{\alpha+k} J^k v)}{\partial t^2} + (-1)^{\alpha+1} \frac{\partial^{\alpha+1}}{\partial x^\alpha \partial t} (a(t) \frac{\partial^\alpha ((1-x)^{\alpha+k} J^k v)}{\partial x^\alpha}),$$

defined on the domain $D(\mathcal{L}_0)$ of functions $v \in W_2^{2\alpha,2}(Q)$ satisfying

$$v|_{t=T} = 0$$
 $\frac{\partial v}{\partial t}|_{t=T} = 0$ $\frac{\partial^i v}{\partial x^i}|_{x=0} = \frac{\partial^i v}{\partial x^i}|_{x=1} = 0$, $i = \overline{0, \alpha - 1}$.

we note that $D(\mathcal{L}_0)$ is dense in the Hilbert space obtained by completing $L_2(Q)$ with respect to the norm

$$||v||^2 = \int_Q (1-x)^{2(\alpha+k)} |J^k v|^2 dx dt.$$

Since

$$\int_{Q} f\overline{(1-x)^{\alpha+k}J^{k}v} \, dx \, dt = \lim_{n \to \infty} \int_{Q} \mathcal{L}u_{n}\overline{(1-x)^{\alpha+k}J^{k}v} \, dx \, dt$$
$$= \lim_{n \to \infty} \int_{Q} u_{n}\mathcal{L}_{0}\overline{v} \, dx \, dt = 0 \,,$$

holds for every function $v \in D(\mathcal{L}_0)$, it follows that f = 0.

Theorem 3.1 is valid for strong solutions, i.e., we have the inequality

$$\|u\|_{E} \leq C_{1} \|\overline{L}u\|_{F}, \forall u \in D(\overline{L}),$$

hence we obtain the following.

 \diamond

Corollary 3.3 A strong solution of (1)-(6) is unique if it exists, and depends continuously on $\mathcal{F} = (f, \varphi, \psi) \in F$.

Corollary 3.4 The range R(L) of the operator \overline{L} is closed in F, and $R(\overline{L}) =$ $\overline{R}(L).$

Solvability of Problem (1)-(6)4

To proof solvability of (1)-(6), it is sufficient to show that R(L) is dense in F. The proof is based on the following lemma

Lemma 4.1 Let $D_0(L) = \{u \in D(L) : l_1u = 0, l_2u = 0\}$. If for $u \in D_0(L)$ and some $\omega \in L_2(Q)$, we have

$$\int_{Q} (1-x)^{2k} \mathcal{L} u \varpi \, dx \, dt = 0 \,, \tag{23}$$

then $\omega = 0$.

Proof The equality (23) can be written as follows

$$-\int_{Q} (1-x)^{2k} \frac{\partial^2 u}{\partial t^2} \varpi \, dx \, dt = (-1)^{\alpha} \int_{Q} (1-x)^{2k} \frac{\partial^{\alpha}}{\partial x^{\alpha}} (a \frac{\partial^{\alpha+1} u}{\partial x^{\alpha} \partial t}) \varpi \, dx \, dt.$$
(24)

For $\omega(x,t)$ given, we introduce the function $v(x,t) = (-1)^k \partial^{2k} ((1-x)^{2k} \omega) / \partial x^{2k}$, then we have $\int_0^1 x^i v(x,t) dx = 0$ for $i = \overline{0, 2k-1}$. Then from equality (24) we have

$$-\int_{Q} \frac{\partial^{2} u}{\partial t^{2}} J^{2k} \overline{v} \, dx \, dt = (-1)^{\alpha} \int_{Q} \frac{\partial^{\alpha}}{\partial x^{\alpha}} (a \frac{\partial^{\alpha+1} u}{\partial x^{\alpha} \partial t}) J^{2k} \overline{v} \, dx \, dt.$$
(25)

Integrating by parts the right hand side of (25) 2k times, we get

$$-\int_{Q} \frac{\partial^{2} u}{\partial t^{2}} J^{2k} \overline{v} \, dx \, dt = \int_{Q} A(t) \frac{\partial u}{\partial t} \overline{v} \, dx \, dt, \tag{26}$$

where $A(t)u = (-1)^{\alpha} \frac{\partial^{\alpha-k}}{\partial x^{\alpha-k}} (a \frac{\partial^{\alpha-k}u}{\partial x^{\alpha-k}}).$ When we introduce the smoothing operators $J_{\varepsilon}^{-1} = (I + \varepsilon \frac{\partial}{\partial t})^{-1}$ and $(J_{\varepsilon}^{-1})^*$ with respect to t [16], then these operators provide solutions of the problems

$$\varepsilon \frac{dg_{\varepsilon}(t)}{dt} + g_{\varepsilon}(t) = g(t), \qquad (27)$$
$$g_{\varepsilon}(t)|_{t=0} = 0,$$

and

$$-\varepsilon \frac{dg_{\varepsilon}^{*}(t)}{dt} + g_{\varepsilon}^{*}(t) = g(t), \qquad (28)$$
$$g_{\varepsilon}^{*}(t)|_{t=T} = 0.$$

EJDE-2000/60

The solutions have the following properties: for any $g \in L_2(0,T)$, the functions The solutions have the following properties: for any $g \in L_2(\sigma, T)$, the functions $g_{\varepsilon} = (J_{\varepsilon}^{-1})g$ and $g_{\varepsilon}^* = (J_{\varepsilon}^{-1})^*g$ are in $W_2^1(0,T)$ such that $g_{\varepsilon}|_{t=0} = 0$ and $g_{\varepsilon}^*|_{t=T} = 0$. Moreover, J_{ε}^{-1} commutes with $\frac{\partial}{\partial t}$, so $\int_0^T |g_{\varepsilon} - g|^2 dt \to 0$ and $\int_0^T |g_{\varepsilon}^* - g|^2 dt \to 0$, for $\varepsilon \to 0$. Replacing in (26), $\frac{\partial u}{\partial t}$ by the smoothed function $J_{\varepsilon}^{-1} \frac{\partial u}{\partial t}$, using the relation

 $A(t)J_{\varepsilon}^{-1} = J_{\varepsilon}^{-1}A(\tau) + \varepsilon J_{\varepsilon}^{-1} \frac{\partial A(\tau)}{\partial \tau} J_{\varepsilon}^{-1}$, and using properties of the smoothing operators we obtain

$$\int_{Q} \frac{\partial u}{\partial t} \overline{J^{2k}(\frac{\partial v_{\varepsilon}^{*}}{\partial t})} \, dx \, dt = \int_{Q} A(t) \frac{\partial u}{\partial t} \overline{v_{\varepsilon}^{*}} \, dx \, dt + \varepsilon \int_{Q} \frac{\partial A}{\partial t} (\frac{\partial u}{\partial t})_{\varepsilon} \overline{v_{\varepsilon}^{*}} \, dx \, dt.$$
(29)

Passing to the limit, (29) is satisfied for all functions satisfying the conditions (4)-(6) such that $\frac{\partial^i}{\partial x^i}(a\frac{\partial^{\alpha+1}u}{\partial x^{\alpha}\partial t}) \in L_2(Q)$ for $0 \le i \le \alpha$. The operator A(t) has a continuous inverse on $L_2(0,1)$ defined by

$$A^{-1}(t)g$$

$$= (-1)^{\alpha} \int_{0}^{x} \int_{0}^{\eta_{\alpha-k-1}} \dots \int_{0}^{\eta_{1}} \left[\int_{0}^{\eta} \int_{0}^{\xi_{\alpha-k-1}} \dots \int_{0}^{\xi_{1}} \frac{1}{a} g(\xi) d\xi d\xi_{1} \dots d\xi_{\alpha-k-1} \right] + \sum_{i=1}^{\alpha-k} C_{i}(t) \frac{\eta^{i-1}}{(i-1)!} d\eta d\eta_{1} \dots d\eta_{\alpha-k-1}.$$
(30)

Then we have

$$\int_0^1 A^{-1}(t)g\,dx = 0\,. \tag{31}$$

Hence the function $(\frac{\partial u}{\partial t})_{\varepsilon}$ can be represented in the form $(\frac{\partial u}{\partial t})_{\varepsilon} = J_{\varepsilon}^{-1} A^{-1} A \frac{\partial u}{\partial t}$. Then $\frac{\partial A}{\partial t} (\frac{\partial u}{\partial t})_{\varepsilon} = A_{\varepsilon}(t) A(t) \frac{\partial u}{\partial t}$, where

$$A_{\varepsilon}(t)g = (-1)^{\alpha} \Big[a'(t)J_{\varepsilon}^{-1}\frac{g}{a} + \sum_{i=1}^{\alpha-k} \frac{\partial^{\alpha-k}}{\partial x^{\alpha-k}} \Big\{ \frac{x^{i-1}}{(i-1)!} J_{\varepsilon}^{-1}C_i \Big\} \Big].$$
(32)

Consequently, (29) becomes

$$\int_{Q} \frac{\partial u}{\partial t} \overline{J^{2k}(\frac{\partial v_{\varepsilon}^{*}}{\partial t})} \, dx \, dt = \int_{Q} A(t) \frac{\partial u}{\partial t} (\overline{v_{\varepsilon}^{*} + \varepsilon A_{\varepsilon}^{*} v_{\varepsilon}^{*}}) \, dx \, dt, \tag{33}$$

in which $A_{\varepsilon}^{*}(t)$ is the adjoint of the operator $A_{\varepsilon}(t)$. The left-hand side of (33) is a continuous linear functional of $\frac{\partial u}{\partial t}$. Hence the function $h_{\varepsilon} = v_{\varepsilon}^* + \varepsilon A_{\varepsilon}^* v_{\varepsilon}^*$ has the derivatives $\frac{\partial^i h_{\varepsilon}}{\partial x^i} \in L_2(Q)$, $\frac{\partial^i}{\partial x^i} (a \frac{\partial^{\alpha-k} h_{\varepsilon}}{\partial x^{\alpha-k}}) \in L_2(Q)$, $i = \overline{0, \alpha-k}$, and the following conditions are satisfied

$$\frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}}\Big|_{x=0} = \frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}}\Big|_{x=1} = 0, \ i = \overline{0, \alpha - k - 1}.$$
(34)

The operators $A_{\varepsilon}^{*}(t)$ are bounded in $L_{2}(Q)$, for ε sufficiently small we have $\|\varepsilon A^*_{\varepsilon}(t)\|_{L_2(Q)} < 1$; hence the operator $I + \varepsilon A^*_{\varepsilon}(t)$ has a bounded inverse in $L_2(Q)$. In addition, the operators $\frac{\partial^i A_{\varepsilon}^*(t)}{\partial x^i}$, $i = \overline{0, \alpha - k}$ are bounded in $L_2(Q)$. From the equality

$$\frac{\partial^{i}h_{\varepsilon}}{\partial x^{i}} = (I + \varepsilon A_{\varepsilon}^{*}(t))\frac{\partial^{i}v_{\varepsilon}^{*}}{\partial x^{i}} + \varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k}\frac{\partial^{k}A_{\varepsilon}^{*}(t)}{\partial x^{k}}\frac{\partial^{i-k}v_{\varepsilon}^{*}}{\partial x^{i-k}}, \quad i = \overline{0, \alpha - k - 1} \quad (35)$$

we conclude that v_{ε}^* has derivatives $\frac{\partial^i v_{\varepsilon}^*}{\partial x^i}$ in $L_2(Q)$, $i = \overline{0, \alpha - k - 1}$. Taking into account (34) and (35), for $i = \overline{0, \alpha - k - 1}$, we have

$$\left[(I + \varepsilon A_{\varepsilon}^{*}(t)) \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}} + \varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k} \frac{\partial^{k} A_{\varepsilon}^{*}(t)}{\partial x^{k}} \frac{\partial^{i-k} v_{\varepsilon}^{*}}{\partial x^{i-k}} \right]_{x=0} = 0, \qquad (36)$$

$$\left[(I + \varepsilon A_{\varepsilon}^{*}(t)) \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}} + \varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k} \frac{\partial^{k} A_{\varepsilon}^{*}(t)}{\partial x^{k}} \frac{\partial^{i-k} v_{\varepsilon}^{*}}{\partial x^{i-k}} \right]_{x=1} = 0.$$
 (37)

Similarly, for ε sufficiently small, and each fixed $x \in [0, 1]$ the operators $\frac{\partial^i A^*_{\varepsilon}(t)}{\partial x^i}$, $i = \overline{0, \alpha - k}$ are bounded in $L_2(Q)$ and the operator $I + \varepsilon A_{\varepsilon}^*(t)$ is continuously invertible in $L_2(Q)$. From (36) and (37) result that v_{ε}^* satisfies the conditions

$$\frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}\Big|_{x=0} = \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}\Big|_{x=1} = 0, \quad i = \overline{0, \alpha - k - 1},$$

So, for ε sufficiently small, the function v_{ε}^* has the same properties as h_{ε} . In

addition v_{ε}^* satisfies the integral conditions (6). Putting $u = \int_0^t \int_0^{\tau} \exp(c\eta) v_{\varepsilon}^*(\eta, \tau) d\eta d\tau$ in (26), with the constant *c* satisfying $ca_0 - a_2 - \frac{a_2^2}{a_0} \ge 0$, and using (28), we obtain

$$\int_{Q} (-1)^{k} \exp(ct) v_{\varepsilon}^{*} \overline{J^{2k}v} \, dx \, dt = -\int_{Q} (-1)^{k} A(t) \frac{\partial u}{\partial t} \exp(-ct) \frac{\partial^{2} \overline{u}}{\partial t^{2}} \, dx \, dt + \varepsilon \int_{Q} (-1)^{k} A(t) \frac{\partial u}{\partial t} \frac{\partial \overline{v_{\varepsilon}^{*}}}{\partial t} \, dx \, dt \,.$$
(38)

Integrating by parts each term in the right-hand side of (38), we have

$$\operatorname{Re} \int_{Q} (-1)^{k} A(t) \frac{\partial u}{\partial t} \exp(-ct) \frac{\partial^{2} \overline{u}}{\partial t^{2}} dx dt \qquad (39)$$

$$\geq \frac{c}{2} \int_{Q} a(t) e^{-ct} \left| \frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t} \right|^{2} dx dt - \frac{1}{2} \int_{Q} \frac{\partial a}{\partial t} e^{-ct} \left| \frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t} \right|^{2} dx dt .$$

$$\operatorname{Re}(-\varepsilon \int_{Q} (-1)^{k} A(t) \frac{\partial u}{\partial t} \frac{\partial v_{\varepsilon}^{*}}{\partial t} \, dx \, dt) \geq \frac{-\varepsilon a_{2}^{2}}{2a_{0}} \int_{Q} \exp(-ct) \left| \frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t} \right|^{2} \, dx \, dt.$$
(40)

Now, using (39) and (40) in (38), with the choice of c indicated above, we have $2\operatorname{Re} \int_Q \exp(ct) v_{\varepsilon}^* \overline{j^{2k}v} \, dx \, dt \leq 0$, then $2\operatorname{Re} \int_Q \exp(ct) v \overline{J^{2k}v} \, dx \, dt \leq 0$ as ε approaches zero. Since $\operatorname{Re} \int_{Q} \exp(ct) |J^k \overline{v}|^2 dx dt = 0$, we conclude that $J^{2k} v = 0$, hence $\omega = 0$, which completes the present proof.

Theorem 4.2 The range R(L) of L coincides with F.

EJDE-2000/60

Proof Since F is a Hilbert space, we have R(L) = F if and only if the following implication is satisfied:

$$\int_{Q} \mathcal{L}u\overline{f}\,dx\,dt + \int_{0}^{1} (\sum_{i=0}^{\alpha-k} \frac{\partial^{i}l_{1}u}{\partial x^{i}} \frac{\partial^{i}\overline{\varphi}}{\partial x^{i}} + \frac{\partial^{\alpha-k}l_{2}u}{\partial x^{\alpha-k}} \frac{\partial^{\alpha-k}\overline{\psi}}{\partial x^{\alpha-k}})dx = 0, \qquad (41)$$

for arbitrary $u \in E$ and $\mathcal{F} = (f, \varphi, \psi) \in F$, implies that f, φ , and ψ are zero.

Putting $u \in D_0(L)$ in (41), we obtain $\int_Q \mathcal{L}u\overline{f}\,dx\,dt = 0$. Taking $\omega = f/(1-x)^{2k}$, and using lemma 4.1 we obtain that $f/(1-x)^{2k} = 0$, then f = 0. Consequently, $\forall u \in D(L)$ we have

$$\int_{0}^{1} \sum_{i=0}^{\alpha-k} \frac{\partial^{i} l_{1} u}{\partial x^{i}} \frac{\partial^{i} \overline{\varphi}}{\partial x^{i}} + \frac{\partial^{\alpha-k} l_{2} u}{\partial x^{\alpha-k}} \frac{\partial^{\alpha-k} \overline{\psi}}{\partial x^{\alpha-k}} dx = 0.$$
(42)

The range of the trace operator (l_1, l_2) is everywhere dense in a Hilbert space with norm

$$\Big[\int_0^1\sum_{i=0}^{\alpha-k}\Big|\frac{\partial^i\varphi}{\partial x^i}\Big|^2+\Big|\frac{\partial^{\alpha-k}\psi}{\partial x^{\alpha-k}}\Big|^2\,dx\Big]^{1/2}\,.$$

Therefore, $(\varphi, \psi) = (0, 0)$ and the present proof is complete.

References

- G. W. Batten, Jr., Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations, *Math. Comp.*, 17 (1963), 405-413.
- [2] A. Bouziani and N. E. Benouar, Mixed problem with integral conditions for a third order parabolic equation, *Kobe J. Math.*, **15** (1998), 47-58.
- [3] B. Cahlon, D. M. Kulkarni and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J. Numer. Anal., 32 (1995), 571-593.
- [4] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160.
- [5] J. R. Cannon, The one-dimensional heat equation, in *Encyclopedia of Mathematics and its Applications* 23, Addison-Wesley, Mento Park, CA (1984).
- [6] Y. S. Choi and K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, *Nonlinear Anal.*, 18 (1992), 317-331.
- [7] R. E. Ewing and T. Lin, A class of parameter estimation techniques for fluid flow in porous media, Adv. Water Ressources, 14 (1991), 89-97.

- [8] N. I. Ionkin, Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition, *Differentsial'nye Uravneniya*, **13** (1977), 294-304.
- [9] N. I. Kamynin, A boundary value problem in the theory of the heat conduction with non classical boundary condition, U.S.S.R. Comput. Math. and Math. Phys., 4 (1964), 33-59.
- [10] A. V. Kartynnik, Three-point boundary-value problem with an integral space-variable condition for a second-order parabolic equation, *Differential Equations*, **26** (1990), 1160-1166.
- [11] L. S. Pulkina, A non-local problem with integral conditions for hyperbolic equations, *Electronic Journal of Differential Equations*, **1999** (1999), No. 45, 1-6.
- [12] A. A. Samarski, Some problems in the modern theory of differential equations, *Differentsial'nye Uravneniya*, 16 (1980), 1221-1228.
- [13] P. Shi, weak solution to evolution problem with a nonlocal constraint, SIAM J. Anal., 24 (1993), 46-58.
- [14] P. Shi and M. Shillor, Design of Contact Patterns in One Dimensional Thermoelasticity, in *Theoretical Aspects of Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.*
- [15] V. F. Volkodavov and V. E. Zhukov, Two problems for the string vibration equation with integral conditions and special matching conditions on the characteristic, *Differential Equations*, **34** (1998), 501-505.
- [16] N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, *Differential Equations*, 22 (1986), 1457-1463.

MOHAMED DENCHE (e-mail: m_denche@hotmail.com) A. L. MARHOUNE Institut de Mathematiques Université Mentouri Constantine 25000 Constantine, Algeria

10