High-order mixed-type differential equations with weighted integral boundary conditions *

M. Denche \& A. L. Marhoune

Abstract

In this paper, we prove the existence and uniqueness of strong solutions for high-order mixed-type problems with weighted integral boundary conditions. The proof uses energy inequalities and the density of the range of the operator generated.

1 Introduction

Let α be a positive integer and Q be the set $(0,1) \times(0, T)$. We consider the equation

$$
\begin{equation*}
\mathcal{L} u:=\frac{\partial^{2} u}{\partial t^{2}}+(-1)^{\alpha} a(t) \frac{\partial^{2 \alpha+1} u}{\partial x^{2 \alpha} \partial t}=f(x, t) \tag{1}
\end{equation*}
$$

where the function $a(t)$ and its derivative are bounded on the interval $[0, T]$:

$$
\begin{gather*}
0<a_{0} \leq a(t) \leq a_{1} \tag{2}\\
\frac{d a(t)}{d t} \leq a_{2} \tag{3}
\end{gather*}
$$

To equation (1) we attach the initial conditions

$$
\begin{equation*}
l_{1} u=u(x, 0)=\varphi(x), \quad l_{2} u=\frac{\partial u}{\partial t}(x, 0)=\psi(x) \quad x \in(0,1) \tag{4}
\end{equation*}
$$

the boundary conditions

$$
\begin{equation*}
\frac{\partial^{i}}{\partial x^{i}} u(0, t)=\frac{\partial^{i}}{\partial x^{i}} u(1, t)=0, \quad \text { for } \quad 0 \leq i \leq \alpha-k-1, t \in(0, T) \tag{5}
\end{equation*}
$$

and integral conditions

$$
\begin{equation*}
\int_{0}^{1} x^{i} u(x, t) d x=0, \text { for } 0 \leq i \leq 2 k-1, \quad 1 \leq k \leq \alpha \quad t \in(0, T) \tag{6}
\end{equation*}
$$

[^0]where φ and ψ are known functions which satisfy the compatibility conditions given in (5)-(6).

Various problems arising in heat conduction $[3,4,8,9]$, chemical engineering [6], underground water flow [7], thermo-elasticity [14], and plasma physics [12] can be reduced to the nonlocal problems with integral boundary conditions. This type of boundary value problems has been investigated in $[1,2,3,4,5,6,8$, $9,10,13,16]$ for parabolic equations and in $[11,15]$ for hyperbolic equations. The basic tool in $[2,10,16]$ is the energy inequality method which, of course, requires appropriate multipliers and functional spaces. In this paper, we extend this method to the study of a high-order mixed-type partial differential equations.

2 Preliminaries

In this paper, we prove existence and uniqueness of a strong solution of problem (1)-(6). For this, we consider the problem (1)-(6) as a solution of the operator equation

$$
\begin{equation*}
L u=\mathcal{F}, \tag{7}
\end{equation*}
$$

where $L=\left(\mathcal{L}, l_{1}, l_{2}\right)$, with domain of definition $D(L)$ consisting of functions $u \in W_{2}^{2 \alpha, 2}(Q)$ such that $\frac{\partial^{i}}{\partial x^{i}}\left(\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right) \in L_{2}(Q), i=\overline{0, \alpha+k-1}$ and u satisfies conditions (5)-(6); the operator L is considered from E to F, where E is the Banach space consisting of functions $u \in L_{2}(Q)$, satisfying (5)-(6), with the finite norm

$$
\begin{align*}
\|u\|_{E}^{2}= & \int_{Q}\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2}+\sum_{i=0}^{\alpha-k}\left|\frac{\partial^{i+1} u}{\partial x^{i} \partial t}\right|^{2} d x d t \tag{8}\\
& +\sup _{0 \leq t \leq T} \int_{0}^{1} \sum_{i=0}^{\alpha-k}\left|\frac{\partial^{i} u}{\partial x^{i}}\right|^{2}+\left|\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right|^{2} d x
\end{align*}
$$

where $J^{k} u=\int_{0}^{x} \int_{0}^{\xi_{1}} \ldots \int_{0}^{\xi_{k-1}} u(\xi, t) d \xi$. Here F is the Hilbert space of vectorvalued functions $\mathcal{F}=(f, \varphi, \psi)$ obtained by completing of the space $L_{2}(Q) \times$ $W_{2}^{2 \alpha}(0,1) \times W_{2}^{2 \alpha}(0,1)$ with respect to the norm

$$
\begin{equation*}
\|\mathcal{F}\|_{F}^{2}=\int_{Q}|f|^{2} d x d t+\int_{0}^{1} \sum_{i=0}^{\alpha-k}\left|\frac{\partial^{i} \varphi}{\partial x^{i}}\right|^{2}+\left|\frac{\partial^{\alpha-k} \psi}{\partial x^{\alpha-k}}\right|^{2} d x \tag{9}
\end{equation*}
$$

Then we establish an energy inequality

$$
\begin{equation*}
\|u\|_{E} \leq C_{1}\|L u\|_{F} \tag{10}
\end{equation*}
$$

and we show that the operator L has the closure \bar{L}.
Definition A solution of the operator equation $\bar{L} u=\mathcal{F}$ is called a strong solution of the problem (1)-(6).

Inequality (10) can be extended to $u \in D(\bar{L})$, i.e.,

$$
\|u\|_{E} \leq C_{1}\|\bar{L} u\|_{F}, \quad \forall u \in D(\bar{L})
$$

From this inequality we obtain the uniqueness of a strong solution if it exists, and the equality of sets $R(\bar{L})$ and $\overline{R(L)}$. Thus, to prove the existence of a strong solution of the problem (1)-(6) for any $\mathcal{F} \in F$, it remains to prove that the set $R(L)$ is dense in F.

Lemma 2.1 For any function $u \in E$, we have

$$
\begin{equation*}
\int_{0}^{1}\left|J^{2 k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x \leq 4^{k} \int_{0}^{1}\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x \tag{11}
\end{equation*}
$$

Proof Integrating $-\int_{0}^{1} x J^{k} \frac{\partial^{2} u}{\partial t^{2}} J^{k+1} \frac{\partial^{2} \bar{u}}{\partial t^{2}} d x$ by parts, and using elementary inequalities we obtain (11).

Lemma 2.2 For $u \in E$ and $0 \leq i \leq \alpha-k$, we have

$$
\begin{equation*}
\int_{0}^{1}\left|\frac{\partial^{i+1} u}{\partial x^{i} \partial t}\right|^{2} d x \leq 4^{(\alpha-k)-i} \int_{0}^{1}\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(J^{k} \frac{\partial u}{\partial t}\right)\right|^{2} d x \tag{12}
\end{equation*}
$$

Proof Integrating by parts $-\int_{0}^{1} x \frac{\partial^{\alpha-i}}{\partial x^{\alpha-i}}\left(J^{k} \frac{\partial u}{\partial t}\right) \frac{\partial^{\alpha-i-1}}{\partial x^{\alpha-i-1}}\left(J^{k} \frac{\partial \bar{u}}{\partial t}\right) d x$ and using elementary inequalities yield (12).

Lemma 2.3 For $u \in E$ satisfying the condition (4) we have

$$
\begin{align*}
& \sum_{i=0}^{\alpha-k} \int_{0}^{1} \exp (-c \tau)\left|\frac{\partial^{i} u(x, \tau)}{\partial x^{i}}\right|^{2} d x \\
& \leq \tag{13}\\
& \quad \sum_{i=0}^{\alpha-k} \int_{0}^{1}(1-x)\left|\frac{\partial^{i} \varphi}{\partial x^{i}}\right|^{2} d x \\
& \quad+\frac{1}{3}\left(4^{\alpha-k+1}-1\right) \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(J^{k} \frac{\partial u}{\partial t}\right)\right|^{2} d x d t,
\end{align*}
$$

where $c \geq 1$ and $0 \leq \tau \leq T$.
Proof Integrating by parts $\int_{0}^{\tau} \exp (-c t) \frac{\partial^{i+1} u}{\partial x^{i} \partial t} \frac{\partial^{i} u}{\partial x^{i}} d t$ for $i=\overline{0, \alpha-k-1}$, using elementary inequalities, and lemma 2.2 , we obtain (13).

3 An energy inequality and its applications

Theorem 3.1 For any function $u \in D(L)$, we have

$$
\begin{equation*}
\|u\|_{E} \leq C_{1}\|L u\|_{F} \tag{14}
\end{equation*}
$$

where $C_{1}=\exp (c T) \max \left(8.4^{k}, \frac{a_{1}}{2}\right) / \min \left(\frac{a_{0}}{2}, \frac{7}{8}\right)$, with the constant c satisfying

$$
\begin{equation*}
c \geq 1 \quad \text { and } \quad 3\left(c a_{0}-a_{2}\right) \geq 2\left(4^{\alpha-k-1}-1\right) \tag{15}
\end{equation*}
$$

Proof Let

$$
M u=(-1)^{k} J^{2 k} \frac{\partial^{2} u}{\partial t^{2}}
$$

For a constant c satisfying (15), we consider the quadratic form

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) \mathcal{L} u \overline{M u} d x d t \tag{16}
\end{equation*}
$$

which is obtained by multiplying (1) by $\exp (-c t) \overline{M u}$, then integrating over Q^{τ}, with $Q^{\tau}=(0,1) \times(0, \tau), 0 \leq \tau \leq T$, and then taking the real part. Integrating by parts in (16) with the use of boundary conditions (5) and (6), we obtain

$$
\begin{align*}
& \operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) \mathcal{L} u \overline{M u} d x d t \\
& =\int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x d t \tag{17}\\
& \quad+\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) a(t) \frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t} \frac{\partial^{\alpha-k+2} \bar{u}}{\partial x^{\alpha-k} \partial t^{2}} d x d t
\end{align*}
$$

By substituting the expression of $M u$ in (16), using elementary inequalities and Lemma 2.1 we obtain

$$
\begin{align*}
\operatorname{Re} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t) \mathcal{L} u \overline{M u} d x d t \leq & 8.4^{k} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)|\mathcal{L} u|^{2} d x d t \tag{18}\\
& +\frac{1}{8} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x d t
\end{align*}
$$

By integrating the last term on the right-hand side of (17) and combining the obtained results with the inequalities (15), (18) and lemmas $2.2,2.3$ we obtain

$$
\begin{align*}
& 8.4^{k} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)|\mathcal{L} u|^{2} d x d t+\frac{1}{2} \int_{0}^{1} a(0)\left|\frac{\partial^{\alpha-k} \psi}{\partial x^{\alpha-k}}\right|^{2} d x+\sum_{i=0}^{\alpha-k} \int_{0}^{1}\left|\frac{\partial^{i} \varphi}{\partial x^{i}}\right|^{2} d x \\
& \geq \\
& \quad \frac{7}{8} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x d t+\sum_{i=0}^{\alpha-k} \int_{0}^{1} \exp (-c \tau)\left|\frac{\partial^{i} u(x, \tau)}{\partial x^{i}}\right|^{2} d x \tag{19}\\
& \quad+\sum_{i=0}^{\alpha-k} \int_{0}^{\tau} \int_{0}^{1} \exp (-c t)\left|\frac{\partial^{i+1} u}{\partial x^{i} \partial t}\right|^{2} d x d t \\
& \quad+\frac{1}{2} \int_{0}^{1} \exp (-c \tau) a(\tau)\left|\frac{\partial^{\alpha-k+1} u(x, \tau)}{\partial x^{\alpha-k} \partial t}\right|^{2} d x
\end{align*}
$$

Using elementary inequalities and (2) we obtain

$$
8.4^{k} \int_{Q}|\mathcal{L} u|^{2} d x d t+\frac{a_{1}}{2} \int_{0}^{1}\left|\frac{\partial^{\alpha-k} \psi}{\partial x^{\alpha-k}}\right|^{2} d x+\sum_{i=0}^{\alpha-k} \int_{0}^{1}\left|\frac{\partial^{i} \varphi}{\partial x^{i}}\right|^{2} d x
$$

$$
\begin{align*}
\geq & \exp (-c T)\left[\frac{7}{8} \int_{0}^{\tau} \int_{0}^{1}\left|J^{k} \frac{\partial^{2} u}{\partial t^{2}}\right|^{2} d x d t+\sum_{i=0}^{\alpha-k} \int_{0}^{1}\left|\frac{\partial^{i} u(x, \tau)}{\partial x^{i}}\right|^{2} d x\right. \tag{20}\\
& \left.+\sum_{i=0}^{\alpha-k} \int_{0}^{\tau} \int_{0}^{1}\left|\frac{\partial^{i+1} u}{\partial x^{i} \partial t}\right|^{2} d x d t+\frac{a_{0}}{2} \int_{0}^{1}\left|\frac{\partial^{\alpha-k+1} u(x, \tau)}{\partial x^{\alpha-k} \partial t}\right|^{2} d x\right]
\end{align*}
$$

As the left hand side of (20) is independent of τ, by replacing the right hand side by its upper bound with respect to τ in the interval $[0, T]$, we obtain the desired inequality.

Lemma 3.2 The operator L from E to F admits a closure.

Proof Suppose that $\left(u_{n}\right) \in D(L)$ is a sequence such that

$$
\begin{equation*}
u_{n} \rightarrow 0 \quad \text { in } E \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
L u_{n} \rightarrow \mathcal{F} \quad \text { in } F \tag{22}
\end{equation*}
$$

We need to show that $\mathcal{F}=\left(f, \varphi_{1}, \varphi_{2}\right)=0$. The fact that $\varphi_{i}=0 ; i=1,2$; results directly from the continuity of the trace operators l_{i}.

Introduce the operator

$$
\mathcal{L}_{0} v=\frac{\partial^{2}\left((1-x)^{\alpha+k} J^{k} v\right)}{\partial t^{2}}+(-1)^{\alpha+1} \frac{\partial^{\alpha+1}}{\partial x^{\alpha} \partial t}\left(a(t) \frac{\partial^{\alpha}\left((1-x)^{\alpha+k} J^{k} v\right)}{\partial x^{\alpha}}\right),
$$

defined on the domain $D\left(\mathcal{L}_{0}\right)$ of functions $v \in W_{2}^{2 \alpha, 2}(Q)$ satisfying

$$
\left.v\right|_{t=T}=\left.0 \quad \frac{\partial v}{\partial t}\right|_{t=T}=\left.0 \quad \frac{\partial^{i} v}{\partial x^{i}}\right|_{x=0}=\left.\frac{\partial^{i} v}{\partial x^{i}}\right|_{x=1}=0, \quad i=\overline{0, \alpha-1} .
$$

we note that $D\left(\mathcal{L}_{0}\right)$ is dense in the Hilbert space obtained by completing $L_{2}(Q)$ with respect to the norm

$$
\|v\|^{2}=\int_{Q}(1-x)^{2(\alpha+k)}\left|J^{k} v\right|^{2} d x d t
$$

Since

$$
\begin{aligned}
\int_{Q} f \overline{(1-x)^{\alpha+k} J^{k} v} d x d t & =\lim _{n \rightarrow \infty} \int_{Q} \mathcal{L} u_{n} \overline{(1-x)^{\alpha+k} J^{k} v} d x d t \\
& =\lim _{n \rightarrow \infty} \int_{Q} u_{n} \mathcal{L}_{0} \bar{v} d x d t=0
\end{aligned}
$$

holds for every function $v \in D\left(\mathcal{L}_{0}\right)$, it follows that $f=0$.
Theorem 3.1 is valid for strong solutions, i.e., we have the inequality

$$
\|u\|_{E} \leq C_{1}\|\bar{L} u\|_{F}, \forall u \in D(\bar{L})
$$

hence we obtain the following.

Corollary 3.3 A strong solution of (1)-(6) is unique if it exists, and depends continuously on $\mathcal{F}=(f, \varphi, \psi) \in F$.

Corollary 3.4 The range $R(L)$ of the operator \bar{L} is closed in F, and $R(\bar{L})=$ $\overline{R(L)}$.

4 Solvability of Problem (1)-(6)

To proof solvability of (1)-(6), it is sufficient to show that $R(L)$ is dense in F. The proof is based on the following lemma

Lemma 4.1 Let $D_{0}(L)=\left\{u \in D(L): l_{1} u=0, l_{2} u=0\right\}$. If for $u \in D_{0}(L)$ and some $\omega \in L_{2}(Q)$, we have

$$
\begin{equation*}
\int_{Q}(1-x)^{2 k} \mathcal{L} u \varpi d x d t=0 \tag{23}
\end{equation*}
$$

then $\omega=0$.

Proof The equality (23) can be written as follows

$$
\begin{equation*}
-\int_{Q}(1-x)^{2 k} \frac{\partial^{2} u}{\partial t^{2}} \varpi d x d t=(-1)^{\alpha} \int_{Q}(1-x)^{2 k} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a \frac{\partial^{\alpha+1} u}{\partial x^{\alpha} \partial t}\right) \varpi d x d t \tag{24}
\end{equation*}
$$

For $\omega(x, t)$ given, we introduce the function $v(x, t)=(-1)^{k} \partial^{2 k}\left((1-x)^{2 k} \omega\right) / \partial x^{2 k}$, then we have $\int_{0}^{1} x^{i} v(x, t) d x=0$ for $i=\overline{0,2 k-1}$. Then from equality (24) we have

$$
\begin{equation*}
-\int_{Q} \frac{\partial^{2} u}{\partial t^{2}} J^{2 k} \bar{v} d x d t=(-1)^{\alpha} \int_{Q} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\left(a \frac{\partial^{\alpha+1} u}{\partial x^{\alpha} \partial t}\right) J^{2 k} \bar{v} d x d t \tag{25}
\end{equation*}
$$

Integrating by parts the right hand side of (25) $2 k$ times, we get

$$
\begin{equation*}
-\int_{Q} \frac{\partial^{2} u}{\partial t^{2}} J^{2 k} \bar{v} d x d t=\int_{Q} A(t) \frac{\partial u}{\partial t} \bar{v} d x d t \tag{26}
\end{equation*}
$$

where $A(t) u=(-1)^{\alpha} \frac{\partial^{\alpha-k}}{\partial x^{\alpha-k}}\left(a \frac{\partial^{\alpha-k} u}{\partial x^{\alpha-k}}\right)$.
When we introduce the smoothing operators $J_{\varepsilon}^{-1}=\left(I+\varepsilon \frac{\partial}{\partial t}\right)^{-1}$ and $\left(J_{\varepsilon}^{-1}\right)^{*}$ with respect to t [16], then these operators provide solutions of the problems

$$
\begin{align*}
\varepsilon \frac{d g_{\varepsilon}(t)}{d t}+g_{\varepsilon}(t) & =g(t) \tag{27}\\
\left.g_{\varepsilon}(t)\right|_{t=0} & =0
\end{align*}
$$

and

$$
\begin{align*}
-\varepsilon \frac{d g_{\varepsilon}^{*}(t)}{d t}+g_{\varepsilon}^{*}(t) & =g(t) \tag{28}\\
\left.g_{\varepsilon}^{*}(t)\right|_{t=T} & =0
\end{align*}
$$

The solutions have the following properties: for any $g \in L_{2}(0, T)$, the functions $g_{\varepsilon}=\left(J_{\varepsilon}^{-1}\right) g$ and $g_{\varepsilon}^{*}=\left(J_{\varepsilon}^{-1}\right)^{*} g$ are in $W_{2}^{1}(0, T)$ such that $\left.g_{\varepsilon}\right|_{t=0}=0$ and $\left.g_{\varepsilon}^{*}\right|_{t=T}=0$. Moreover, J_{ε}^{-1} commutes with $\frac{\partial}{\partial t}$, so $\int_{0}^{T}\left|g_{\varepsilon}-g\right|^{2} d t \rightarrow 0$ and $\int_{0}^{T}\left|g_{\varepsilon}^{*}-g\right|^{2} d t \rightarrow 0$, for $\varepsilon \rightarrow 0$.

Replacing in (26), $\frac{\partial u}{\partial t}$ by the smoothed function $J_{\varepsilon}^{-1} \frac{\partial u}{\partial t}$, using the relation $A(t) J_{\varepsilon}^{-1}=J_{\varepsilon}^{-1} A(\tau)+\varepsilon J_{\varepsilon}^{-1} \frac{\partial A(\tau)}{\partial \tau} J_{\varepsilon}^{-1}$, and using properties of the smoothing operators we obtain

$$
\begin{equation*}
\int_{Q} \frac{\partial u}{\partial t} \overline{J^{2 k}\left(\frac{\partial v_{\varepsilon}^{*}}{\partial t}\right)} d x d t=\int_{Q} A(t) \frac{\partial u}{\partial t} \overline{v_{\varepsilon}^{*}} d x d t+\varepsilon \int_{Q} \frac{\partial A}{\partial t}\left(\frac{\partial u}{\partial t}\right)_{\varepsilon} \overline{v_{\varepsilon}^{*}} d x d t \tag{29}
\end{equation*}
$$

Passing to the limit,(29) is satisfied for all functions satisfying the conditions (4)-(6) such that $\frac{\partial^{i}}{\partial x^{i}}\left(a \frac{\partial^{\alpha+1} u}{\partial x^{\alpha} \partial t}\right) \in L_{2}(Q)$ for $0 \leq i \leq \alpha$.

The operator $A(t)$ has a continuous inverse on $L_{2}(0,1)$ defined by

$$
\begin{align*}
& A^{-1}(t) g \tag{30}\\
& =(-1)^{\alpha} \int_{0}^{x} \int_{0}^{\eta_{\alpha-k-1}} \cdots \int_{0}^{\eta_{1}}\left[\int_{0}^{\eta} \int_{0}^{\xi_{\alpha-k-1}} \ldots \int_{0}^{\xi_{1}} \frac{1}{a} g(\xi) d \xi d \xi_{1} \ldots d \xi_{\alpha-k-1}\right. \\
& \left.\quad+\sum_{i=1}^{\alpha-k} C_{i}(t) \frac{\eta^{i-1}}{(i-1)!}\right] d \eta d \eta_{1} \ldots d \eta_{\alpha-k-1}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\int_{0}^{1} A^{-1}(t) g d x=0 \tag{31}
\end{equation*}
$$

Hence the function $\left(\frac{\partial u}{\partial t}\right)_{\varepsilon}$ can be represented in the form $\left(\frac{\partial u}{\partial t}\right)_{\varepsilon}=J_{\varepsilon}^{-1} A^{-1} A \frac{\partial u}{\partial t}$. Then $\frac{\partial A}{\partial t}\left(\frac{\partial u}{\partial t}\right)_{\varepsilon}=A_{\varepsilon}(t) A(t) \frac{\partial u}{\partial t}$, where

$$
\begin{equation*}
A_{\varepsilon}(t) g=(-1)^{\alpha}\left[a^{\prime}(t) J_{\varepsilon}^{-1} \frac{g}{a}+\sum_{i=1}^{\alpha-k} \frac{\partial^{\alpha-k}}{\partial x^{\alpha-k}}\left\{\frac{x^{i-1}}{(i-1)!} J_{\varepsilon}^{-1} C_{i}\right\}\right] \tag{32}
\end{equation*}
$$

Consequently, (29) becomes

$$
\begin{equation*}
\int_{Q} \frac{\partial u}{\partial t} \overline{J^{2 k}\left(\frac{\partial v_{\varepsilon}^{*}}{\partial t}\right)} d x d t=\int_{Q} A(t) \frac{\partial u}{\partial t}\left(\overline{v_{\varepsilon}^{*}+\varepsilon A_{\varepsilon}^{*} v_{\varepsilon}^{*}}\right) d x d t \tag{33}
\end{equation*}
$$

in which $A_{\varepsilon}^{*}(t)$ is the adjoint of the operator $A_{\varepsilon}(t)$. The left-hand side of (33) is a continuous linear functional of $\frac{\partial u}{\partial t}$. Hence the function $h_{\varepsilon}=v_{\varepsilon}^{*}+\varepsilon A_{\varepsilon}^{*} v_{\varepsilon}^{*}$ has the derivatives $\frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}} \in L_{2}(Q), \frac{\partial^{i}}{\partial x^{i}}\left(a \frac{\partial^{\alpha-k} h_{\varepsilon}}{\partial x^{\alpha-k}}\right) \in L_{2}(Q), i=\overline{0, \alpha-k}$, and the following conditions are satisfied

$$
\begin{equation*}
\left.\frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}}\right|_{x=0}=\left.\frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}}\right|_{x=1}=0, i=\overline{0, \alpha-k-1} \tag{34}
\end{equation*}
$$

The operators $A_{\varepsilon}^{*}(t)$ are bounded in $L_{2}(Q)$, for ε sufficiently small we have $\left\|\varepsilon A_{\varepsilon}^{*}(t)\right\|_{L_{2}(Q)}<1$; hence the operator $I+\varepsilon A_{\varepsilon}^{*}(t)$ has a bounded inverse in
$L_{2}(Q)$. In addition, the operators $\frac{\partial^{i} A_{\varepsilon}^{*}(t)}{\partial x^{i}}, i=\overline{0, \alpha-k}$ are bounded in $L_{2}(Q)$. From the equality

$$
\begin{equation*}
\frac{\partial^{i} h_{\varepsilon}}{\partial x^{i}}=\left(I+\varepsilon A_{\varepsilon}^{*}(t)\right) \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}+\varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k} \frac{\partial^{k} A_{\varepsilon}^{*}(t)}{\partial x^{k}} \frac{\partial^{i-k} v_{\varepsilon}^{*}}{\partial x^{i-k}}, \quad i=\overline{0, \alpha-k-1} \tag{35}
\end{equation*}
$$

we conclude that v_{ε}^{*} has derivatives $\frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}$ in $L_{2}(Q), i=\overline{0, \alpha-k-1}$. Taking into account (34) and (35), for $i=\overline{0, \alpha-k-1}$, we have

$$
\begin{align*}
& {\left[\left(I+\varepsilon A_{\varepsilon}^{*}(t)\right) \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}+\varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k} \frac{\partial^{k} A_{\varepsilon}^{*}(t)}{\partial x^{k}} \frac{\partial^{i-k} v_{\varepsilon}^{*}}{\partial x^{i-k}}\right]_{x=0}=0} \tag{36}\\
& {\left[\left(I+\varepsilon A_{\varepsilon}^{*}(t)\right) \frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}+\varepsilon \sum_{k=1}^{i} \mathcal{C}_{i}^{k} \frac{\partial^{k} A_{\varepsilon}^{*}(t)}{\partial x^{k}} \frac{\partial^{i-k} v_{\varepsilon}^{*}}{\partial x^{i-k}}\right]_{x=1}=0} \tag{37}
\end{align*}
$$

Similarly, for ε sufficiently small, and each fixed $x \in[0,1]$ the operators $\frac{\partial^{i} A_{\varepsilon}^{*}(t)}{\partial x^{i}}$, $i=\overline{0, \alpha-k}$ are bounded in $L_{2}(Q)$ and the operator $I+\varepsilon A_{\varepsilon}^{*}(t)$ is continuously invertible in $L_{2}(Q)$. From (36) and (37) result that v_{ε}^{*} satisfies the conditions

$$
\left.\frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}\right|_{x=0}=\left.\frac{\partial^{i} v_{\varepsilon}^{*}}{\partial x^{i}}\right|_{x=1}=0, \quad i=\overline{0, \alpha-k-1}
$$

So, for ε sufficiently small, the function v_{ε}^{*} has the same properties as h_{ε}. In addition v_{ε}^{*} satisfies the integral conditions (6).

Putting $u=\int_{0}^{t} \int_{0}^{\tau} \exp (c \eta) v_{\varepsilon}^{*}(\eta, \tau) d \eta d \tau$ in (26), with the constant c satisfying $c a_{0}-a_{2}-\frac{a_{2}^{2}}{a_{0}} \geq 0$, and using (28), we obtain

$$
\begin{align*}
\int_{Q}(-1)^{k} \exp (c t) v_{\varepsilon}^{*} \overline{J^{2 k} v} d x d t= & -\int_{Q}(-1)^{k} A(t) \frac{\partial u}{\partial t} \exp (-c t) \frac{\partial^{2} \bar{u}}{\partial t^{2}} d x d t \\
& +\varepsilon \int_{Q}(-1)^{k} A(t) \frac{\partial u}{\partial t} \frac{\partial \overline{v_{\varepsilon}^{*}}}{\partial t} d x d t \tag{38}
\end{align*}
$$

Integrating by parts each term in the right-hand side of (38), we have

$$
\begin{gather*}
\operatorname{Re} \int_{Q}(-1)^{k} A(t) \frac{\partial u}{\partial t} \exp (-c t) \frac{\partial^{2} \bar{u}}{\partial t^{2}} d x d t \tag{39}\\
\geq \frac{c}{2} \int_{Q} a(t) e^{-c t}\left|\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right|^{2} d x d t-\frac{1}{2} \int_{Q} \frac{\partial a}{\partial t} e^{-c t}\left|\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right|^{2} d x d t \\
\operatorname{Re}\left(-\varepsilon \int_{Q}(-1)^{k} A(t) \frac{\partial u}{\partial t} \frac{\partial \overline{v_{\varepsilon}^{*}}}{\partial t} d x d t\right) \geq \frac{-\varepsilon a_{2}^{2}}{2 a_{0}} \int_{Q} \exp (-c t)\left|\frac{\partial^{\alpha-k+1} u}{\partial x^{\alpha-k} \partial t}\right|^{2} d x d t \tag{40}
\end{gather*}
$$

Now, using (39) and (40) in (38), with the choice of c indicated above, we have $2 \operatorname{Re} \int_{Q} \exp (c t) v_{\varepsilon}^{*} \overline{j^{2 k} v} d x d t \leq 0$, then $2 \operatorname{Re} \int_{Q} \exp (c t) v \overline{J^{2 k} v} d x d t \leq 0$ as ε approaches zero. Since $\operatorname{Re} \int_{Q} \exp (c t)\left|J^{k} \bar{v}\right|^{2} d x d t=0$, we conclude that $J^{2 k} v=$ 0 , hence $\omega=0$, which completes the present proof.

Theorem 4.2 The range $R(L)$ of L coincides with F.

Proof Since F is a Hilbert space, we have $R(L)=F$ if and only if the following implication is satisfied:

$$
\begin{equation*}
\int_{Q} \mathcal{L} u \bar{f} d x d t+\int_{0}^{1}\left(\sum_{i=0}^{\alpha-k} \frac{\partial^{i} l_{1} u}{\partial x^{i}} \frac{\partial^{i} \bar{\varphi}}{\partial x^{i}}+\frac{\partial^{\alpha-k} l_{2} u}{\partial x^{\alpha-k}} \frac{\partial^{\alpha-k} \bar{\psi}}{\partial x^{\alpha-k}}\right) d x=0 \tag{41}
\end{equation*}
$$

for arbitrary $u \in E$ and $\mathcal{F}=(f, \varphi, \psi) \in F$, implies that f, φ, and ψ are zero.
Putting $u \in D_{0}(L)$ in (41), we obtain $\int_{Q} \mathcal{L} u \bar{f} d x d t=0$. Taking $\omega=$ $f /(1-x)^{2 k}$, and using lemma 4.1 we obtain that $f /(1-x)^{2 k}=0$, then $f=0$. Consequently, $\forall u \in D(L)$ we have

$$
\begin{equation*}
\int_{0}^{1} \sum_{i=0}^{\alpha-k} \frac{\partial^{i} l_{1} u}{\partial x^{i}} \frac{\partial^{i} \bar{\varphi}}{\partial x^{i}}+\frac{\partial^{\alpha-k} l_{2} u}{\partial x^{\alpha-k}} \frac{\partial^{\alpha-k} \bar{\psi}}{\partial x^{\alpha-k}} d x=0 \tag{42}
\end{equation*}
$$

The range of the trace operator $\left(l_{1}, l_{2}\right)$ is everywhere dense in a Hilbert space with norm

$$
\left[\int_{0}^{1} \sum_{i=0}^{\alpha-k}\left|\frac{\partial^{i} \varphi}{\partial x^{i}}\right|^{2}+\left|\frac{\partial^{\alpha-k} \psi}{\partial x^{\alpha-k}}\right|^{2} d x\right]^{1 / 2}
$$

Therefore, $(\varphi, \psi)=(0,0)$ and the present proof is complete.

References

[1] G. W. Batten, Jr., Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations, Math. Comp., 17 (1963), 405-413.
[2] A. Bouziani and N. E. Benouar, Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math., 15 (1998), 47-58.
[3] B. Cahlon, D. M. Kulkarni and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J. Numer. Anal., 32 (1995), 571-593.
[4] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160.
[5] J. R. Cannon, The one-dimensional heat equation, in Encyclopedia of Mathematics and its Applications 23, Addison-Wesley, Mento Park, CA (1984).
[6] Y. S. Choi and K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal., 18 (1992), 317331.
[7] R. E. Ewing and T. Lin, A class of parameter estimation techniques for fluid flow in porous media, Adv. Water Ressources, 14 (1991), 89-97.
[8] N. I. Ionkin, Solution of a boundary-value problem in heat conduction with a nonclasical boundary condition, Differentsial'nye Uravneniya, 13 (1977), 294-304.
[9] N. I. Kamynin, A boundary value problem in the theory of the heat conduction with non classical boundary condition, U.S.S.R. Comput. Math. and Math. Phys., 4 (1964), 33-59.
[10] A. V. Kartynnik, Three-point boundary-value problem with an integral space-variable condition for a second-order parabolic equation, Differential Equations, 26 (1990), 1160-1166 .
[11] L. S. Pulkina, A non-local problem with integral conditions for hyperbolic equations, Electronic Journal of Differential Equations, 1999 (1999), No. 45, 1-6.
[12] A. A. Samarski, Some problems in the modern theory of differential equations, Differentsial'nye Uravneniya, 16 (1980), 1221-1228.
[13] P. Shi, weak solution to evolution problem with a nonlocal constraint, SIAM J. Anal., 24 (1993), 46-58.
[14] P. Shi and M. Shillor, Design of Contact Patterns in One Dimentional Thermoelasticity, in Theoretical Aspects of Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
[15] V. F. Volkodavov and V. E. Zhukov, Two problems for the string vibration equation with integral conditions and special matching conditions on the characteristic, Differential Equations, 34 (1998), 501-505.
[16] N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Differential Equations, 22 (1986), 1457-1463.

Mohamed Denche (e-mail: m_denche@hotmail.com)
A. L. Marhoune

Institut de Mathematiques
Université Mentouri Constantine
25000 Constantine, Algeria

[^0]: *Mathematics Subject Classifications: 35B45, 35G10, 35M10.
 Key words: Integral boundary condition, energy inequalities, equation of mixed type.
 (C) 2000 Southwest Texas State University.

 Submitted March 27, 2000. Published September 21, 2000.

