ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2000**(2000), No. 61, pp. 1–15. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

Quantitative, uniqueness, and vortex degree estimates for solutions of the Ginzburg-Landau equation *

Igor Kukavica

Abstract

In this paper, we provide a sharp upper bound for the maximal order of vanishing for non-minimizing solutions of the Ginzburg-Landau equation

$$\Delta u = -\frac{1}{\epsilon^2} (1 - |u|^2) u$$

which improves our previous result [12]. An application of this result is a sharp upper bound for the degree of any vortex. We treat Dirichlet (homogeneous and non-homogeneous) as well as Neumann boundary conditions.

1 Introduction

In this paper, we provide vortex degree estimates for solutions of the Ginzburg-Landau equation

$$\Delta u = -\frac{1}{\epsilon^2} \left(1 - |u|^2 \right) u$$

The vortices of solutions of this equation were studied by Bethuel, Brezis, and Hélein in [5]. (We recall that x_0 is a vortex if it is an isolated zero of u, and if the degree of u at x_0 is nonzero.) They prescribed nonhomogeneous boundary conditions $u|_{\partial\Omega} = g$ with $g: \partial\Omega \to S^1$ such that deg g = d > 0. If Ω is convex, and if ϵ is sufficiently small, they proved that a minimizing solution u has precisely d distinct vortices of degree 1. This result has been extended to include all bounded smooth domains by Struwe [17]. It was further shown in [5] that there exist non-minimizing solutions of the Ginzburg-Landau equation whose vortex at the origin is an arbitrarily prescribed nonzero integer.

In this paper, we find a sharp upper bound in terms of $1/\epsilon$ for the degree of vortices for solutions which are not necessarily minimizing. Chanillo and Kiessling proved in [7, Lemma 6] that if x_0 is a vortex of degree $d \in \mathbb{N}$, then the vanishing order of u is at least d. Therefore, we may use unique continuation

^{*} Mathematics Subject Classifications: 35B05, 35J25, 35J60, 35J65, 35Q35.

Key words: Unique continuation, vortices, Ginzburg-Landau equation.

^{©2000} Southwest Texas State University.

Submitted June 23, 2000. Published Ocotber 2, 2000.

methods to address this problem. Using the result of Chanillo and Kiessling, the paper [12] implies that in the homogeneous Dirichlet and periodic cases the degree of u at any vortex x_0 is less than $C\epsilon^{-2}$ where C depends only on Ω . In Theorem 3.1 below we improve this bound to $C\epsilon^{-1}$ and then show that this bound is best possible. The main tool in the proof is a new logarithmically convex quantity for the Laplacian operator. More precisely, for any $\alpha > -1$ and any harmonic function u, the quantity

$$H(r) = \int_{B_r(0)} u(x)^2 (r^2 - |x|^2)^{\alpha} dx$$

is logarithmically convex, i.e., $\log H(r)$ is a convex function of $\log r$. Due to cancellations of terms involving α in (2.10)–(2.12) below, and due to a gradient structure of the Ginzburg-Landau equation, we can choose an appropriate optimal α which gives our result. Inspired by an example in [5], we construct in Remark 3.3 a solution which shows that our bound $C\epsilon^{-1}$ can not be improved upon. Theorem 3.2 contains an estimate concerning the boundary condition $u|_{\partial\Omega} = g$ where |g| = 1, while Theorem 3.5 covers the Neumann case.

For properties of stationary Ginzburg-Landau equation, cf. [5, 8, 15, 16, 17] and to [1, 2, 3, 4, 9, 10, 12, 13] for various results on logarithmic convexity and unique continuation.

2 Quantitative uniqueness for systems

In this section, we consider nontrivial solutions u of the system

$$\Delta u = F'(|u|^2)u$$
$$u|_{\partial\Omega} = 0 \tag{2.1}$$

where $u \in C^2(\Omega, \mathbb{R}^D) \cap C(\overline{\Omega}, \mathbb{R}^D)$ with $D \in \mathbb{N}$. We assume that $\Omega \subseteq \mathbb{R}^d$, where $d \geq 2$, and one of the following:

- (a) Ω is a convex bounded domain;
- (b) Ω is a Dini domain; Dini domains are bounded domains with the following property: Around any point there is a neighborhood N, such that after a rotation of coordinates $\Omega \cap N$ lies below a graph of a function whose normal is Dini continuous (see [14] for details);
- (c) Ω is a periodic cube $[0, L]^d$; in this case, $\partial \Omega = \emptyset$.

As in [12], we are mainly interested in periodic boundary conditions; the papers [1] and [14] enable us to consider homogeneous Dirichlet conditions without much change. As far as the Ginzburg-Landau equation is concerned, the non-homogeneous boundary conditions $u|_{\partial\Omega} = g$ (with |g| = 1) and homogeneous Neumann conditions $(du/d\nu)|_{\partial\Omega} = 0$ are more physically relevant and more widely studied. Theorem 3.1 addresses the homogeneous Dirichlet boundary

conditions; the non-homogeneous boundary conditions are considered in Theorem 3.2, while Theorem 3.5 covers the Neumann case. Let $M = \max_{\overline{\Omega}} |u|^2$. On $F: [0, M] \to \mathbb{R}$, we make the following assumptions:

(i) $F \in C^1([0, M])$ and

$$\left|F'(x)\right| \le \lambda, \quad x \in [0, M] \tag{2.2}$$

for some $\lambda > 0$;

- (ii) F(0) = 0;
- (iii) F is convex on [0, M].

Conditions (ii) and (iii) imply

$$F(x) \le xF'(x), \quad x \in [0, M]$$
 (2.3)

and

$$\left|F(x)\right| \le \lambda x \,, \quad x \in [0, M] \,. \tag{2.4}$$

The following is the main result of this section.

We recall that the order of vanishing at $x_0 \in \overline{\Omega}$ is defined as the largest integer $n \in \mathbb{N}_0 = \{0, 1, \ldots\}$ such that

$$\frac{1}{|B_r(x_0) \cap \Omega|} \int_{B_r(x_0) \cap \Omega} |u|^2 = \mathcal{O}(r^{2n}), \quad \text{as} r \to 0.$$

(Here and in each subsequent occurrence, one needs to replace $B_r(x_0) \cap \Omega$ with $B_r(x_0)$ in the case of periodic boundary conditions (c).) In particular, if u does not vanish at x_0 , then the order of vanishing is 0. We also add that u may not have any zeros in Ω .

Theorem 2.1 Let $x_0 \in \overline{\Omega}$. The order of vanishing of u at x_0 is less than $C(\sqrt{\lambda}+1)$ where C is a constant depending only on Ω .

If λ is sufficiently small, and if Ω satisfies (a) or (b), then there are no nontrivial solutions of (2.1). In these cases, the bound $C(\sqrt{\lambda} + 1)$ may be replaced by $C\sqrt{\lambda}$.

Let $x_0 \in \overline{\Omega}$ and R > 0 be such that $B_R(x_0) \cap \Omega$ is starshaped with respect to x_0 . For an arbitrary $\alpha > -1$ and r > 0, denote

$$H_{x_0}(r) = \int_{B_r(x_0) \cap \Omega} |u(x)|^2 (r^2 - |x - x_0|^2)^{\alpha} dx$$

where $|u|^2 = u_j u_j$. We will omit the dependency on x_0 when it is clear from the context.

Lemma 2.2 Let $q \ge 1$, and let $0 < r_1 < r_2$ be such that $qr_2 \le R$. Then

$$\log \frac{H_{x_0}(qr_1)}{H_{x_0}(r_1)} \le \log \frac{H_{x_0}(qr_2)}{H_{x_0}(r_2)} + \frac{(q^2 - 1)r_2^2 d\lambda}{\alpha + 1}.$$

Proof of Lemma 2.2 Without loss of generality, $x_0 = 0$. Let $r \in (0, R)$ be arbitrary. Denoting $B_r = B_r(0)$, we get

$$H'(r) = 2\alpha r \int_{B_r \cap \Omega} |u|^2 (r^2 - |x|^2)^{\alpha - 1} dx$$

= $\frac{2\alpha}{r} H(r) - \frac{1}{r} \int_{B_r \cap \Omega} x_j |u|^2 \partial_j ((r^2 - |x|^2)^{\alpha}) dx$ (2.5)

whence, by the divergence theorem,

$$H'(r) = \frac{2\alpha + d}{r}H(r) + \frac{1}{(\alpha + 1)r}I(r)$$
(2.6)

where

$$I(r) = 2(\alpha + 1) \int_{B_r \cap \Omega} x_j u_k \,\partial_j u_k \big(r^2 - |x|^2\big)^{\alpha} \,dx \,. \tag{2.7}$$

By the divergence theorem,

$$\begin{split} I(r) &= -\int_{B_r \cap \Omega} u_k \, \partial_j u_k \, \partial_j \big(\big(r^2 - |x|^2\big)^{\alpha + 1} \big) \, dx \\ &= \int_{B_r \cap \Omega} \partial_j u_k \, \partial_j u_k \big(r^2 - |x|^2\big)^{\alpha + 1} \, dx \\ &+ \int_{B_r \cap \Omega} |u|^2 F'(|u|^2) \big(r^2 - |x|^2\big)^{\alpha + 1} \, dx \, . \end{split}$$

As in (2.5) above, we get

$$I'(r) = \frac{2(\alpha+1)}{r} \int_{B_r \cap \Omega} \partial_j u_k \,\partial_j u_k \left(r^2 - |x|^2\right)^{\alpha+1} dx$$

$$-\frac{1}{r} \int_{B_r \cap \Omega} x_m \,\partial_j u_k \,\partial_j u_k \,\partial_m \left(\left(r^2 - |x|^2\right)^{\alpha+1}\right) dx$$

$$+2(\alpha+1)r \int_{B_r \cap \Omega} |u|^2 F'(|u|^2) \left(r^2 - |x|^2\right)^{\alpha} dx \,.$$

Using the divergence theorem on the second integral leads to

$$I'(r) = \frac{2(\alpha+1)+d}{r} \int_{B_r \cap \Omega} \partial_j u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha+1} dx$$

+ $\frac{2}{r} \int_{B_r \cap \Omega} x_m \, \partial_j u_k \, \partial_j m u_k \left(r^2 - |x|^2\right)^{\alpha+1} dx$
- $\frac{1}{r} \int_{B_r \cap \partial\Omega} x_m \, \partial_j u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha+1} \nu_m \, d\sigma(x)$
+ $2(\alpha+1)r \int_{B_r \cap \Omega} |u|^2 F'(|u|^2) \left(r^2 - |x|^2\right)^{\alpha} dx$

where $\nu = (\nu_1, \ldots, \nu_d)$ denotes the outward unit normal and where $d\sigma(x)$ stands for the surface measure on $\partial\Omega$. Applying the divergence theorem in the second integral, this time with respect to the variable x_j , we get

$$I'(r) = \frac{2\alpha + d}{r} \int_{B_r \cap \Omega} \partial_j u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha + 1} dx$$

$$-\frac{2}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k F' \left(|u|^2\right) u_k \left(r^2 - |x|^2\right)^{\alpha + 1} dx$$

$$+\frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k x_j \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha} dx$$

$$+\frac{2}{r} \int_{B_r \cap \partial \Omega} x_m \partial_m u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha + 1} \nu_j \, d\sigma(x)$$

$$-\frac{1}{r} \int_{B_r \cap \partial \Omega} x_m \partial_j u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha + 1} \nu_m \, d\sigma(x)$$

$$+2(\alpha + 1)r \int_{B_r \cap \Omega} |u|^2 F' \left(|u|^2\right) \left(r^2 - |x|^2\right)^{\alpha} dx .$$
(2.8)

The second term on the right hand side of (2.8) equals

$$-\frac{1}{r} \int_{B_r \cap \Omega} x_m \,\partial_m \left(F(|u|^2) \right) \left(r^2 - |x|^2 \right)^{\alpha + 1} dx$$

= $\frac{d}{r} \int_{B_r \cap \Omega} F(|u|^2) \left(r^2 - |x|^2 \right)^{\alpha + 1} dx$
 $- \frac{2(\alpha + 1)}{r} \int_{B_r \cap \Omega} F(|u|^2) |x|^2 \left(r^2 - |x|^2 \right)^{\alpha} dx;$

since the boundary integral vanishes by F(0) = 0. On the other hand, the sum of the fourth and the fifth term is

$$\frac{1}{r} \int_{B_r \cap \partial\Omega} x_k \nu_k \frac{\partial u_m}{\partial \nu} \frac{\partial u_m}{\partial \nu} \left(r^2 - |x|^2 \right)^{\alpha + 1} d\sigma(x)$$

which is due to the fact $\partial_k u = (\partial u / \partial \nu) \nu_k$ resulting from $u|_{\partial\Omega} = 0$. This integral is nonnegative since $B_r \cap \Omega$ is starshaped with respect to 0. Then

$$I'(r) \geq \frac{2\alpha + d}{r} I(r) - \frac{2\alpha + d}{r} \int_{B_r \cap \Omega} |u|^2 F'(|u|^2) (r^2 - |x|^2)^{\alpha + 1} dx + \frac{d}{r} \int_{B_r \cap \Omega} F(|u|^2) (r^2 - |x|^2)^{\alpha + 1} dx - \frac{2(\alpha + 1)}{r} \int_{B_r \cap \Omega} F(|u|^2) |x|^2 (r^2 - |x|^2)^{\alpha} dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k x_j \partial_j u_k (r^2 - |x|^2)^{\alpha} dx + 2(\alpha + 1)r \int_{B_r \cap \Omega} |u|^2 F'(|u|^2) (r^2 - |x|^2)^{\alpha} dx.$$
(2.9)

The sum of the second, the third, the fourth, and the sixth term is

$$\frac{1}{r}\int_{B_r\cap\Omega}E(x)\bigl(r^2-|x|^2\bigr)^{\alpha}\,dx$$

where

$$E(x) = -(2\alpha + d)|u|^{2}F'(|u|^{2})(r^{2} - |x|^{2}) + dF(|u|^{2})(r^{2} - |x|^{2}) -(2\alpha + 2)F(|u|^{2})|x|^{2} + (2\alpha + 2)F'(|u|^{2})|u|^{2}r^{2}.$$
(2.10)

We get

$$E(x) = r^{2} \left(-2\alpha |u|^{2} F'(|u|^{2}) - d|u|^{2} F'(|u|^{2}) + dF(|u|^{2}) + 2\alpha F'(|u|^{2}) |u|^{2} + 2F'(|u|^{2}) |u|^{2} \right) + |x|^{2} \left(2\alpha F'(|u|^{2}) |u|^{2} + dF'(|u|^{2}) |u|^{2} - dF(|u|^{2}) - 2\alpha F(|u|^{2}) - 2F(|u|^{2}) \right)$$

$$(2.11)$$

from where, using (iii),

$$E(x) \geq r^{2} \left((2-d)|u|^{2} F'(|u|^{2}) + dF(|u|^{2}) \right) - 2|x|^{2} F(|u|^{2}). \quad (2.12)$$

By (2.2) and (2.4) and using $|x|^2 \le r^2$, we get

$$E(x) \ge -4d\lambda r^2 |u|^2$$

which leads to

$$I'(r) \geq \frac{2\alpha + d}{r} I(r) + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx - 4d\lambda r H(r) \, dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^\alpha dx + \frac{4(\alpha + 1)}{r} \int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \, x_j \, x_j$$

Now, let N(r) = I(r)/H(r). Then

$$N'(r) \geq -4d\lambda r + \frac{4(\alpha+1)}{rH(r)^2} \left(\int_{B_r \cap \Omega} x_m \partial_m u_k \, x_j \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha} dx \right.$$
$$\times \int_{B_r \cap \Omega} |u|^2 \left(r^2 - |x|^2\right)^{\alpha} dx - \left(\int_{B_r \cap \Omega} x_j u_k \, \partial_j u_k \left(r^2 - |x|^2\right)^{\alpha} dx \right)^2 \right)$$

whence, by the Cauchy-Schwarz inequality, $N'(r) \ge -4d\lambda r$, i.e.,

$$N(r_2) - N(r_1) \ge -2d\lambda(r_2 - r_1)(r_2 + r_1), \quad 0 < r_1 \le r_2 \le R.$$
(2.13)

Let $q \ge 1$, and let $0 < r_1 \le r_2 \le R$ be such that $qr_2 \le R$. Dividing (2.6) by H(r) and integrating the resulting equality between r_1 and qr_1 leads to

$$\log \frac{H(qr_1)}{H(r_1)} = (2\alpha + d)\log q + \frac{1}{\alpha + 1} \int_{r_1}^{qr_1} \frac{N(\rho)}{\rho} d\rho$$

= $(2\alpha + d)\log q + \frac{1}{\alpha + 1} \int_{r_2}^{qr_2} \frac{N(r_1\rho/r_2)}{\rho} d\rho$.

EJDE-2000/61

Using (2.13), we get

$$\log \frac{H(qr_1)}{H(r_1)} \leq (2\alpha + d)\log q + (r_2^2 - r_1^2)\frac{(q^2 - 1)d\lambda}{\alpha + 1} + \frac{1}{\alpha + 1}\int_{r_2}^{qr_2} \frac{N(\rho)}{\rho} d\rho$$

$$= \log \frac{H(qr_2)}{H(r_2)} + \frac{(r_2^2 - r_1^2)(q^2 - 1)d\lambda}{\alpha + 1}$$

and the lemma follows.

Again, let $x_0 \in \overline{\Omega}$ be fixed, and denote

$$h_{x_0}(r) = \int_{B_r(x_0) \cap \Omega} |u(x)|^2 \, dx \, .$$

Let R > 0 be such that $B_R(x_0) \cap \Omega$ is starshaped with respect to $x_0 \in \overline{\Omega}$.

Lemma 2.3 Let $\alpha \geq 0$, $0 < r_1 < 4r_2/3$ and $4r_2 \leq R$. Then, with the above assumptions,

$$\log \frac{h_{x_0}(2r_1)}{h_{x_0}(r_1)} \le \log \frac{h_{x_0}(4r_2)}{h_{x_0}(r_2)} + C\left(\alpha + \frac{dr_2^2\lambda}{\alpha + 1}\right)$$

where C is a universal constant.

Proof of Lemma 2.3 Denote $h(r) = h_{x_0}(r)$ and $H(r) = H_{x_0}(r)$. If $0 < r < \rho$, then

$$H(r) \le r^{2\alpha} h(r) \tag{2.14}$$

and

$$h(r) \le \frac{H(\rho)}{(\rho^2 - r^2)^{\alpha}} \tag{2.15}$$

Therefore,

$$\log \frac{h(2r_1)}{h(r_1)} \le \log \frac{H(3r_1)}{H(r_1)} - \alpha \log 5 \le \log \frac{H(3r_1)}{H(r_1)}$$

since $\alpha \geq 0$. By Lemma 2.2,

$$\log \frac{h(2r_1)}{h(r_1)} \le \log \frac{H(4r_2)}{H(4r_2/3)} + \frac{Cr_2^2 d\lambda}{\alpha + 1}.$$

Using (2.14) and (2.15) again, we get our assertion.

In Theorem 3.2 below, we will need an interior version of the above lemma, which we state for sake of completeness.

Lemma 2.4 Let u be a solution of $\Delta u = F'(|u|^2)u$, where F is as above, in $B_R(x_0)$. Let $\alpha \ge 0$, $0 < r_1 < 4r_2/3$ and $4r_2 \le R$ Then

$$\log \frac{h_{x_0}(2r_1)}{h_{x_0}(r_1)} \le \log \frac{h_{x_0}(4r_2)}{h_{x_0}(r_2)} + C\left(\alpha + \frac{dr_2^2\lambda}{\alpha + 1}\right)$$

where $h_{x_0}(r) = \int_{B_r(x_0)} |u(x)|^2 dx$ and C is a universal constant.

Proof of Lemma 2.4 The proof is the same as that of Lemma 2.3. \Box Next lemma will be used in the overlapping chain of balls argument.

Lemma 2.5 Let $\alpha \geq 0$. Assume that $x_1, x_2 \in \overline{\Omega}$ and r > 0 are such that $B_{20r}(x_1) \cap \Omega$ is starshaped with respect to $x_2 \in \overline{\Omega}$. If $B_r(x_1)$ and $B_r(x_2)$ intersect, and if

$$\int_{\Omega} |u(x)|^2 \, dx \le K H_{x_1}(r)$$

for some $K \geq 0$, then

$$\int_{\Omega} |u(x)|^2 \, dx \le K^3 \exp\left(C\left(\alpha + \frac{\lambda}{\alpha + 1}\right)\right) H_{x_2}(r)$$

where C is a constant which depends only on d and diam(Ω).

Proof of Lemma 2.5 It is easy to check that $H_{x_1}(r) \leq H_{x_2}(4r)$. Therefore,

$$\int_{\Omega} |u|^2 \le KH_{x_1}(r) \le KH_{x_2}(4r)$$
(2.16)

which, by (2.14), implies

$$H_{x_2}(8r) \le (8r)^{2\alpha} h(8r) \le (8r)^{2\alpha} \int_{\Omega} |u|^2 \le C^{\alpha} K H_{x_2}(4r)$$

where C denotes a generic constant which depends only on d and $\operatorname{diam}\Omega.$ Lemma 2.2 then implies

$$\log \frac{H_{x_2}(4r)}{H_{x_2}(2r)} \le \log K + C\left(\alpha + \frac{\lambda}{\alpha + 1}\right)$$
(2.17)

and similarly

$$\log \frac{H_{x_2}(2r)}{H_{x_2}(r)} \le 2\log K + C\left(\alpha + \frac{\lambda}{\alpha + 1}\right).$$
(2.18)

The inequalities (2.16), (2.17), and (2.18) then give

$$\log \frac{\int_{\Omega} |u|^2}{H_{x_2}(4r)} \leq 3 \log K + C\left(\alpha + \frac{\lambda}{\alpha + 1}\right)$$

which gives our assertion.

Proof of Theorem 2.1 In the cases (a) and (c), we can take R to be arbitrarily large. Note that, in the case (a),

$$\log \frac{h_{x_0}(4r)}{h_{x_0}(r)} = 0, \quad x_0 \in \overline{\Omega}$$
(2.19)

EJDE-2000/61

provided $r \geq \operatorname{diam} \Omega$. Therefore, by Lemma 2.3, there is a numerical constant C such that

$$\log \frac{h_{x_0}(2r_1)}{h_{x_0}(r_1)} \le C\left(\alpha + \frac{d\operatorname{diam}(\Omega)^2\lambda}{\alpha + 1}\right), \quad x_0 \in \overline{\Omega}$$

for every $\alpha \geq 0$ and $r_1 \in (0, \operatorname{diam} \Omega)$. Choosing $\alpha = \sqrt{d\lambda} \operatorname{diam} \Omega$, we get

$$\log rac{h_{x_0}(2r)}{h_{x_0}(r)} \leq C\sqrt{\lambda d} \operatorname{diam}\Omega, \quad x_0 \in \overline{\Omega}$$

for $r \in (0, \operatorname{diam} \Omega)$, and Theorem 2.1 follows. In the case (c), the argument is the same. The only difference is that (2.19) is replaced by

$$\log \frac{h_{x_0}(4r)}{h_{x_0}(r)} \le C, \quad x_0 \in \overline{\Omega}$$

provided $r \geq \operatorname{diam} \Omega$, where C is a constant depending only on d. In this case we therefore obtain

$$\log \frac{h_{x_0}(2r)}{h_{x_0}(r)} \le C(1 + \sqrt{\lambda} \operatorname{diam} \Omega), \quad x_0 \in \overline{\Omega}$$

for $r \in (0, \operatorname{diam} \Omega)$, where C is a constant which depends only on dimension d.

The proof in the case (b) involves a standard argument employing overlapping chain of balls (cf. [11, 13]). Below, the symbol C denotes a generic constant depending only on Ω . First, we choose r > 0 and $x_1, \ldots, x_m \in \overline{\Omega}$ such that

- (1) $B(x_1, r/2), \ldots, B(x_m, r/2)$ cover $\overline{\Omega}$;
- (2) for every $j \in \{1, \ldots, m\}$, the region $\Omega \cap B(x_j, 10r)$ is starshaped with respect to x_j ;
- (3) if $B(x_j, 10r)$ intersects $\partial\Omega$, it is assumed that the variation of the normal ν is sufficiently small (cf. [14, p. 444]).

We fix $\alpha = \sqrt{\lambda} + 1$. There exists $j_0 \in \{1, \ldots, m_0\}$ such that

$$\int_{B_{r/2}(x_{j_0})} |u|^2 \ge \frac{1}{m} \int_{\Omega} |u|^2$$

whence

$$\int_{\Omega} |u|^2 \le C^{\alpha} H_{x_{j_0}}(r)$$

For every $j \in \{1, \ldots, m\}$, there exists an overlapping chain of (distinct) balls from (1) connecting $B_r(x_j)$ and $B_r(x_{j_0})$. Repeated use of Lemma 2.4 then gives

$$\int_{\Omega} |u|^2 \le C^{\sqrt{\lambda}+1} H_{x_j}(r) \,, \quad j = 1, \dots, m \,.$$

Therefore,

$$H_{x_i}(2r) \le C^{\sqrt{\lambda+1}} H_{x_i}(r), \quad j = 1, \dots, m$$

An argument parallel to [14, p. 445] then leads to

$$H_x(2\rho) \le C^{\sqrt{\lambda+1}} H_x(\rho)$$

for every $x \in \overline{\Omega}$ and arbitrary $\rho \in (0, r/2)$. Using (2.14) and (2.15), we get the theorem.

3 The degree of Ginzburg-Landau vortices

Now, we apply Theorem 2.1 to the Ginzburg-Landau equation

$$\Delta u = -\frac{1}{\epsilon^2} (1 - |u|^2) u$$
$$u|_{\partial\Omega} = 0, \qquad (3.1)$$

where $u: \overline{\Omega} \to \mathcal{C}$ is assumed to be nontrivial. The domain $\Omega \subseteq \mathbb{R}^2$ is as in the beginning of Section 2 and $\epsilon > 0$.

Theorem 3.1 The order of vanishing of u at $x_0 \in \overline{\Omega}$ is less than

$$C\left(\frac{1}{\epsilon}+1\right) \tag{3.2}$$

where C is a constant which depends only on Ω .

As it was pointed out in the remark following Theorem 2.1, the above bound (3.2) can be replaced by C/ϵ if Ω satisfies (a) or (b).

By [7], (3.2) then provides an estimate for the the degree of u at any vortex $x_0 \in \Omega$. (Recall that x_0 is a vortex if $u(x_0) = 0$ and the degree of u at x_0 is nonzero.) Namely, by [7, Lemma 6] and our Theorem 3.1, the degree at every vortex is less than (3.2).

Proof By the maximum principle, we conclude $|u(x)| \leq 1$ for $x \in \overline{\Omega}$, i.e., M = 1. Taking

$$F(x) = -\frac{1}{\epsilon^2}x + \frac{1}{2\epsilon^2}x^2$$

we easily verify that (i)–(iii) are satisfied with $\lambda = \epsilon^{-2}$. Theorem 3.1 then follows from Theorem 2.1.

Next, we present a result concerning the nonhomogeneous boundary conditions $u|_{\partial\Omega} = g$ where $g: \partial\Omega \to S^1$ is sufficiently regular, e.g. continuous. We assume that Ω is starshaped. In this case, Bethuel, Brézis, and Hélein proved in [5, Lemma X.1] that

$$\int_{\Omega} \left(1 - |u|^2\right)^2 \le C_0 \epsilon^2 \tag{3.3}$$

where C_0 depends only on g and Ω .

Theorem 3.2 The order of vanishing of u at $x_0 \in \Omega$ is less than C/ϵ where C depends on Ω , the boundary function g, and the distance from x_0 to $\partial\Omega$.

Proof It is easy to check that if ϵ is sufficiently large, then u does not vanish. (For instance, we may use the inequality $|\nabla u(x)| \leq C/\epsilon$ from [5] where C depends on g and Ω .) Let $x_0 \in \Omega$, denote $R = \text{dist}(x_0, \partial\Omega)$ and $r_0 = R/4$. We distinguish two cases.

Case 1: $\epsilon \geq R^2/(C \cdot C_0)$ where C is a large enough numerical constant and C_0 is as in (3.3). In this case, we can use analyticity arguments to show that the order of vanishing is bounded by a constant depending only on Ω , g, and R (cf. [12]).

Case 2: $\epsilon \leq R^2/(C \cdot C_0)$ where C is large enough. Then (3.3) implies

$$\int_{B_{R/4}(x_0)} |u|^2 \ge \frac{R^2}{C}$$

as can be readily checked. Since also $\max_{\overline{\Omega}} |u| = 1$, we get

$$\int_{B_R(x_0)} |u|^2 \le C \int_{B_{R/4}(x_0)} |u|^2$$

where C depends on Ω , g, and R. Since $R = \text{dist}(x_0, \partial \Omega)$, we have $B_R(x_0) \cap \partial \Omega = \emptyset$. Therefore, by Lemma 2.4, we get

$$\log \frac{\int_{B_{2r}(x_0)} |u|^2}{\int_{B_r(x_0)} |u|^2} \le C + C\left(\alpha + \frac{2R^2\epsilon^{-2}}{\alpha + 1}\right)$$

for all $\alpha \geq 0$ provided r < R/3. Choosing $\alpha = R/\epsilon$, we get

$$\log \frac{\int_{B_{2r}(x_0)} |u|^2}{\int_{B_r(x_0)} |u|^2} \le C\left(\frac{R}{\epsilon} + 1\right) \,.$$

Note that $1 \leq CR/\epsilon$ due to the fact $\epsilon \leq R^2/CC_0$. Therefore,

$$\log \frac{\int_{B_{2r}(x_0)} |u|^2}{\int_{B_r(x_0)} |u|^2} \le C \frac{\operatorname{dist}(x_0, \partial\Omega)}{\epsilon}$$

and the statement follows.

Remark 3.3 Here we show by means of an example that Theorem 3.1 is sharp. Let $\Omega = B_1(0)$. We shall show that there exists $\epsilon_0 > 0$ with the following property: For every $\epsilon \in (0, \epsilon_0)$, there exists a solution u of (3.1) such that the degree of u at 0 is at least $1/C\epsilon$.

We seek this solution in the form $u(x) = f(r)e^{id\theta}$, where $x = re^{i\theta}$, with a suitable fixed integer d. We find f as a global minimizer of the functional

$$\Phi(f) = \int_0^1 \left(rf'^2 + \frac{d^2}{r} f^2 + \frac{r}{2\epsilon^2} (f^2 - 1)^2 \right) dr$$

in the space

$$V = \left\{ f \in H^1_{\text{loc}}(0,1) : \sqrt{r}f', \frac{f}{\sqrt{r}} \in L^2(0,1), f(1) = 0 \right\} \,.$$

What remains to be shown is that if d is suitably chosen, then the minimizer f is not identically zero. Choose an arbitrary $g \in V$ such that 0 < g(r) < 1 for $r \in (0, 1)$, say g(r) = r(1 - r). Then if $\epsilon \in (0, \epsilon_0)$, where ϵ_0 is sufficiently small, and if $d = [1/C\epsilon]$ where C is large enough, then

$$\Phi(g) < \frac{1}{2\epsilon^2} \int_0^1 r \, dr = \Phi(0)$$

and 0 can not be the global minimizer.

Now, $u(x) = f(r)e^{id\theta}$, where f and d are as above, is not identically 0, it satisfies $u \in C(B_1) \cap C^{\infty}(B_1 \setminus \{0\})$ and solves the Ginzburg-Landau equation for $x \neq 0$. But then it can be readily checked that 0 is a removable singularity, and consequently (3.1) holds. It also follows immediately that 0 is an isolated zero. Indeed, in the opposite case, there would be a sequence r_1, r_2, \ldots which converges to 0 such that u(x) = 0 if $|x| = r_j$ for $j \in \mathbb{N}$. Therefore, 0 would be a zero of infinite order, which is not possible since $u \neq 0$.

The rest of the paper is concerned with the Ginzburg-Landau equation

$$\Delta u = -\frac{1}{\epsilon^2} \left(1 - |u|^2 \right) u \tag{3.4}$$

with homogeneous Neumann boundary conditions

$$\frac{du}{d\nu}\Big|_{\partial\Omega} = 0 \tag{3.5}$$

where Ω is a connected bounded C^3 domain. The treatment is similar to (but not completely the same as) the Dirichlet case. We need to consider a conformal straightening of the boundary, which, in turn, leads us to consider the following analog of (2.1). Let

$$\Delta u = v F' (|u|^2) u$$

 $\left. \frac{du}{d\nu} \right|_{\partial'\Omega} = 0 \,,$

where $\Omega = B_{R_0}^+(0) = \{(x_1, \ldots, x_d) \in B_{R_0} = B_{R_0}(0) : x_d > 0\}$ and $\partial'\Omega = \{(x_1, \ldots, x_d) \in B_{R_0} : x_d = 0\}$. As in Section 2, we denote $M = \max_{\overline{\Omega}} |u|^2$ and we make same assumptions on $F: [0, M] \to \mathbb{R}$ as before. We assume that v is a nonnegative function such that $\max_{x \in \Omega} v(x) \leq M_0$ and $\max_{x \in \Omega} |\nabla v(x)| \leq M_1$.

Lemma 3.4 Let $\alpha > 0$, $0 < r_1 < 4r_2/3$, and $4r_2 \le R_0$. Then

$$\log \frac{h(2r_1)}{h(r_1)} \le \log \frac{h(4r_2)}{h(r_2)} + C\left(\alpha + \frac{dr_2^2\lambda}{\alpha+1}\right)$$

where C depends only on M_0 and M_1 , and where $h(r) = \int_{B_r^+} |u(x)|^2 dx$.

EJDE-2000/61

Igor Kukavica

Proof The proof is similar to that of Lemma 2.3; we only indicate the main steps and point out the main differences. As before, we let

$$H(r) = \int_{B_r^+} |u|^2 (r^2 - |x|^2)^{\alpha} dx$$

Then (2.6) holds with (2.7) (where $B_r \cap \Omega = B_r^+$). After a short computation, we get

$$\begin{split} I'(r) &= \frac{2\alpha + d}{r} I(r) - \frac{2\alpha + d}{r} \int_{B_r^+} |u|^2 v F' (|u|^2) \left(r^2 - |x|^2\right)^{\alpha + 1} dx \\ &+ \frac{d}{r} \int_{B_r^+} v F (|u|^2) \left(r^2 - |x|^2\right)^{\alpha + 1} dx \\ &- \frac{2(\alpha + 1)}{r} \int_{B_r^+} |x|^2 v F (|u|^2) \left(r^2 - |x|^2\right)^{\alpha} dx \\ &+ \frac{1}{r} \int_{B_r^+} x_m \partial_m v F (|u|^2) \left(r^2 - |x|^2\right)^{\alpha + 1} dx \\ &+ \frac{4(\alpha + 1)}{r} \int_{B_r^+} x_j \partial_j u_k x_m \partial_m u_k \left(r^2 - |x|^2\right)^{\alpha} dx \\ &+ 2(\alpha + 1)r \int_{B_r^+} |u|^2 v F' (|u|^2) \left(r^2 - |x|^2\right)^{\alpha} dx \end{split}$$

in place of (2.9). From here, we get

$$I'(r) \geq \frac{2\alpha + d}{r} I(r) - 4d\lambda r \max_{\Omega} v H(r) + \frac{4(\alpha + 1)}{r} \int_{B_r^+} x_j \partial_j u_k x_m \partial_m u_k \left(r^2 - |x|^2\right)^{\alpha} dx -\lambda(\max_{\Omega} |\nabla v|) \int_{B_r^+} |u|^2 (r^2 - |x|^2)^{\alpha + 1} dx$$

where we also used nonnegativity of v. Instead of $N'(r) \geq -4d\lambda r$, which we had before, we now conclude

$$N'(r) \ge -rd\lambda r \max_{\Omega} v - \lambda r^2 \max_{\Omega} |\nabla v|.$$

The rest follows as before.

Now, we return to the Ginzburg-Landau equation (3.4) with the Neumann boundary conditions (3.5), where Ω is a C^3 bounded connected domain in \mathbb{R}^2 .

Theorem 3.5 The order of vanishing of u at $x_0 \in \overline{\Omega}$ is less than (3.2) where C is a constant which depends only on Ω .

Proof (sketch) The proof of the theorem is analogous to the proof os Theorem 3.1. The main difference is that we use a conformal map to straighten

the boundary. Namely, let $x_0 \in \partial \Omega$. Then, by the Riemann mapping theorem, there exists $R_0 > 0$ and $r_0 > 0$ and a conformal map

$$f: B_{r_0}(x_0) \cap \Omega \to B^+_{R_0}(0)$$

such that $f(x_0) = 0$. The equation (3.4) then transfers to

$$\Delta u = -\frac{1}{\epsilon^2} v \left(1 - |u|^2\right) u$$

with $v = 1/|f'|^2$. The boundary of Ω being C^3 guarantees that v and ∇v are bounded up to the lower boundary $\partial' B^+_{R_0}$ [6]. The rest is then established as in the proof of Theorem 3.1, except that we use Lemmas 3.4 and 2.4 instead of Lemma 2.3.

Acknowledgement: The author thanks Manuel Del Pino for numerous valuable discussions. The work was supported in part by the NSF grant DMS-0072662 while the author was an Alfred P. Sloan fellow.

References

- V. Adolfsson, L. Escauriaza, and C. Kenig, Convex domains and unique continuation at the boundary, Revista Matemática Iberoamericana 11 (1995), 513-525.
- [2] S. Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Eté, 1965), Les Presses de l'Université de Montréal, Montreal, Que., 1966.
- [3] F.J. Almgren, Jr., Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, Minimal Submanifolds and Geodesics, North-Holland, Amsterdam, editor M. Obata, 1979, pp. 1–6.
- [4] R. Brummelhuis, Three-spheres theorem for second order elliptic equations, J. d'Analyse Mathématique 65 (1995), 179–206.
- [5] F. Bethuel, H. Brézis, and F. Hélein, "Ginzburg-Landau vortices", Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994.
- S.B. Bell and S.G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mountain J. Math. 17 (1987), 23–40.
- [7] S. Chanillo and M.K.-H. Kiessling, Curl-free Ginzburg-Landau vortices, Nonlinear Analysis 38 (1999), 933–949.
- [8] M. Del Pino and P.L. Felmer, Local minimizers for the Ginzburg-Landau energy, Math. Z. 22 (1997), 671–684.

- [9] N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, A_p weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245-267.
- [10] C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, Lecture Notes in Math., 1384, Springer, Berlin-New York, 1990, pp. 69–90.
- [11] I. Kukavica, Nodal volumes for eigenfunctions of analytic regular elliptic problems, J. d'Analyse Mathématique 67 (1995), 269–280.
- [12] I. Kukavica, Level sets for the stationary Ginzburg-Landau equation, Calc. Var. 5 (1997), 511–521.
- [13] I. Kukavica, Quantitative uniqueness for second order elliptic operators, Duke Math. J. 91 (1998), 225–240.
- [14] I. Kukavica and K. Nyström, Unique continuation on the boundary for Dini domains, Proceedings of AMS 12 (1998), 441–446.
- [15] F.-H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 599–622.
- [16] C. Lefter and V. Rădulescu, Minimization problems and renormalized energies related to the Ginzburg-Landau equation, An. Univ. Craiova Ser. Mat. Inform. 22 (1995), 1–13 (1997).
- [17] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), 1613–1624.

IGOR KUKAVICA Department of Mathematics University of Southern California Los Angeles, CA 90089 e-mail: kukavica@math.usc.edu