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A GEOMETRIC ANALYSIS OF A SINGULAR ODE RELATED

TO THE STUDY OF A QUASILINEAR PDE

JUKKA TUOMELA

Abstract. In this note we complement the analysis of a singular ODE given
in [2]. Using geometric arguments we are able to settle the structure of the
existence and non-existence regions in the parameter space and improve the
nonexistence bound.

1. Introduction

In [2] existence and uniqueness questions of radial solutions of a class of quasilin-
ear elliptic PDEs in a ball, having strong dependence in the gradient, are analysed
in terms of the related singular ODE, see also [3]. The authors transform the ODE
to an integral equation and look for the fixed points of this operator equation. We
complement their analysis using only elementary geometric methods. We show that
in addition to the regular solution analysed in [2] there exist also infinitely many
singular solutions. It is not quite clear if these ‘new’ solutions can be used to con-
struct new solutions to the original PDE, because at least they are too singular to
yield strong solutions. All solutions blow up in finite time, and we give a nonex-
istence result which for all parameter values is sharper than the one given in [2].
Finally we prove that the regions of existence and nonexistence in the parameter
space have a very simple structure, answering rather completely the question raised
in [2].

2. Results

In [2] the following ODE is considered

tεω′ − g0γt
γ+ε−1 − f0ω

δ = 0 (1)

where f0 and g0 are assumed to be positive constants and other parameters will be
specified below. We are only interested in nonnegative solutions which satisfy this
equation for t > 0 and which can be continuously extended to t = 0.
To simplify the study we first observe

Lemma 1. Let u be a solution of

tεu′ − γtγ+ε−1 − uδ = 0 (2)
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and let us define ω(t) = c1u(c2t). Then ω is a solution of (1) if

c2 =
(
f0g

δ−1
0

)1/β
c1 = g0

(
f0g

δ−1
0

)−γ/β
= g0c

−γ
2

where β = γδ − γ − ε+ 1.

Proof. This is easy to check.

Hence it is really sufficient to study (2) because all solutions of (1) are obtained
from the solutions of (2) by simple scaling. It is useful to make a further reduction.

Lemma 2. Let x = tε−1 and y = uδ−1 (ε 6= 1, δ 6= 1). The equation (2) written
in coordinates (x, y) is

ax2y′ − y2 − γxrys = 0 (3)

where a = (ε− 1)/(δ − 1), r = 1 + γ/(ε− 1) and s = (δ − 2)/(δ − 1).

Proof. This is also straightforward.

Note that identically zero function is a solution of (3) (if s > 0), but not of (1).
When in the following we say ‘any solution’ or ‘all solutions’, it will always mean
any or all solutions, except identically zero solution. The notation y ∼ xm will
mean that there exist positive constants d1 and d2 such that d1x

m ≤ y(x) ≤ d2xm

for small enough x.
Now let us list here for convenience the conditions the parameters are supposed

to satisfy in the rest of the paper.

δ > 1, ε > 1, γ > (ε− 1)/(δ − 1)

a > 0, γ > 0, r > 1, s < 1, r + s > 2, β > 0

Note that inequalities in the second line are consequences of the first line. Let us
also consider the following equations

ax2y′ − y2 = 0 (4)

ax2y′ − γxrys = 0 (5)

By elementary integration they have solutions

y(x) =
ax

1 + cax
(6)

y(x) =
(
xγ/(ε−1) + c

)δ−1
(7)

Hence (4) has an infinite number of (analytic) solutions with y(0) = 0 and y′(0) = a,
but a unique solution can be specified by giving the second derivative at origin (note
that y′′(0) = −2a2c). This phenomenon can be understood nicely in a geometric
way with jet spaces, see [4] and references therein for more information.
These solutions can be used to study the solutions of (3). In the following we will

often specify some point (x0, y0). It is always assumed that x0 and y0 are positive.

Lemma 3. The equation (3) does not have any solutions with limx↘0 y(x) > 0.

Proof. Let y (resp. z) be a solution of (3) (resp. (4)), going through the point
(x0, y0). Comparing the derivatives we see that y(x) ≤ z(x) for all 0 ≤ x ≤ x0 from
which the claim follows.
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We are interested in positive solutions of (3) which can be continuously extended
to origin. We need the following simple result.

Lemma 4. Let y be a solution of (3) such that y(x) > 0 for 0 < x ≤ x∗. Then the
(right hand) limit limx↘0 y(x) exists.

Proof. Writing (3) as

y′ = y2/(ax2) + γxr−2ys/a

we see that y′ is positive (in the relevant region), and hence y is monotonically
increasing. The result follows because monotonic functions have right (and left)
hand limits.

Corollary 1. Let y be a solution of (3) such that y(x) > 0 for 0 < x ≤ x∗. Let us
set y(0) = 0. Then y : [0, x∗]→ R is continuous.

Proof. By Lemma 4 the limit limx↘0 y(x) exists. By Lemma 3 this limit must be
zero.

Hence positive solutions can be continuously extended to zero, if they exist on
(0, x∗]. Our next task is then to prove existence.

Lemma 5. For x∗ small enough, equation (3) has an infinite number of solutions
with y(x) > 0 for 0 < x ≤ x∗ and limx↘0 y(x) = 0.

Proof. Let us define

Ωcd =
{
(x, y) ∈ R2 | 0 ≤ x ≤ d, y ≥ cx

}
Γcd =

{
(x, y) ∈ R2 | 0 < x ≤ d, y = cx

}
∪
{
(x, y) ∈ R2 |x = d, y ≥ cd

}
Consider the line y = cx with some c > 0. If y is a solution of (3), then on this line

y′(x) = c2/a+ γcsxr+s−2/a

Because r + s > 2 this implies that there exist c and d such that y′(x) < c for all
0 < x ≤ d. Hence no solution of (3) enters Ωcd through Γ

c
d. Hence by Corollary 1

we can continuously extend the solutions of (3) which meet Γcd backwards in ‘time’
to origin.

Lemma 6. Let y be a solution of (3) with limx↘0 y(x) = 0 and y(x) > 0 for x > 0.
Then for any b > 0 we have

xα ≤ y(x) ≤ a(1 + b)x

where α = γ(δ−1)/(ε−1) > 1. The first inequality is valid for all x and the second
for sufficiently small x.

Proof. The second inequality follows from the proof of Lemma 3. To prove the other
inequality let (x0, y0) be a point on the curve y = x

α or below it. Further let y (resp.
z) be a solution of (3) (resp. (5)) going through (x0, y0). We must show that there
exists x̃ > 0 such that y(x̃) = 0. Now if y0 < x

α
0 , y(x) ≤ z(x) = (x

γ/(ε−1) + c)δ−1

for some c < 0 which shows that x̃ ≥ (−c)(ε−1)/γ > 0. If y0 = xα0 , essentially
the same argument applies because the solutions of (3) intersect the curve y = xα

transversely.

It is a straightforward task to check that no solution can approach the origin as
y ∼ xm with 1 < m < α.
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Theorem 1. There is precisely one solution of (3) with y ∼ xα for small x.

Proof. Let c > 1 and let K1 (resp. K2) be the curve y = x
α (resp. y = cxα). Let

Ωd =
{
(x, y) ∈ R2 |xα ≤ y ≤ cxα , 0 ≤ x ≤ d

}
Then the boundary of Ωd consists of the parts of the curves K1 and K2 and the
vertical part which will be called Γd. Then it is easy to check that for d small
enough, the solutions go out of Ωd only through Γd. Now extend all solutions going
through Γd backwards in ‘time’. By continuity of the flow, there is at least one
solution y such that (x, y(x)) ∈ Ωd for 0 ≤ x ≤ d.
It remains to prove the uniqueness. We will use some simple modifications

of the results in [1]. Suppose that there are two solutions y1 and y2 such that
(x, yi(x)) ∈ Ωd for 0 ≤ x ≤ d, i = 1, 2. Denote v(x) = y2(x)−y1(x); without loss of
generality we may assume that v(x) ≥ 0. The uniqueness will follow if we succeed
in proving that v(d) = 0. Let us first write (3) as

y′ = f(x, y) = y2/(ax2) + αxr−2ys

Then we can express v using

v′(x) = y′2(x)− y
′
1(x) = f(x, y2)− f(x, y1) =

∫ y2(x)
y1(x)

∂f

∂y
(x, s)ds

Hence we need an estimate for ∂f/∂y. A simple computation shows that in Ωd

∂f

∂y
=
2y

ax2
+ sαxr−2ys−1 ≤

{
2c
a
xα−2 + cs−1αx−1 , 0 < s < 1

2c
a
xα−2 , s ≤ 0

(8)

Case 1: s ≤ 0. Now v′(x) ≤ c1xα−2v(x) where c1 = 2c/a. Consider the differential
equation w′(x) = c1x

α−2w(x) with initial condition w(d) = v(d). The solution is
given by

w(x) = v(d) exp(−

∫ d
x

c1s
α−2ds)

and because α − 2 > −1 this implies that w(0) = c2v(d) for some c2 > 0. On the
other hand v(x) ≥ w(x) if x ≤ d. Combined with limx↘0 v(x) = 0, this is possible
only if v(d) = 0. This is essentially Theorem 4.7.5 (or rather its proof) in [1, p.
188].
Case 2: 0 < s < 1. Let us write the inequality in (8) a bit differently:

∂f

∂y
≤
(2cxα−1
a

+
γ

c1−sa

)
x−1 ≤

(2cdα−1
a

+
γ

c1−sa

)
x−1

Now we can first choose c sufficiently big so that γ/(c1−sa) ≤ 1/2 and then d
sufficiently small so that 2cdα−1/a ≤ 1/2. Hence for suitable c and d we have
∂f/∂y ≤ 1/x in Ωd.
Now proceed as before: v′(x) ≤ x−1v(x) and let w be a solution of w′(x) =

x−1w(x) with w(d) = v(d). By elementary integration w(x) = v(d)x/d and again
v(x) ≥ w(x) if x ≤ d. Now v(x) ≤ (c− 1)xα which implies that

v(d)x/d ≤ (c− 1)xα

for all 0 ≤ x ≤ d. This is possible only if v(d) = 0 because α > 1. This is
essentially the extension of Theorem 4.7.5 in [1, p. 188], outlined in Exercise 4.7#3
[1, p. 196]
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Hence there is one solution behaving like xα (let us call this the regular solution)
and infinitely many solutions which behave like x near the origin (called singular
solutions). Translating the above results back to the original coordinates we get

Corollary 2. If T is small enough, equation (1) has

• infinitely many solutions in Vm if m ≤ (ε− 1)/(δ − 1)
• a unique solution in Vm if (ε− 1)/(δ − 1) < m ≤ γ
• no solutions in Vm if m > γ

where

Vm =
{
u ∈ C[0, T ] | 0 ≤ u(t) ≤Mut

m
}

and Mu may depend on u.

Let us then take a look at the ‘lifespan’ of these solutions.

Theorem 2. All solutions of (3) blow up in a finite time.

Proof. If p = (x0, y0) is above the line y = ax, then the solution of (3) through p
blows up by comparing it to the corresponding solution of (4). Further, solutions
of (3) intersect y = ax transversely. It remains to show that any solution starting
below this line will eventually meet it. Let p = (x0, y0) be below the line y = ax;
let y be a solution of (3) through p and z a solution of (5) through p. Then
y(x) ≥ z(x) for x ≥ x0. On the other hand z will meet y = ax because it grows
superlinearly.

Finally let us consider the problem raised in [2]. What is the structure of the set
of parameter values (f0, g0) for which the problem (1) has (resp. does not have) a
solution on a given interval [0, T ] ? Using Lemma 1 this question has a very simple
answer.

Theorem 3. There exists c > 0 (depending on T , γ, ε and δ) such that the problem
(1)

• has a solution if f0g
δ−1
0 < c

• does not have a solution if f0g
δ−1
0 ≥ c

Proof. Let u be the regular solution of (2). Then there exists a well defined number

Tb such that limt↗Tb u(t) = ∞ and no T̃ < Tb has this property. Now the regular
solution is the last one to blow up, because initially the regular solution (u ∼ tγ)
must be ‘below’ the singular solutions (us ∼ t(ε−1)/(δ−1), γ > (ε− 1)/(δ − 1)), and
later the solutions cannot cross by the uniqueness of the solutions.
Hence it follows that (2) has (infinitely many) solutions on the interval [0, T ] if

T < Tb and does not have any solutions on [0, T ] if T ≥ Tb. To get the general

result we scale the ‘time’ variable by c2 =
(
f0g

δ−1
0

)1/β
like in Lemma 1. Then it is

easily seen that c = (Tb/T )
β.

So the whole problem is essentially characterized by one parameter, namely Tb. It
remains to estimate Tb. The results in [2] give(

(γδ − ε+ 1)(δ − 1)δ−1

δδ

)1/β
< Tb ≤

(
γδδ/(δ−1)

)1/β
(9)

We can improve the upper bound.
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Lemma 7.

Tb ≤

(
γ

(
α

α− 1

)α−1)1/β

Proof. Consider the problem (3). All solutions remain above the curve y = xα.
This curve meets the line y = dax at the point (x0, dax0) where

x0 = (da)
(ε−1)/β

Let p = (x0, dax0) where d > 1 and let y (resp. z) be a solution of (3) (resp. (4))
through p. Then y blows up before

x =
d

d− 1
(da)(ε−1)/β

because z blows up there. Getting back to (t, u) coordinates this means that

Tb ≤

(
adα

(d− 1)α−1

)1/β
The right hand side is minimised if d = α which gives the result.

Note that our estimate is better than (9) for all parameter values because(
α

α− 1

)α−1
< e < δδ/(δ−1)

For example if one takes γ = 1, δ = 8 and ε = 7, then our result gives

Tb ≤ 7
1/6 ≈ 1.38

while (9) gives

Tb ≤ 8
8/7 ≈ 10.8
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