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Exactness results for generalized

Ambrosetti-Brezis-Cerami problem and related

one-dimensional elliptic equations ∗

I. Addou, A. Benmezäı, S. M. Bouguima & M. Derhab

Abstract

We consider the boundary-value problem

−(ϕp(u
′))′ = ϕα(u) + λϕβ(u) in (0, 1)

u(0) = u(1) = 0,

where ϕp(x) = |x|
p−2 x, p, α, β > 1 and λ ∈ R∗. We give the exact number

of solutions for all λ and most values of α, β, p > 1. In the particular case
where 1 < β < p = 2 < α, we resolve completely a problem suggested by
A. Ambrosetti, H. Brezis and G. Cerami and which was partially solved
by S. Villegas.

1 Introduction

The combined effects of concave and convex nonlinearities were considered by
Ambrosetti, Brezis and Cerami in [7]. They consider the problem

−∆u = uα−1 + λuβ−1, x ∈ Ω

u > 0, x ∈ Ω (1.1)

u = 0, x ∈ ∂Ω

with 1 < β < 2 < α and λ > 0. They prove the existence of a constant Λ > 0
such that a solution uλ of (1.1) exists if and only if 0 < λ ≤ Λ. Moreover,
if the condition α ≤ α∗ holds, then for all λ ∈ (0,Λ) problem (1.1) has a
second solution vλ > uλ, where α

∗ := (2N)/(N − 2) if N ≥ 3 and α∗ = +∞
if N = 1, 2. Then several papers appeared where concave-convex nonlinearities
were involved. We refer the reader to [7]-[10], [14], [17].
At the end of their paper [7], Ambrosetti, Brezis and Cerami suggested the

study of the structure of the solution set of the one-dimensional problem

−u′′ = |u|α−2 u+ λ |u|β−2 u, a < x < b (1.2)

u(a) = u(b) = 0,
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with 1 < β < 2 < α and λ > 0. This study was done by S. Villegas [17]
by means of a quadrature method. He shows that there exist two monotone
divergent sequences {εn} and {Ln}; εn ≤ Ln satisfying:

i) If λ ∈ (0, εn) then (1.2) has exactly two pairs of opposite solutions with n+1
zeros.

ii) If λ ∈ [εn, Ln) then (1.2) has at least two pairs of opposite solutions with
n+ 1 zeros.

iii) If λ = Ln then (1.2) has at least one pair of opposite solutions with n + 1
zeros.

iv) If λ > Ln then (1.2) has no solutions with n+ 1 zeros.

In the present paper, we consider the p-Laplacian version of problem (1.2),
that is, we consider the boundary-value problem

−(ϕp(u
′))′ = f(λ, u) in (0, 1) (1.3)

u(0) = u(1) = 0,

with ϕp(x) = |x|
p−2
x and f(λ, u) = ϕα(u) + λϕβ(u) and notice that when

p = 2, problem (1.3) is reduced to problem (1.2). Our original interest was in
answering the question: how does the solution set of (1.3) look like when p 6= 2
and 1 < β < p < α, λ > 0 ? The interest in this question comes from the fact
that the structure of the solution set of problem (1.3) depends on p > 1 for
some examples of second members f(λ, u) (see for instance, Guedda and Veron
[12], Addou [5]) and does not depend on p for some others (see for instance,
Addou and Benmezäı [2], for positive solutions when f(λ, u) = λ exp(u)). We
shall prove that for f(λ, u) = ϕα(u) + λϕβ(u), and 1 < β < p < α, Villegas’
result holds for problem (1.3) for all p > 1 (part of Theorem 2.1, Assertion (C)).
Notice that Assertions (ii) and (iii), in Villegas’ result, do not provide the

exact number of solutions with n + 1 zeros. So, when λ belongs to the range
[εn, Ln], the exact number of solutions with n+ 1 zeros has yet to be studied.
The exact number of solutions for problem (1.1) when λ ranges over the

whole interval (0,+∞), was given by Ouyang and Shi [14], but under two re-
strictions: Ω was taken to be the unit ball in RN and the space dimension
N ≥ 4. They proved the existence of some Λ > 0 such that problem (1.1) has
exactly two solutions for λ ∈ (0,Λ), exactly one solution for λ = Λ, and no
solution for λ > Λ. Actually their result concerns more general nonlinearities.
Next, the purpose of our investigation was to complete our study by provid-

ing the exact number of solutions to (1.3) when 1 < β < p < α, for all p > 1 and
all λ > 0. So, in the particular case where p = 2, Theorem 2.1, Assertion (C),
completes Villegas’ result and resolves completely the Ambrosetti-Brezis-Cerami
problem [7, Section 6, (d)].
In pursuing our study, we were led quite naturally to study what may hap-

pens if λ is not necessarily positive or p is not necessarily between α and β. A
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precise description of the solution set of problem (1.3) for various values of p, α,
and β was given
As it is well known, exactness results are difficult to obtain. The difficulties

encountered in our study for λ > 0 and for λ < 0 are of different kinds. For
λ > 0, we used an idea performed by the authors Addou and Benmezäı in [3],
(see the proof of (iii) in [3, pp. 11-13]).
The paper is organized as follows. The main results are stated in Section 2.

To prove our results we make use of a quadrature method which is described in
Section 3. The main results for the case λ > 0 are proved in Section 4, while
those for λ < 0 are proved in Section 5.

2 Notation and main results

Now we define some sets that will be used in the statements of the main results.
For k ≥ 1, let

S+k =

{
u ∈ C1 ([0, 1]) : u admits exactly (k − 1) zeros in (0, 1) ,

all are simple, u (0) = u (1) = 0 and u′ (0) > 0

}
,

S−k = −S
+
k and Sk = S

+
k ∪S

−
k . If u ∈ C ([0, 1]) is a real-valued function vanishing

at x1 and x2 and not between them, (with x1 < x2) we call its restriction to
the open interval (x1, x2) a bump of u. So, each function in S

+
k has exactly k

bumps such that the first one is positive, and any two consecutive bumps have
opposite sign.
Let A+k (k ≥ 1) be the subset of S

+
k consisting of the functions u satisfying:

• Every bump of u is symmetrical about the center of the interval of its
definition.

• Every positive (resp. negative) bump of u can be obtained by translating
the first positive (resp. negative) bump.

• The derivative of each bump of u vanishes once and only once.

Let A−k = −A
+
k and Ak = A

+
k ∪ A

−
k . Denote by (λk)k≥1 the eigenvalues of the

one dimensional p-Laplacian operator with Dirichlet boundary conditions,

− (ϕp (u
′))
′
= λϕp (u) in (0, 1) ,

u (0) = u (1) = 0 .

One has for each integer k ≥ 1 and p > 1, λk = kpλ1 and

λ1 = (p− 1)(2

∫ 1
0

(1− tp)−1/pdt)p = (p− 1)(
2π

p sin(π/p)
)p.

Now we define some constants we shall use them in the statement of the main
results. For all p, α, β > 1, let

J(p, α, β) :=
(p′)−1/p

(α− β)
(
α

β
)(p−α)/p(α−β)B(

(p− β)

p(α− β)
,
p− 1

p
), (2.1)
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where B(·, ·) is the Beta function. Also, for all β > α > 1, and p > 1, let

K(p, α, β) =

∫ 1
0

{(
1− tα

α
)− (

1 − tβ

β
)}−1/pdt. (2.2)

We shall prove (see Lemma 5.2) that : K(p, α, β) < +∞ if and only if p > 2.
For all λ ∈ R, denote Sλ the solution set of problem (1.3). The main results

of this paper read as follows:

Theorem 2.1 Let p, α, β > 1 and λ > 0.

(A) Assume that one of the following conditions holds:

(a) α > p and β > p, or

(b) α = p and β > p, or

(c) α < p and β < p, or

(d) α = p and β < p.

Then, for each integer k = 1, 2, · · · , there exists uk ∈ A
+
k such that Sλ ∩

Ak = {uk,−uk}.

(B) Assume that one of the following conditions holds:

(a) α > p and β = p, or

(b) α < p and β = p.

Then, for each integer k = 1, 2, · · · ,

(i) If λ ≥ λk, Sλ ∩Ak = ∅.

(ii) If 0 < λ < λk, there exists uk ∈ A
+
k such that Sλ ∩Ak = {uk,−uk}.

(C) Assume that 1 < β < p < α. Then for each integer k = 1, 2, · · · , there
exist a real number µk > 0 such that

(i) If λ > µk, Sλ ∩Ak = ∅.

(ii) If λ = µk, there exists uk ∈ A
+
k such that (Sλ ∩Ak) = {uk,−uk}.

(iii) If λ ∈ (0, µk), there exist uk, vk ∈ A
+
k such that uk 6= vk and (Sλ ∩

Ak) = {uk, vk,−uk,−vk}.

Theorem 2.2 Let p, α, β > 1 and λ < 0.

(A) Assume that one of the following conditions holds:

(a) p > 2,and 1 < α < p < β, or

(b) p > 2,and 1 < α < β = p, or

(c) p > 2, and 1 < α < β < p.
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Then, there exists an increasing sequence of positive real numbers (µk)k≥1
such that for each integer k = 1, 2, · · · ,

(i) If λ < −µk, Sλ ∩Ak = ∅.

(ii) If −µk ≤ λ < 0, there exists uk ∈ A
+
k such that Sλ∩Ak = {uk,−uk}.

(B) Assume that 1 < β < p < α. Then there exists an increasing sequence of
positive real numbers (µk)k≥1 such that for each integer k = 1, 2, · · · ,

(i) If λ ≤ −µk, Sλ ∩Ak = ∅.

(ii) If −µk < λ < 0, there exists uk ∈ A
+
k such that Sλ∩Ak = {uk,−uk}.

(C) Assume that 1 < p ≤ 2, λ < 0 and one of the following conditions holds:

(a) 1 < α < p < β, or

(b) 1 < α < β = p, or

(c) 1 < α < β < p, or

(d) 1 < p ≤ β < α.

Then, for each integer k = 1, 2, · · · , there exists uk ∈ A
+
k such that Sλ ∩

Ak = {uk,−uk}.

(D) Assume that 1 < p ≤ 2, 1 < α = p < β, and λ < 0. Then for each integer
k = 1, 2, · · · ,

(i) If k ≥ ( p
2

λ1
)1/p, Sλ ∩Ak = ∅.

(ii) If k < ( p
2

λ1
)1/p, there exists uk ∈ A

+
k such that Sλ ∩Ak = {uk,−uk}.

(E) Assume that 1 < β < α = p, then for each integer k = 1, 2, · · · ,

(i) If k ≤ (2J(p, α = p, β))−1 or k ≥ (p2/λ1)1/p, Sλ ∩Ak = ∅.

(ii) If (2J(p, α = p, β))−1 < k < (p2/λ1)
1/p, there exists uk ∈ A

+
k such

that Sλ ∩Ak = {uk,−uk}.

(F) Assume that 2 < p = α < β, then for each integer k = 1, 2, · · · ,

(i) If k < (2K(p, α, β))−1 or k ≥ (p2/λ1)1/p, Sλ ∩Ak = ∅.

(ii) If (2K(p, α, β))−1 ≤ k < (p2/λ1)1/p, there exists uk ∈ A
+
k such that

Sλ ∩Ak = {uk,−uk}.

(G) Assume that 1 < p ≤ 2 and p < α < β. Then, there exists an increasing
sequence (µk)k≥1 such that limk→+∞ µk = 0 and

(i) If λ < µk, Sλ ∩Ak = ∅.

(ii) If λ = µk, there exists uk ∈ A
+
k such that (Sλ ∩Ak) = {uk,−uk}.



6 Ambrosetti-Brezis-Cerami problem EJDE–2000/66

(iii) If λ ∈ (µk, 0), there exist uk, vk ∈ A
+
k such that uk 6= vk and (Sλ ∩

Ak) = {uk, vk,−uk,−vk}.

(H) Assume that one of the following conditions holds:

(a) 2 < p < α < β or

(b) 1 < β < α < p.

Then, there exist two increasing sequences (µk)k≥1 and (νk)k≥1 such that
for all k ≥ 1, µk < νk < 0, limk→+∞ µk = 0 and

If λ < µk, Sλ ∩Ak = ∅.

If λ = µk, there exists uk ∈ A
+
k such that (Sλ ∩Ak) = {uk,−uk}.

If λ ∈ (µk, νk], there exist uk, vk ∈ A
+
k such that uk 6= vk and (Sλ∩Ak) =

{uk, vk,−uk,−vk}.

If λ ∈ (νk, 0), there exists uk ∈ A
+
k such that (Sλ ∩Ak) = {uk,−uk}.

3 Quadrature method

To obtain our main results, we use the well-known quadrature method (see for
instance, [1]-[5], [12]). In order to keep this article self-contained we describe it
here for the particular odd case. For this, some notations are needed. Assume
that g ∈ C (R,R) , g is odd, and p > 1. Consider the boundary-value problem

− (ϕp (u
′))
′
= g (u) in (0, 1) ; u (0) = u (1) = 0. (3.1)

Denote by p′ = p/ (p− 1) the conjugate exponent of p. (1/p+ 1/p′ = 1). Define
G (s) =

∫ s
0
g (t) dt. For any E > 0, let,

X (E) = {s > 0 : Ep − p′G (ξ) > 0, ∀ξ, 0 < ξ < s} ,

and

r (E) =

{
0 if X (E) = ∅
supX (E) otherwise.

Let

D̃ = {E ∈ (0,+∞) : 0 < r (E) < +∞ and

∫ r(E)
0

(Ep − p′G(t))−1/pdt < +∞},

and define the time-map,

T (E) =

∫ r(E)
0

(Ep − p′G(t))−1/pdt, E ∈ D̃.

Due to the oddness of g, it follows that u is a solution to (3.1) in A+k if and
only if (−u) is also a solution to (3.1) in A−k .
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In our odd case, time maps approach reads as follows. Let E > 0, k ∈ N∗.
Then, problem (3.1) admits a solution u ∈ A+k satisfying u

′ (0) = E if and only

if E ∈ D̃ and kT (E) = 1/2, and in this case the solution is unique1.

Remark 3.1 In practice, we first study the variations of the real-valued func-
tion s 7→ Ep− p′G(s) , then compute X(E) and deduce r(E). Next, we compute

D̃. To this end, we first compute the set

D := {E > 0 : 0 < r (E) < +∞ and g (r (E)) > 0}

and then we deduce D̃, by observing that: D ⊂ D̃ ⊂ D. After that, we define
the time map on D̃ and then compute its limits at the boundary points of D̃.
Next, we study (when possible) the variations of T on D̃. We achieve our study
by discussing the number of solutions to equations kT (E) = 1/2, for k being an

integer and E ∈ D̃.

4 Proof of Theorem 2.1

This section is organized as follows. We begin by some lemmas in the first
subsection. The first lemma (Lemma 4.1) is used in order to define the time
map, while in Lemma 4.2 we compute the limits and in Lemma 4.3 we study
the variations of the time map. Next we dedicate a separate subsection to the
proof of each assertion of Theorem 2.1.

Preliminary lemmas

According to the practical remark (Remark 3.1), we begin by the following
technical Lemma.

Lemma 4.1 Consider the function defined on R+ by,

s 7−→ G(λ,E, s) := Ep − p′F (λ, s),

where p, α, β > 1, E > 0 and λ > 0 are real parameters, and

F (λ, s) :=

∫ s
0

f(λ, t)dt =
1

α
sα +

λ

β
sβ , s ≥ 0.

For all λ > 0 and E > 0 there exists a unique s(λ,E) > 0 such that the function
G(λ,E, ·) is strictly positive on (0, s(λ,E)), vanishes at s(λ,E) and is strictly
negative on (s(λ,E),+∞). Moreover,

(i) The function E 7→ s(λ,E) is C1 on (0,+∞), and

∂s

∂E
(λ,E) =

(p− 1)Ep−1

f(λ, s(λ,E))
> 0, for all E > 0 and all λ > 0.

(ii) limE→0+ s(λ,E) = 0, limE→+∞ s(λ,E) = +∞.

1This uniqueness means that if v is also a solution to (3.1) in A+k and satisfying v
′ (0) = E

then v ≡ u.
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Proof. For any fixed p > 1, E > 0 and λ > 0, consider the function

s 7−→ G(λ,E, s) := Ep − p′F (λ, s),

defined on [0,+∞). One has

∂G

∂s
(λ,E, s) = −p′f(λ, s).

Notice that,

f(λ, s) = sα−1 + λsβ−1 > 0, for all s > 0 and all λ ≥ 0. (4.1)

Thus, the function G(λ,E, ·) is strictly decreasing on (0,+∞). On the other
hand, one has

G(λ,E, 0) = Ep > 0 and lim
s→+∞

G(λ,E, s) = −∞.

Therefore, G(λ,E, ·) admits a unique positive zero, denoted by s(λ,E), and it
is strictly positive on (0, s(λ,E)) and is strictly negative on (s(λ,E),+∞).
Proof of (i). For any p > 1 and λ ≥ 0, consider the real-valued function,

(E, s) 7→ G(E, s) := Ep − p′F (λ, s),

defined on Ω = (0,+∞)2. One has G ∈ C1(Ω) and,

∂G

∂s
(E, s) = −p′f(λ, s) in Ω,

hence, according to (4.1), it follows that

∂G

∂s
(E, s) < 0, in Ω.

Observe that for all E > 0 and λ ≥ 0, the couple (E, s(λ,E)) belongs to Ω and
one has

G(E, s(λ,E)) = 0. (4.2)

Thus, one can make use of the implicit function theorem to show that the func-
tion E 7→ s(λ,E) is C1(R+,R+) and to obtain the expression of (∂s/∂E)(λ,E)
given in (i). Its sign is given by (4.1) and the fact that s(λ,E) > 0 for all λ ≥ 0
and E > 0. Therefore, Assertion (i) is proved.
Proof of (ii). For any fixed p > 1 and λ ≥ 0, Assertion (i) of the current
lemma implies that the function defined on (0,+∞) by E 7→ s(λ,E) is strictly
increasing. It is bounded from below by 0 and from above by +∞. Thus, the
limits limE→0+ s(λ,E) = l0 and limE→+∞ s(λ,E) = l+ exist and satisfy

0 ≤ l0 < l+ ≤ +∞.
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Let us observe that for any fixed p > 1 and λ ≥ 0, the function (E, s) 7→ G(E, s)
is continuous on [0,+∞)2 and the function E 7→ s(λ,E) is continuous on [0,+∞)
and satisfies (4.2). Thus, by passing to the limit in (4.2) as E tends to 0+, one
gets

0 = lim
E→0+

G(E, s(λ,E)) = G(0, l0).

Hence, l0 is a zero, belonging to [0,+∞), to the equation in the variable s :
G(0, s) = 0. By solving this equation one gets l0 = 0.
Assume that l+ < +∞, then by passing to the limit in (4.2) as E tends to

+∞ one gets

+∞ = p′F (λ, l+) < +∞,

which is impossible. So, l+ = +∞. Therefore, Lemma 4.1 is proved. ♦

Now, for any p > 1, α, β > 1, λ > 0 and E > 0, we compute X(λ,E)
as defined in Section 3. In fact, for all E > 0, X(λ,E) = (0, s(λ,E)), where
s(λ,E) is defined in Lemma 4.1. Then, r(λ,E) = s(λ,E) for all λ > 0 and
E > 0. Hence, for any p > 1, λ > 0,

0 < r(λ,E) < +∞ if and only if E > 0.

Also, for all E > 0,

f(λ, r(λ,E)) = ϕα(r(λ,E)) +
λ

β
ϕβ(r(λ,E)) > 0.

So, D(λ) = (0,+∞) for all λ > 0. Therefore, D̃(λ) = (0,+∞) for all λ > 0.
Before going further in the investigation, from Lemma 4.1, we deduce that

for any fixed p > 1 and λ > 0

Ep = p′F (λ, r(λ,E)), for all E > 0 (4.3)

∂r

∂E
(λ,E) =

(p− 1)Ep−1

f(λ, r(λ,E))
> 0, for all E > 0 and all λ > 0. (4.4)

lim
E→0+

r(λ,E) = 0, lim
E→+∞

r(λ,E) = +∞. (4.5)

At present we define, for any p > 1, λ > 0 and E > 0, the time map

T (λ,E) =

∫ r(λ,E)
0

{Ep − p′F (λ, ξ)}−1/pdξ, E > 0.

By (4.3), it follows that

T (λ,E) = (p′)−1/p
∫ r(λ,E)
0

{F (λ, r(λ,E)) − F (λ, ξ)}−1/pdξ.
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Furthermore, a simple change of variables and a substitution yield

T (λ,E) = (p′)−1/p
∫ 1
0

{λrβ−p(λ,E)(
1 − tβ

β
) + rα−p(λ,E)(

1 − tα

α
)}−1/pdt.

One may observe that

T (λ,E) = S(λ, r(λ,E)), for all λ > 0, E > 0,

where

S(λ, ρ) = (p′)−1/p
∫ 1
0

{λρβ−p(
1− tβ

β
) + ρα−p(

1− tα

α
)}−1/pdt,

for all λ > 0 and ρ > 0.
Beacuase the function E 7→ r(λ,E) is an increasing C1-diffeomorphism from

(0,+∞) onto itself it follows that if we put, for all λ > 0,

J1(λ) := {E ∈ (0,+∞) : T (λ,E) = 1/2},

and

J2(λ) := {ρ ∈ (0,+∞) : S(λ, ρ) = 1/2},

then

Card(J1(λ)) = Card(J2(λ)), for all λ > 0.

Hence, from now on, we will focus our attention in counting the number of
solution(s) of the equation S(λ, ρ) = 1/2 in the variable ρ ∈ (0,+∞), instead of
the equation T (λ,E) = 1/2 in the variable E ∈ (0,+∞). In the next lemma we
shall compute the limits of S(λ, ·)when λ > 0.

Lemma 4.2 For all λ > 0, p > 1,

lim
ρ→0+

S(λ, ρ) = 0, if α < p

lim
ρ→0+

S(λ, ρ) =

{
1
2λ
1/p
1 if α = p and β > p

0 if α = p and β < p

lim
ρ→0+

S(λ, ρ) =


+∞ if α > p and β > p
1
2 (
λ1
λ )
1/p if α > p and β = p

0 if α > p and β < p

lim
ρ→+∞

S(λ, ρ) =


0 if α < p and β > p
1
2 (
λ1
λ
)1/p if α < p and β = p

+∞ if α < p and β < p
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lim
ρ→+∞

S(λ, ρ) =

{
0 if α = p and β > p
1
2λ
1/p
1 if α = p and β < p

lim
ρ→+∞

S(λ, ρ) = 0 if α > p .

The proof of this lemma consists of easy computations.

Lemma 4.3 For all p > 1, α, β > 1 and λ > 0,

1. S(λ, ·) is strictly decreasing on (0,+∞) provided that

(α > p and β ≥ p) or (α = p and β > p).

2. S(λ, ·) is strictly increasing on (0,+∞) provided that

(α < p and β ≤ p) or (α = p and β < p).

3. S(λ, ·) is strictly increasing on (0, ρ1(λ)) and is strictly decreasing on
(ρ2(λ),+∞), provided that

(α > p and β < p) or (α < p and β > p),

where

ρ1(λ) := ((−λ)
(p− β)

(p− α)
)1/(α−β) < ρ2(λ) := ((−λ)

(p− β)α

(p− α)β
)1/(α−β).

Proof. For all p > 1, α, β > 1 and λ > 0, easy computation yields

∂S

∂ρ
(λ, ρ) = (p′)−1/p

∫ ρ
0

H(λ, ρ)−H(λ, u)

pρ(F (λ, ρ)− F (λ, u))1+(1/p)
du,

where

H(λ, ρ) = pF (λ, ρ)− ρf(λ, ρ) = (
p− α

α
)ρα + λ(

p− β

β
)ρβ .

It follows that,

∂H

∂ρ
(λ, ρ) = (p− α)ρα−1 + λ(p− β)ρβ−1.

Thus, if (α > p and β ≥ p) or (α = p and β > p), H(λ, ·) is strictly
decreasing on (0,+∞) and then, for all λ > 0 and ρ > 0

H(λ, ρ)−H(λ, u) < 0, for all u ∈ (0, ρ),

and therefore,

∂S

∂ρ
(λ, ρ) < 0, for all ρ > 0.
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If (α < p and β ≤ p) or (α = p and β < p), H(λ, ·) is strictly increasing on
(0,+∞) and then for all ρ > 0, λ > 0

H(λ, ρ)−H(λ, u) > 0, for all u ∈ (0, ρ),

and therefore,

∂S

∂ρ
(λ, ρ) > 0, for all ρ > 0.

If (α > p and β < p) or (α < p and β > p), H(λ, ·) is strictly increasing on
(0, ρ1(λ)) and strictly decreasing on (ρ1(λ),+∞). Moreover, H(λ, ·) is strictly
positive on (0, ρ2(λ)) and strictly negative on (ρ2(λ),+∞) and vanishes at 0
and at ρ2(λ). Therefore, for all λ > 0 and ρ ∈ (0, ρ1(λ))

H(λ, ρ)−H(λ, u) > 0 for all u ∈ (0, ρ)

and for all ρ ∈ (ρ2(λ),+∞),

H(λ, ρ)−H(λ, u) < 0 for all u ∈ (0, ρ).

That is, S(λ, ·) is strictly increasing on (0, ρ1(λ)) and is strictly decreasing on
(ρ2(λ),+∞).

Proof of Assertion A

Case (a). Assume that α > p and β > p. By Lemma 4.2, it follows that for all
λ > 0,

lim
ρ→0+

S (λ, ρ) = +∞, and lim
ρ→+∞

S (λ, ρ) = 0,

and by Lemma 4.3, S (λ, ·) is strictly decreasing on (0,+∞). Thus, for each
integer k = 1, 2, · · · , the equation kS (λ, ρ) = 1/2, in the variable ρ > 0, admits
a unique solution for all λ > 0. Therefore, for each integer k = 1, 2, · · · , problem
(1.3) admits a unique pair of solutions {uk, vk} in Ak, for all λ > 0. Moreover
vk = −uk.
Case (b). Assume that α = p and β > p. By Lemma 4.2, it follows that

for all λ > 0,

lim
ρ→0+

S (λ, ρ) =
1

2
λ
1/p
1 (p), and lim

ρ→+∞
S (λ, ρ) = 0,

and by Lemma 4.3, S(λ, ·) is strictly decreasing on (0,+∞). Thus, for each
integer k = 1, 2, · · · , the equation kS(λ, ρ) = 1/2, in the variable ρ > 0, admits

at least a solution in (0,+∞) if and only if (k/2)λ1/p1 (p) > 1/2, that is, if and
only if,

λ1(p) > k
−p, (4.6)
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and in this case, the solution is unique. Notice that for each integer k = 1, 2, · · · ,
k−p ≤ 1. So, (4.6) holds provided that

λ1(p) > 1, for all p > 1 . (4.7)

In the appendix, we shall prove that (4.7) holds. Therefore, for each integer
k = 1, 2, · · · , problem (1.3) admits a unique pair of solutions {uk, vk} in Ak, for
all λ > 0. Moreover, vk = −uk.
The proofs of Cases (c) and (d) are similar and then omitted. Therefore,

Assertion A is proved.

Proof of Assertion B

Assume that α > p (resp. α < p) and β = p. By Lemma 4.2, it follows that for
all λ > 0,

lim
ρ→0
S(λ, ρ) =

1

2
(
λ1

λ
)1/p (resp. =0), and

lim
ρ→+∞

S(λ, ρ) = 0 (resp. =
1

2
(
λ1

λ
)1/p),

and by Lemma 4.3, S(λ, ·) is strictly decreasing (resp. increasing) on (0,+∞).
Thus, for each integer k = 1, 2, · · · , the equation kS(λ, ρ) = 1/2, in the variable
ρ > 0, admits at least a solution in (0,+∞) if and only if (k/2)(λ1/λ)1/p > 1/2,
that is, if and only if 0 < λ < kpλ1(p) = λk(p), and in this case, the solution is
unique. Therefore, for each integer k = 1, 2, · · · , problem (1.3) admits a unique
pair of solutions {uk, vk} (resp. admits no solution) in Ak, for all λ satisfying
0 < λ < λk(p) (resp. λ ≥ λk(p)). Moreover, uk = −vk.

Proof of Assertion C

Assume that 1 < β < p < α. By Lemma 4.2, it follows that for all λ > 0,

lim
ρ→0+

S(λ, ρ) = lim
ρ→+∞

S(λ, ρ) = 0.

Thus, for all λ > 0, there exists a unique M(λ) > 0 such that M(λ) =
supρ≥0 S(λ, ρ).

Lemma 4.4 Assume that 1 < β < p < α. Then,

(a) M(·) is continuous on (0,+∞).

(b) M(·) is strictly decreasing on (0,+∞).

(c) limλ→0+M(λ) = +∞, and limλ→+∞M(λ) = 0.
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Proof. Recall that for all λ > 0 and ρ > 0

S(λ, ρ) = (p′)−1/p
∫ 1
0

(λρβ−p(
1− tβ

β
) + ρα−p(

1− tα

α
))−1/pdt.

For all λ > 0 and ρ > 0, let ρ̄ = ρ̄(λ, ρ) := λ1/(β−α)ρ. Then, ρ = λ1/(α−β)ρ̄ and
a simple substitution yields:

S(λ, ρ) = λ(p−α)/p(α−β)S(1, ρ̄(λ, ρ)).

Thus,

M(λ) = λ(p−α)/p(α−β) sup
ρ≥0
S(1, ρ̄(λ, ρ)) = λ(p−α)/p(α−β) sup

ρ̄≥0
S(1, ρ̄).

Therefore,

M(λ) = λ(p−α)/p(α−β)M(1), for all λ > 0. (4.8)

Assertions (a), (b) and (c) are simple consequences of formula (4.8). Therefore,
Lemma 4.4 is proved. ♦

By Lemma 4.4 (or by formula (4.8)), it follows that the function M(·) ad-
mits an inverse function M−1(·) defined and strictly decreasing on (0,+∞) and
satisfies:

lim
y→0
M−1(y) = +∞, and lim

y→+∞
M−1(y) = 0 .

Therefore, for each integer k = 1, 2, · · · , we define Lk := M−1(1/2k). Thus,
(Lk)k≥1 is a strictly increasing sequence and satisfies limk→+∞ Lk = +∞, and

• kM(λ) < 1/2, for all λ > Lk,

• kM(λ) = 1/2, for all λ = Lk

• kM(λ) > 1/2, for all λ ∈ (0, Lk).

Therefore, the equation kS(λ, ρ) = 1/2, in the variable ρ > 0,

• admits no solution for all λ > Lk,

• admits at least a solution for λ = Lk,

• admits at least two solutions for all λ ∈ (0, Lk).

Thus, for each integer k = 1, 2, · · · , problem (1.3),

• admits no solution in Ak, for all λ > Lk,

• admits at least one pair of solutions {uk, vk} in Ak, for λ = Lk. Moreover,
uk = −vk.
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• admits at least two pairs of solutions {uk, Uk} ∪ {vk, Vk} in Ak, for all
λ ∈ (0, Lk). Moreover, Uk = −uk and Vk = −vk.

At present, let us prove that for each integer k = 1, 2, · · · , there exists
εk ∈ (0, Lk) such that the equation kS(λ, ρ) = 1/2, in the variable ρ > 0,
admits exactly two solutions for all λ ∈ (0, εk). To this end, it suffices to prove
that for each integer k = 1, 2, · · · , there exists εk ∈ (0, Lk) such that for all
λ ∈ (0, εk) :

kS(λ, ρ) > 1/2, for all ρ ∈ [ρ1(λ), ρ2(λ)], (4.9)

where ρi(λ), i = 1, 2, are defined in Lemma 4.3. In fact, assume that for all
λ ∈ (0, εk), (4.9) holds, then kS(λ, ρ1(λ)) > 1/2 for all λ > 0, and by Lemma
4.2, limρ→0 S(λ, ρ) = 0, and by Lemma 4.3, kS(λ, ·) is strictly increasing on
(0, ρ1(λ)]. Thus, for all λ > 0 there is a unique solution in (0, ρ1(λ)) to the
equation kS(λ, ρ) = 1/2, in the variable ρ > 0. Also, by (4.9) it follows that
kS(λ, ρ2(λ)) > 1/2 for all λ > 0, and by Lemma 4.2, limρ→+∞ kS(λ, ρ) = 0,
and by Lemma 4.3, kS(λ, ·) is strictly decreasing on [ρ2(λ),+∞). Thus, for all
λ > 0 there is a unique solution in (ρ2(λ),+∞) to the equation kS(λ, ρ) = 1/2,
in the variable ρ > 0. On the other hand, (4.9) implies that kS(λ, ρ) 6= 1/2, for
all λ > 0 and all ρ ∈ [ρ1(λ), ρ2(λ)]. Thus, there is no solution in [ρ1(λ), ρ2(λ)] to
the equation kS(λ, ρ) = 1/2, in the variable ρ > 0.
Now, let us prove that for each integer k = 1, 2, · · · , there exists εk ∈ (0, Lk)

such that for all λ > 0 (4.9) holds. Simple computation shows that for all λ > 0

S(λ, ρ1(λ)) = (p′)−1/pλ(p−α)/p(α−β)
∫ 1
0

{(
p− β

α− p
)(β−p)/(α−β)(

1− tβ

β
)

+(
p− β

α− p
)(α−p)/(α−β)(

1− tα

α
)}−1/pdt.

It follows that the function λ 7→ S(λ, ρ1(λ)) is continuous and strictly decreasing
on (0,+∞), and

lim
λ→0
S(λ, ρ1(λ)) = +∞, and lim

λ→+∞
S(λ, ρ1(λ)) = 0 .

Thus, for each integer k = 1, 2, · · · , there exists a unique µk > 0 such that

kS(µk, ρ1(µk)) =
1

2
.

Furthermore, the sequence (µk)k≥1 is strictly increasing and limk→+∞ µk =
+∞. It is easy to prove that for each integer k = 1, 2, · · ·

µk ≤ Lk. (4.10)

In fact, if the contrary holds, using the fact that the function λ 7→ kS(λ, ρ1(λ)) is
strictly decreasing on (0,+∞), it follows that

1

2
= kS(µk, ρ1(µk)) < kS(Lk, ρ1(Lk)) .
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But, for each integer k = 1, 2, · · · ,

kS(Lk, ρ1(Lk)) ≤ k sup
ρ≥0
S(Lk, ρ) = kM(Lk) =

1

2
,

a contradiction which proves (4.10).
On the other hand, the function λ 7→ ρ2(λ) is continuous and strictly in-

creasing on (0,+∞) and

lim
λ→0
ρ2(λ) = 0, and lim

λ→+∞
ρ2(λ) = +∞,

then, for each integer k = 1, 2, · · · , there exists a unique εk > 0 such that

ρ2(εk) = ρ1(µk) .

Using the fact that ρ1, ρ2 and (µk)k≥1 are strictly increasing it follows that
(εk)k≥1 is also strictly increasing. Also, using the fact that

lim
µ→+∞

ρ1(µ) = lim
µ→+∞

ρ2(µ) = lim
k→+∞

µk = +∞,

it follows that: limk→+∞ εk = +∞.
Furthermore, notice that using the fact that ρ1 is strictly increasing on

(0,+∞) and ρ1 < ρ2 on (0,+∞), it follows that for each integer k = 1, 2, · · · ,
εk ∈ (0, µk), and by (4.10), it follows that

0 < εk < Lk, for each integer k = 1, 2, · · · (4.11)

Now, we believe that for each integer k = 1, 2, · · · , and all λ ∈ (0, εk), (4.9) holds.
In fact, let k = 1, 2, · · · , be fixed and λ0 ∈ (0, εk) and ρ̄ ∈ [ρ1(λ0), ρ2(λ0)].
The variations of ρ1 and ρ2 and the fact that ρ1 < ρ2 on (0,+∞) imply that

there exists λ̄ ∈ [λ0, µk) such that ρ1(λ̄) = ρ̄. Thus, kS(λ0, ρ̄) = kS(λ0, ρ1(λ̄)).
But S(·, ρ) is decreasing on (0,+∞). Thus, kS(λ0, ρ1(λ̄)) ≥ kS(λ̄, ρ1(λ̄)).
On the other hand, the function λ 7→ S(λ, ρ1(λ)) is strictly decreasing on

(0,+∞), thus,

kS(λ̄, ρ1(λ̄)) > kS(µk, ρ1(µk)) .

Therefore,

kS(λ0, ρ̄) = kS(λ0, ρ1(λ̄)) ≥ kS(λ̄, ρ1(λ̄)) > kS(µk, ρ1(µk)) =
1

2
,

and hence, (4.9) holds. Therefore, a p-laplacian version of Villegas result can
be stated at this point. In fact; we can state that if 1 < β < p < α. Then,
for each integer k = 1, 2, · · · , there exist two real numbers εk and Lk such that
εk ≤ Lk and

(i) If λ > Lk, Sλ ∩Ak = ∅.
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(ii) If λ = Lk, there exists uk ∈ A
+
k such that (Sλ ∩Ak) ⊃ {uk,−uk}.

(iii) If λ ∈ [εk, Lk), there exist uk, vk ∈ A
+
k such that uk 6= vk and (Sλ ∩Ak) ⊃

{uk, vk,−uk,−vk}.

(iv) If λ ∈ (0, εk), there exist uk, vk ∈ A
+
k such that uk 6= vk and (Sλ ∩ Ak) =

{uk, vk,−uk,−vk}.

Let us summarize. At this point, we have shown that when 1 < β < p < α,
then for all λ > 0,

lim
ρ→0
S(λ, ρ) = lim

ρ→+∞
S(λ, ρ) = 0,

hence for all λ > 0, S(λ, ·) admits at least a critical point; a maximum in
(0,+∞). Next, it was proved that for all λ > 0, there exist ρ1(λ) and ρ2(λ)
such that 0 < ρ1(λ) < ρ2(λ) and

∂S
∂ρ
(λ, ρ) > 0 on (0, ρ1(λ)] and

∂S
∂ρ
(λ, ρ) < 0 on

[ρ2(λ),+∞). So, the critical point belongs necessarily to (ρ1(λ), ρ2(λ)). Also, it
was proved that the function λ 7→ M(λ) := sup0<ρ<+∞ S(λ, ρ), is continuous,
strictly decreasing on (0,+∞) and

lim
λ→0+

M(λ) = +∞, and lim
λ→+∞

M(λ) = 0 .

Thus, to complete the proof of Assertion (C), it remains to prove that for
all λ > 0, S(λ, ·) admits at most one critical point in (ρ1(λ), ρ2(λ)). To this end
we shall prove that S(λ, ·) is concave on (ρ1(λ), ρ2(λ)) for all λ > 0. Similar
idea was previously used by the authors Addou and Benmezäı in [3, Lemma 7,
(iii)].
The derivative of S(λ, ·) is given by

∂S

∂ρ
(λ, ρ) = (p′)−1/p

∫ 1
0

H(λ, ρ)−H(λ, u)

pρ(F (λ, ρ)− F (λ, u))(p+1)/p
du

where F (λ, ρ) =
∫ ρ
0 f(λ, t)dt =

1
αu
α + λβu

β, and

H(λ, ρ) = pF (λ, ρ)− ρf(λ, ρ) = (
p− α

α
)ρα + λ(

p− β

β
)ρβ .

Easy computations show that for all ρ > 0 and λ > 0

(p′)1/p
∂2S

∂ρ2
(λ, ρ) =

∫ 1
0

(p+ 1)(H(λ, ρ) −H(λ, ρξ))2

p2ρ(F (λ, ρ) − F (λ, ρξ))(2p+1)/p
dξ

+

∫ 1
0

p(Ψ(λ, ρ)−Ψ(λ, ρξ))(F (λ, ρ) − F (λ, ρξ))

p2ρ(F (λ, ρ) − F (λ, ρξ))(2p+1)/p
dξ,

where

Ψ(λ, ρ) = −p(p+ 1)F (λ, ρ) + 2pρf(λ, ρ)− ρ2f ′ρ(λ, ρ)

=
(p− α)(α− (p+ 1))

α
ρa + λ

(p− β)(β − (p+ 1))

β
ρβ .
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Some substitutions yield

(p′)1/p
∂2S

∂ρ2
(λ, ρ) =

∫ 1
0

(1 − ξβ)2P (X(ξ))

p2ρ(F (λ, ρ) − F (λ, ρξ))(2p+1)/p
dξ,

where X(1) = α
β
and X(ξ) = 1−ξα

1−ξβ if ξ ∈ [0, 1), and P is the second degree
polynomial function

P (X) =
(α− p)ρ2α

α
X2 − (

p(α− β)2 + p(α+ β)− 2αβ

αβ
)λρα+βX

+
(β − p)

β
λ2ρ2β .

It can easily be verified that X(ξ) ∈ [1, α/β] for all ξ ∈ [0, 1]. In fact, X(0) = 1
and limξ→1X(ξ) = α/β and X is strictly increasing on (0, 1) since, X

′(ξ) =
ξβ−1(1 − ξβ)−2(β − αξα−β + (α − β)ξα) and β − αξα−β > β − α > 0, for all
ξ ∈ (0, 1). Thus X ′(ξ) > 0 for all ξ ∈ (0, 1).
Therefore, we are interested in the sign of P (X) when X ∈ [1, α/β]. Its

discriminant is

d = (Y 2 − 4Z)
λ2ρ2(α+β)

(αβ)2
,

where

Y = p(α− β)2 + p(α+ β)− 2αβ (4.12)

= pα2 + (−2(p+ 1)β + p)α+ pβ(β + 1)

Z = αβ(α − p)(β − p) .

Notice that by our hypothesis 1 < β < p < α, it follows that Z < 0, so that
d > 0. The roots of P are given by

X1(λ, ρ) = λ
Y −

√
Y 2 − 4Z

2β(α − p)ρα−β
≤ 0, and X2(λ, ρ) = λ

Y +
√
Y 2 − 4Z

2β(α − p)ρα−β
.

Notice that the function ρ → X2(λ, ρ) is strictly decreasing on (0,+∞). So, it
would be perfect if

X2(λ, ρ2(λ)) >
α

β
for all λ > 0 . (4.13)

In fact, it follows therefore that,

[1,
α

β
] ⊂ (X1(λ, ρ), X2(λ, ρ)), ∀λ > 0, ∀ρ ∈ (ρ1(λ), ρ2(λ)).

Hence, P (X(ξ)) < 0, for all ξ ∈ [0, 1], so,

∂2S

∂ρ2
(λ, ρ) < 0, ∀λ > 0, ∀ρ ∈ (ρ1(λ), ρ2(λ)),
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which will prove the uniqueness of the critical point of S(λ, ·), and therefore,
Theorem 2.1.
Let us prove the estimates (4.13). Notice that

X2(λ, ρ2(λ)) =
Y +

√
Y 2 − 4Z

2α(p− β)
>
α

β
⇐⇒ β

√
Y 2 − 4Z > 2α2(p− β)− βY .

By taking the square of each member side we get

X2(λ, ρ2(λ)) >
α

β
⇐⇒ 4α2β(p− β)Y − 4β2Z − 4α4(p− β)2 > 0 .

Next, we substitute Y and Z as in (4.12) we get

X2(λ, ρ2(λ)) >
α

β
⇐⇒ 4α(p− β)Qβ,p(α) > 0,

where Qβ,p(α) is the third degree polynomial function defined by

Qβ,p(α) = α
3(β(p+ 1)− p) + α2β(−2(p+ 1)β + p) + αβ2(β(p+ 1) + p)− pβ3 .

It remains to show that Qβ,p(α) > 0 for all 1 < β < p < α. One can remark that
β is a root of Qβ,p(·) of multiplicity at least twice. That is to say, Qβ,p(β) =
Q′β,p(β) = 0. Thus there exist two constants A and B such that Qβ,p(α) =

(α − β)2(Aα + B). Immediate identification yields: A = β(p + 1) − p and
B = −pβ. It remains to prove that 1 < β < p < α =⇒ Aα + B > 0.
Notice that 1 < β < p < α implies that (β − 1)p + β > β which implies that
β((β − 1)p + β)−1 < 1 and then −BA−1 < p and by 1 < β < p < α it follows
that Aα+B > 0, which completes the proof of (4.13). Therefore, Theorem 2.1
is proved.

5 Proof of Theorem 2.2

This section is organized as the previous one.

Preliminary lemmas

Lemma 5.1 Consider the function defined on R+ by

s 7−→ N(λ,E, s) := Ep − p′F (λ, s),

where p, α, β > 1, λ < 0 and E ∈ (0,+∞), are real parameters and

F (λ, s) =

∫ s
0

f(λ, t)dt =
1

α
sα +

1

β
sβ, s ≥ 0 .

Assume that (α− β) > 0, then for all λ < 0 and E > 0, the function N(λ,E, ·)
admits a unique positive zero, s(λ,E), and is strictly positive on (0, s(λ,E)).
Assume that (α− β) < 0, then
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(a) If E > E∗ := (p
′(−λ)α/(α−β)(β−α

αβ
))1/p, N(λ,E, ·) is strictly positive on

(0,+∞).

(b) If E = E∗, N(λ,E, ·) vanishes at s = (−λ)1/(α−β) and is strictly positive
on (0, (−λ)1/(α−β)) ∪ ((−λ)1/(α−β),+∞).

(c) If 0 < E < E∗, N(λ,E, ·) admits a first positive zero, s(λ,E) > 0, and is
strictly positive on (0, s(λ,E)).

Moreover, if (α− β) > 0 (resp. (α− β) < 0),

(i) the function E 7→ s(λ,E) is C1 on (0,+∞) (resp. (0, E∗(λ))) and

∂s

∂E
(λ,E) =

(p− 1)Ep−1

f(λ, s(λ,E))
> 0, for all λ < 0 and E > 0

(resp. E ∈ (0, E∗(λ))).

(ii) limE→0 s(λ,E) = ((−λ)
α
β
)1/(α−β), (resp. limE→0 s(λ,E) = 0).

(iii) limE→+∞ s(λ,E) = +∞, (resp. limE→E∗ s(λ,E) = (−λ)
1/(α−β)).

The proof is the same as that of Lemma 4.1 and then it is omitted.

Assume that α−β > 0 (resp. α−β < 0) then for any p > 1 and E ∈ (0,+∞)
(resp. E ∈ (0, E∗(λ)) we compute X(λ,E) as defined in Section 3. We derive
from Lemma 5.1, for the case where α − β > 0, X(λ,E) = (0, s(λ,E)) and for
the case where α− β < 0

X(λ,E) =


(0,+∞) if E > E∗(λ)

(0, (−λ)1/(α−β)) if E = E∗(λ)
(0, s(λ,E)) if 0 < E < E∗(λ),

where s(λ,E) is defined in Lemma 5.1. Then, for α− β > 0

r(λ,E) := supX(λ,E) = s(λ,E), for all λ < 0 and E > 0

and for α− β < 0,

r(λ,E) =


+∞ if E > E∗(λ)
(−λ)1/(α−β) if E = E∗(λ)
s(λ,E) if 0 < E < E∗(λ) .

Hence, for p > 1 and λ < 0,

0 < r(λ,E) < +∞ if and only if

{
E ∈ (0,+∞), if α− β > 0,
0 < E ≤ E∗(λ) if α− β < 0.

Also,

f(λ, r(λ,E)) > 0 if and only if

{
E ∈ (0,+∞), if α− β > 0,
0 < E < E∗(λ) if α− β < 0.
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So, for all λ < 0,

D(λ) =

{
(0,+∞) if α− β > 0,
(0, E∗(λ)) if α− β < 0.

By D̃ ⊂ (0,+∞) and D̃ ⊂ D, it follows that for α−β > 0, D̃ = D = (0,+∞)

and for α − β < 0, D̃ = (0, E∗(λ)] if
∫ r(E∗(λ))
0

(Ep − p′G(t))−1/pdt < +∞ and

D̃ = D = (0, E∗(λ)) otherwise.
Before going further in the investigation, we deduce from Lemma 5.1 that

for any p > 1 and λ < 0,

Ep = p′F (λ, r(λ,E)), for all E ∈ D̃(λ) (5.1)

∂r

∂E
(λ,E) =

(p− 1)Ep−1

f(λ, r(λ,E))
> 0, for all E ∈ D(λ)

lim
E→0+

r(λ,E) =

{
((−λ)(α/β))1/(α−β) if α− β > 0
0 if α− β < 0 .

lim
E→+∞

r(λ,E) = +∞ if α− β > 0 ,

lim
E→E∗

r(λ,E) = (−λ)1/(α−β) if α− β < 0 .

At present, we define for any p > 1, λ < 0 the time-map

T (λ,E) =

∫ r(λ,E)
0

{Ep − p′F (λ, ξ)}−1/pdξ, E ∈ D̃(λ) .

By (5.1), it follows that

T (λ,E) = (p′)−1/p
∫ r(λ,E)
0

{F (λ, r(λ,E)) − F (λ, ξ)}−1/pdξ, E ∈ D̃(λ) .

Furthermore, a simple change of variable and a substitution yield

T (λ,E) = (p′)−1/p
∫ 1
0

{λrβ−p(λ,E)(
1 − tβ

β
) + rα−p(λ,E)(

1 − tα

α
)}−1/pdt.

One may observe that

T (λ,E) = S(λ, r(λ,E)), for all λ < 0 and E ∈ D̃(λ),

where

S(λ, ρ) = (p′)−1/p
∫ 1
0

{λρβ−p(λ,E)(
1 − tβ

β
) + ρα−p(λ,E)(

1 − tα

α
)}−1/pdt,

for all λ < 0 and all ρ ∈ R(λ) where, for all λ < 0, R(λ) is the range of

the function E 7→ r(λ,E), defined on D̃(λ), that is, for α − β > 0, R(λ) :=
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(((−λ)(α/β))1/(α−β),+∞), and for α− β < 0, R(λ) := (0, (−λ)1/(α−β)] if
S(λ, r(λ,E∗(λ)) < +∞ and R(λ) := (0, (−λ)1/(α−β)) otherwise.
Due to the fact that the function E 7→ r(λ,E) is an increasing and continuous

function from D̃(λ) onto R(λ), it follows that if we put

J1(λ) := {E ∈ D̃(λ) : T (λ,E) =
1

2
}, λ < 0, and

J2(λ) := {ρ ∈ R(λ) : S(λ,E) =
1

2
}, λ < 0,

then,

CardJ1(λ) = CardJ2(λ), for all λ < 0 .

Hence, from now on, we will focus our attention on counting the number of
solution(s) of the equation S(λ, ρ) = 1/2 in the variable ρ ∈ R(λ) instead of the

equation T (λ,E) = 1/2 in the variable E ∈ D̃(λ).

Lemma 5.2 Assume that λ < 0. Then

(a) If α− β > 0,

lim
ρ→((−λ)(α/β))1/(α−β)

S(λ, ρ) =

{
(−λ)

(p−α)
p(α−β) J(p, α, β) if 1 < β < p

+∞ if p ≤ β.

where J(p, α, β) is defined in (2.1).

(b) If α− β > 0,

lim
ρ→+∞

S(λ, ρ) =


0 if p ≤ β
1
2 (
λ1
p2 )
1/p if p > β and α = p

0 if p > β and α > p
+∞ if p > β and α < p

(c) If α− β < 0,

lim
ρ→0
S(λ, ρ) =


0 if p > α
1
2 (
λ1
p2
)1/p if p = α

+∞ if p < α

(d) If α− β < 0,

lim
ρ→(−λ)1/(α−β)

S(λ, ρ) = (−λ)
(p−α)
p(α−β)

∫ 1
0

{(
1− tα

α
)− (

1 − tβ

β
)}−1/pdt

and ∫ 1
0

{(
1− tα

α
)− (

1− tβ

β
)}−1/pdt < +∞⇐⇒ p > 2.
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Proof. Assume that α− β > 0. Easy computation yields

lim
ρ→((−λ)(α/β))1/(α−β)

S(λ, ρ) = (p′)−1/p(
−λ

β
)(p−α)/p(α−β)α(p−β)/p(α−β) ×

×

∫ 1
0

t−β/p(1− tα−β)−1/pdt.

It can be shown that for all p > 1 and 1 < β < α∫ 1
0

t−β/p(1 − tα−β)−1/pdt =

{
+∞ if β ≥ p
1
α−βB(

(p−β)
p(α−β) ,

p−1
p
) if 1 < β < p.

In fact, in the case where β ≥ p, we use the estimates

t−β/p(1− tα−β)−1/p ≥ t−β/p, for all t ∈ (0, 1),

and in the case where 1 < β < p, we use the change of variable x = tα−β , as in
Lavrentiev and Chabat [13, pp. 595-596]. Therefore Assertion (a) is proved.
Also, in the case where α− β > 0 and β − p ≥ 0

lim
ρ→+∞

(λρβ−p(
1 − tβ

β
) + ρα−p(

1− tα

α
))−1/p =

lim
ρ→+∞

ρ(p−β)/p(λ(
1 − tβ

β
) + ρα−β(

1− tα

α
))−1/p = 0 · 0 = 0 .

and an easy discussion shows that for α− β > 0,

lim
ρ→+∞

(λρβ−p(
1− tβ

β
) + ρα−p(

1− tα

α
))−1/p

=


0 if β ≥ p
0 if β < p and α > p
+∞ if β < p and α < p
((1 − tp)/p)−1/p if β < p and α = p

Therefore, Assertion (b) is proved.
In the case where α− β < 0 and λ < 0,

lim
ρ→0

∫ 1
0

(λρβ−p((1 − tβ)/β) + ρα−p((1− tα)/α))−1/pdt

= lim
ρ→0
ρ(p−α)/p

∫ 1
0

(λρβ−α(1− tβ)/β + (1− tα)/α)−1/pdt

= lim
ρ→0
ρ(p−α)/p

∫ 1
0

((1− tα)/α)−1/pdt .

Notice that for all α > 1∫ 1
0

(1− tα)−1/pdt =
1

α
B(
1

α
,
p− 1

p
) < +∞ .
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This follows by making use of the change of variable x = tα, see Lavrentiev and
Chabat [13, pp. 595-596]. Assertion (c) follows.
Also, in the case α− β < 0 and λ < 0, easy computation shows

lim
ρ→(−λ)1/(α−β)

S(λ, ρ) = (p′)−1/p(−λ)(p−α)/p(α−β) ×∫ 1
0

((1− tα)/α)− ((1− tβ)/β))−1/pdt .

By making use of L’Hopital’s rule two times, we compute

lim
t→1−

(1− tα)/α− (1− tβ)/β

(1 − t)2
=
β − α

2
> 0 .

So, the integral
∫ 1
0
((1− tα)/α)− ((1− tβ)/β))−1/pdt is convergent if and only if

the integral
∫ 1
0 (1 − t)

−2/pdt does so. Therefore, Assertion (d) follows from the
well known fact that∫ 1

0

(1− t)−2/pdt < +∞ if and only if p > 2 .

Therefore, Lemma 5.2 is proved.

Lemma 5.3 Assume that p > 1, λ < 0, and α 6= β, α, β > 1.

1. If one of the following conditions holds:

(a) β < p ≤ α

(b) β = p < α

(c) p < β < α

then, S(λ, ·) is strictly decreasing on R(λ).

2. If one of the following conditions holds:

(a) α ≤ p < β

(b) α < p = β

(c) α < β < p

then, S(λ, ·) is strictly increasing on R(λ).

3. If one of the following conditions holds:

(a) p < α < β

(b) β < α < p < α+ β

then, S(λ, ·) is strictly decreasing on (inf R(λ), ρ1] and is strictly increasing
on [ρ2, supR(λ)), where ρ1(λ) and ρ2(λ) are defined in Lemma 4.3.
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4. If β < α < p and α+β ≤ p, then S(λ, ·) is strictly increasing on [ρ2,+∞).

This Lemma follows by a similar discussion as that in the proof of Lemma
4.3. So, the proof of this Lemma is omitted.
Note that the third and the fourth assertions of Lemma 5.3 above do not

provide the exact variations of the map S(λ, ·) over its entire definition domain,
which are necessary for the process of showing the exactness part in the main
result. They are the aim of the following pioneer lemma.

Lemma 5.4 Assume that one of the following conditions holds:

(c1) 1 < p ≤ 2, and p < α < β,

(c2) 2 < p < α < β,

(c3) 1 < β < α < p.

Then, for all λ < 0, there exists an interior point ρ∗(λ) ∈ int(R(λ)) such that
S(λ, ·) is strictly decreasing on (inf R(λ), ρ∗(λ)) and then strictly increasing on
(ρ∗(λ), supR(λ)).

We shall prove Lemma 5.4 in two steps.

Step 1: Existence If

p < α < β or 1 < β < α < p < α+ β (5.2)

the existence of ρ∗(λ) follows immediatly from Lemma 5.3, Assertion 3.
Also, if

1 < β < α < α+ β ≤ p, (5.3)

then, according to Lemma 5.3, Assertion 4, existence follows after proving that
for all λ < 0, S(λ, ·) is strictly decreasing on a right neighborhood of inf R(λ).
(Notice that in this case ρ1(λ) ≤ inf R(λ)). In fact, we shall prove:

Lemma 5.5 If 1 < β < α < α+ β ≤ p and λ < 0 then

∂S

∂ρ
(λ, (
−λα

β
)1/(α−β)) = −∞.

Proof. The derivative of S(λ, ·) is given by

∂S

∂ρ
(λ, ρ) = (p′)−1/p

∫ 1
0

H(λ, ρ)−H(λ, ρu)

pρ(F (λ, ρ)− F (λ, ρu))1+
1
p

du.

where

F (λ, ρ) =
1

α
ρα +

λ

β
ρβ , ρ > 0 and H(λ, ρ) = (

p− α

α
)ρα + λ(

p− β

β
)ρβ , ρ > 0.
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Simple computations yield

∂S

∂ρ
(λ, (−λ

α

β
)1/(α−β)) =

(p′)−1/p

p
(
β

−λ
)

p+α
p(α−β)α

p+β
p(β−α)

×

∫ 1
0

(p− α)(1 − uα)− (p− β)(1 − uβ)

(uβ − uα)1+
1
p

du.

The improper integral has two singularities; at 0 and at 1. Then we write

∂S

∂ρ
(−1, (−λ

α

β
)1/(α−β)) =

(p′)−1/p

p
(
β

−λ
)
p+α
p(α−β)α

p+β
p(β−α) (I0 + I1)

where

I0 =

∫ 1/2
0

(p− α)(1 − uα)− (p− β)(1− uβ)

(uβ − uα)1+
1
p

du,

I1 =

∫ 1
1/2

(p− α)(1 − uα)− (p− β)(1 − uβ)

(uβ − uα)1+
1
p

du.

In what follows we shall prove that I0 = −∞ and I1 ∈ R.
First, we write I0 as follows:

I0 =

∫ 1/2
0

−(α− β)− [(p− α)uα − (p− β)uβ ]

(1− uα−β)1+
1
puβ(1+

1
p )

du.

One may observe that in a right neighborhood of 0,

−(α− β)− [(p− α)uα − (p− β)uβ ]

(1− uα−β)1+
1
p uβ(1+

1
p )

'
−(α− β)

uβ(1+
1
p )
,

and by (5.3), it follows that β(1 + 1
p
) > 1 and −(α− β) < 0, so

∫ 1/2
0

−(α− β)

uβ(1+
1
p )
du = −∞,

and therefore I0 = −∞.
Next, we write I1 as follows:

I1 =

∫ 1
1/2

(p− α)(1 − uα)− (p− β)(1 − uβ)

uβ(1+
1
p )(1−u

α−β

1−u )
1+ 1p (1− u)1+

1
p

du .

Applying Taylor’s theorem to the function N , defined by

N(u) = (p− α)(1 − uα)− (p− β)(1 − uβ),
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it follows that

I1 =

∫ 1
1/2

[(p− α)α − (p− β)β](1 − u)

uβ(1+
1
p )(1−u

α−β

1−u )
1+ 1p (1− u)1+

1
p

du

+

∫ 1
1/2

− 12 [(p− α)α(α − 1)− (p− β)β(β − 1)](1− u)
2 + o((1− u)2)

uβ(1+
1
p )(1−u

α−β

1−u )
1+ 1p (1− u)1+

1
p

du.

Notice that limu→1−
1−uα−β

1−u = (α− β) ∈ R then, in a left neighborhood of 1,

uβ(1+
1
p )(
1− uα−β

1− u
)1+

1
p (1− u)1+

1
p ' (α − β)(1− u)1+

1
p .

Next, one has to distinguish two cases.
Case [(p− α)α − (p− β)β] 6= 0. In this case the integrand function in I1 is

equivalent in a left neighborhood of 1 to the function u 7→ (p−α)α−(p−β)β
(α−β)(1−u)1/p

and

since p > 1 it follows that
∫ 1/2
0

(p−α)α−(p−β)β
(α−β)(1−u)1/p

du ∈ R and therefore I1 ∈ R.

Case [(p− α)α − (p− β)β] = 0. In this case the integrand function in I1 is

equivalent in a left neighborhood of 1 to the function u 7→ (− 12 )(p−α)α(1−u)
1− 1p

which is a continuous function on the compact interval [12 , 1] then
∫ 1
1/2(−

1
2 )(p−

α)α(1 − u)1−
1
p du ∈ R. Then, in this case I1 ∈ R too. Therefore Lemma 5.5 is

proved.

Step2: Uniqueness First, we point out that Step 1 shows a little bit gen-
eral result than the existence. In fact, for all λ < 0, it was proved that
ρ∗(λ) exists and belongs necessarily to (ρ1(λ), ρ2(λ)) if (5.2) holds and be-
longs to (inf R(λ), ρ2(λ)) if (5.3) holds. So, to prove uniqueness, we shall re-
strict ourselves to (ρ1(λ), ρ2(λ)) (resp. to (inf R(λ), ρ2(λ))). That is, we shall
prove that S(λ, ·) admits at most one critical point in (ρ1(λ), ρ2(λ)) (resp. in
(inf R(λ), ρ2(λ))). To this end we shall prove that for all λ < 0, S(λ, ·) is convex
in a neighborhood of each of its critical points lying in (ρ1(λ), ρ2(λ)) (resp. in
(inf R(λ), ρ2(λ))). Similar idea was previously used in [5].
This step follows by two lemmas. The first one is technical but the second

one is the heart of this step.

Lemma 5.6 Let p, α, β > 1. If α 6= β, then (β
α
)1/(α−β) < 1. If one of the

following conditions holds: (a) p < α < β or (b) β < α < p, then for all λ < 0,
the function defined on the interval [0, ρ2(λ)] by ρ 7→ Ψ(λ, ρ) := (p−α)ρα+λ(p−
β)ρβ, is strictly decreasing on [0, ρ1(λ)(

β
α
)1/(α−β)] and is strictly increasing on

[ρ1(λ)(
β
α )
1/(α−β), ρ2(λ)]. Moreover, Ψ(λ, 0) = Ψ(λ, ρ1(λ)) = 0, for all λ < 0.

The proof is very simple and therefore omitted. For all λ < 0, let ρ∗(λ) :=
max{ρ1(λ), inf R(λ)}.



28 Ambrosetti-Brezis-Cerami problem EJDE–2000/66

Lemma 5.7 Let p, α, β > 1. Assume that one of the following conditions holds:
(a) p < α < β, or (b) β < α < p. Then for all λ < 0,

∂2S

∂ρ2
(λ, ρ) + (

p+ 1

ρ
)
∂S

∂ρ
(λ, ρ) > 0, for all ρ ∈ (ρ∗(λ), ρ2(λ)) .

Proof. Notice that for all λ < 0, (ρ∗(λ), ρ2(λ)) ⊂ R(λ) =: domS(λ, ·). The
second derivative of S(λ, ·) is given by

∂2S

∂ρ2
(λ, ρ) = (p′)−1/p

∫ 1
0

(p+ 1)(H(λ, ρ)−H(λ, ρu))2

p2ρ(F (λ, ρ)− F (λ, ρu))(2p+1)/p
du

+(p′)−1/p
∫ 1
0

Φ(λ, ρ)− Φ(λ, ρu)

pρ(F (λ, ρ)− F (λ, ρu))(p+1)/p
du,

where

Φ(λ, ρ) = −p(p+ 1)F (λ, ρ) + 2pρf(λ, ρ)− ρ2f ′ρ(λ, ρ)

=
(p− α)(α− (p+ 1))

α
ρa + λ

(p− β)(β − (p+ 1))

β
ρβ .

It follows that

(p′)1/ppρ{ρ
∂2S

∂ρ2
(λ, ρ) + (p+ 1)

∂S

∂ρ
(λ, ρ)}

=

∫ ρ
0

Ψ(λ, ρ)−Ψ(λ, ξ)

(F (λ, ρ) − F (λ, ξ))(p+1)/p
dξ

+(
p+ 1

p
)

∫ ρ
0

(H(λ, ρ) −H(λ, ξ))2

(F (λ, ρ)− F (λ, ξ))(2p+1)/p
du ,

where

Ψ(λ, ρ) := Φ(λ, ρ) + (p+ 1)H(λ, ρ) = ρ
∂H

∂ρ
(λ, ρ) = (p− α)ρα + λ(p− β)ρβ .

By Lemma 5.6, it follows that for all λ < 0 and all ρ ∈ (ρ∗(λ), ρ2(λ)),

Ψ(λ, ρ)−Ψ(λ, ξ) > 0, for all ξ ∈ (0, ρ) .

Therefore∫ ρ
0

Ψ(λ, ρ)−Ψ(λ, ξ)

(F (λ, ρ)− F (λ, ξ))(p+1)/p
dξ > 0, for all λ < 0 and all ρ ∈ (ρ∗(λ), ρ2(λ))

and Lemma 5.7 is proved, which ends the proof of Lemma 5.4. ♦

Notice that if one of the hypothesis of Assertions A through F holds then
S(λ, ·) is monotonic, the proofs follow by an elementary discussion as in Asser-
tion A or B of Theorem 2.1. Therefore the proofs of Assertions A, through F
are omitted.
Concerning the remaining assertions, the same ideas performed for Assertion

C of Theorem 2.1 apply. For this, it suffices to use Lemma 5.4 and the following
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Lemma 5.8 By Lemma 5.4 let m(λ) := infρ∈R(λ) S(λ, ρ), ∀λ < 0. Then,

(a) m(·) is continuous on (−∞, 0)

(b) m(·) is strictly decreasing on (−∞, 0)

(c) limλ→−∞m(λ) = +∞ and limλ→0m(λ) = 0.

Lemma 5.9 The function λ 7→ `(λ) := limρ7→inf R(λ) S(λ, ρ) is either infinite on
the whole set (−∞, 0) or satisfies Assertions (a), (b), and (c) of Lemma 5.8.

Lemma 5.10 The function λ 7→ L(λ) := limρ7→supR(λ) S(λ, ρ) is (indepen-
dently of `(λ)) either infinite on the whole set (−∞, 0) or satisfies Assertions
(a), (b), and (c) of Lemma 5.8.

Proof of Lemma 5.8. Recall that for all λ < 0 and ρ ∈ R(λ),

S(λ, ρ) = (p′)−1/p
∫ 1
0

{λρβ−p(
1− tβ

β
) + ρα−p(

1− tα

α
)}−1/pdt .

For all λ < 0 and ρ ∈ R(λ), let ρ̄ = ρ̄(λ, ρ) := (−λ)1/(β−α)ρ. Then, ρ =
(−λ)1/(α−β)ρ̄ and a simple substitution yields

S(λ, ρ) = (−λ)(p−α)/p(α−β)S(−1, ρ̄(λ, ρ)) .

Thus,

m(λ) = (−λ)(p−α)/p(α−β) inf
ρ∈R(λ)

S(−1, ρ̄(λ, ρ))

= (−λ)(p−α)/p(α−β) inf
ρ∈R(−1)

S(−1, ρ)

So,

m(λ) = (−λ)(p−α)/p(α−β)m(−1), ∀λ < 0 .

Therefore, Lemma 5.8 is proved. ♦

Proof of Lemma 5.9. By Lemma 5.2 it follows in the case where 1 < β <
α < α + β ≤ p that limρ→inf R(λ) S(λ, ρ) = (−λ)

(p−α)/p(α−β)J(p, α, β) < +∞,
where J(p, α, β) is defined in (2.1). Hence, Lemma 5.9 is proved in this case.
The other cases are similar or easier.

The proof of Lemma 5.10 is similar to that of Lemma 5.9.
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6 Remarks

By the study of Problem (1.3) with λ ∈ R, it can be deduced the structure of
the solution set of a quite general problem

−(ϕp(u
′))′ = µϕα(u) + λϕβ(u) in (0, 1) (6.1)

u(0) = u(1) = 0 ,

when p, α, β > 1, µ > 0 and λ ∈ R. In fact, if v is a solution of (1.3) for

λ = λ0 ∈ R and α 6= p, then for all µ0 > 0, the function u := µ
1/(p−α)
0 v is a

solution to (6.1) with µ = µ0 and λ = λ0µ
(β−p)/(α−p)
0 . (If α = p and β 6= p,

similar change of variable works). Conversely, if u is a solution of (6.1) with

µ = µ0 > 0, λ = λ0 ∈ R and α 6= p, then v := µ
1/(α−p)
0 u is a solution to (1.3)

with λ = λ0µ
(β−p)/(α−p)
0 .

The structure of the solution set of problem (6.1) when µ < 0 and λ ∈ R
can be deduced from that of the problem

−(ϕp(u
′))′ = −ϕα(u) + λϕβ(u) in (0, 1)

u(0) = u(1) = 0,

which is not treated here. However, upon completing our paper, the work [11] by
Díaz and Hernández appeared. Positive solutions to problem (6.1) with µ < 0,
λ > 0 and 1 < α < β ≤ p are treated there.
After completing this work, e-mail correspondence between the first author

(I. Addou) and Professor Pedro Ubilla from Chile, revels that simultaneously
and independently of the present authors, Professors J. Sánchez and P. Ubilla
from Chile, were studying problem (1.3) with λ > 0. That is to say, they
resolved the p-Laplacian version of the Ambrosetti-Brezis-Cerami problem. To
do so, they provide essentially the same proof as that of Theorem 2.1 above by
making use of the same idea performed in [3, Lemma 7, (iii)]. Their work was
presented, under the title: ”The exact number of positive solutions for an elliptic
equation with concave and convex nonlinearities” by Professor P. Ubilla at the
”USA-Chile Workshop on Nonlinear Analysis” meeting which held in Valparáiso
in Chile on 17-21, January 2000. Also, it was published in this volume of this
journal, see [15].
Also, after submitting this work for publication, e-mail correspondence be-

tween the first author (I. Addou) and Professor Shin-Hwa Wang from Taiwan
(R. O. China) revels that he has write (independently of J. Sanchez and P. Ubilla
and independently of the present authors) a paper [19] in which he resolves (for
p = 2) the Ambrosetti-Brezis-Cerami problem [7, Sect. 6, (d)] (among many
other interesting things), by making use of the quadrature technique. To deal
with the difficult step (uniqueness of the maximum of the time map), he used
an interesting argument which is comparable to that of [3, Lemma 7, (iii)] and
used by him previously in [18, Proof of Theorem 7]. (See, also [16]).

Acknowledgments The author I. Addou is deeply grateful to Professors P.
Ubilla (from Chile) and S.-H. Wang (from Taiwan, R.O.C.) for the interesting
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his/her relevant suggestions.

7 Appendix

In the process of our proofs, we have used the fact that

λ1(p) = (p− 1)(
2π

p sin(π/p)
)p > 1, ∀p > 1.

In this appendix we shall prove the following:

(A1) λ1(p) > 1, ∀p ∈ (1, 2).

(A2) λ1(2) = π
2.

(A3) λ1(p) > 4, ∀p ∈ (2,+∞).

(A4) limp→1+ λ1(p) = 2, and limp→+∞ λ1(p) = +∞.

Proof of (A1). Observe that for all p ∈ (1, 2), λ1(p) can be written as

λ1(p) = (
2

p
)p(p− 1)(1−p)(

π
sin(π/p)−sin(π/1)

p−1

)p . (7.1)

The function p 7→ θ(p) := ( 2p )
p is strictly decreasing on (1, 2] and θ(2) = 1.

Thus,

(
2

p
)p > 1, ∀p ∈ (1, 2). (7.2)

The function p 7→ K(p) := (p− 1)(1−p) is strictly increasing on (1, 1+ exp(−1)]
and is strictly decreasing on [1 + exp(−1), 2). Thus, K(p) > min{K(2),
limp→1+ K(p)} = 1, for all p ∈ (1, 2). Therefore,

(p− 1)(1−p) > 1, ∀p ∈ (1, 2). (7.3)

Notice that for all c ∈ (1, 2) : c2 > 1 > − cos(π/c) > 0. Then, π
−(π2/c) cos(π/c) >

1, for all c ∈ (1, 2). Therefore,

(
π

−(π2/c) cos(π/c)
)p > 1, ∀(p, c) ∈ (1, 2)2 . (7.4)

On the other hand, for all p ∈ (1, 2), there exists c = cp ∈ (1, p) ⊂ (1, 2), such
that

sin(π/p)− sin(π/1)

p− 1
= −

π

c2
cos
π

c
.
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Therefore, for all p ∈ (1, 2), there exists c = cp ∈ (1, p) ⊂ (1, 2), such that

(
π

sin(π/p)−sin(π/1)
p−1

)p = (
π

−(π2/c) cos(π/c)
)p

and by (7.4), it follows that

(
π

sin(π/p)−sin(π/1)
p−1

)p > 1, ∀p ∈ (1, 2). (7.5)

Now, by (7.2), (7.3), (7.5), and (7.1), Assertion (A1) follows.
Proof of (A2). Simple computation.
Proof of (A3). Observe that for all p > 2, λ1(p) can be written as

λ1(p) = (p− 1) · 2
p · (
sin(π/p)− sin(0)

(π/p)− 0
)−p . (7.6)

It is clear that for all p > 2

(p− 1) > 1 and 2p > 22 = 4 . (7.7)

On the other hand, for all p > 2, there exists c = cp such that

0 <
sin(π/p)− sin(0)

(π/p)− 0
< cos c < 1 .

Therefore,

(
sin(π/p)− sin(0)

(π/p)− 0
)−p > 1, ∀p > 2 . (7.8)

Now, by (7.7), (7.8), and (7.6), Assertion (A3) follows.
Proof of (A4). It is clear that

lim
p→1+

θ(p) = 2, lim
p→1+

K(p) = 1, lim
p→1+

πp = π, and

lim
p→1
(
sin(π/p)− sin(0)

p− 1
)p = (−

π

12
cos
π

1
)1 = π .

Therefore, using expression (7.1) of λ1(p), it follows that limp→1+ λ1(p) = 2.
The computation of the second limit is straightforward, which completes the
proof of Assertion (A4).
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Montréal, Québec, H1L-1A9, Canada
email: idrisaddou@yahoo.com

Abdelhamid Benmezäı
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