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Singular solutions of doubly singular

parabolic equations with absorption ∗

Yuanwei Qi & Mingxin Wang

Abstract

In this paper we study a doubly singular parabolic equation with ab-
sorption,

ut = div(|∇u
m|p−2∇um)− uq

with m > 0, p > 1, m(p − 1) < 1, and q > 1. We give a complete
classification of solutions, which we call singular, that are non-negative,
non-trivial, continuous in Rn × [0,∞)\{(0, 0)}, and satisfy u(x, 0) = 0
for all x 6= 0. Applications of similar but simpler equations show that
these solutions are very important in the study of intermediate asymptotic
behavior of general solutions.

1 Introduction

We are interested in the study of singular solutions to the doubly singular
parabolic equation with absorption:

ut = div(|∇u
m|p−2∇um)− uq in Rn × (0,+∞) , (1.1)

where m > 0, p > 1, m(p− 1) < 1, and q > 1.
Here by a singular solution we mean a non-negative and non-trivial solu-

tion which is continuous in Rn × [0,+∞)\{(0, 0)} and satisfies

lim
t↘0
sup
|x|>ε

u(x, t) = 0 ∀ε > 0 . (1.2)

A singular solution is called a fundamental solution (FS for short) if, for
some c > 0,

lim
t↘0

∫
|x|≤ε

u(x, t)dx = c ∀ε > 0 . (1.3)
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2 Singular solutions of doubly singular equations EJDE–2000/67

A singular solution is called a very singular solution (VSS for short) if

lim
t↘0

∫
|x|≤ε

u(x, t)dx =∞ ∀ep > 0 . (1.4)

By a self-similar solution we mean a solution u that has the form

u(x, t) =
(α
t

)α
f

(
|x|
(α
t

)αβ)
, α :=

1

q − 1
, β :=

q −m(p− 1)

p
, (1.5)

where f as a function of r = |x|(α/t)αβ is defined on [0,+∞) and solves

(|(fm)′|p−2(fm)′)′ +
n− 1

r
|(fm)′|p−2(fm)′ + βrf ′ + f − f q = 0 ∀r > 0. (1.6)

Note that for u given by (1.5), the condition (1.2) is equivalent to

lim
r→∞

r1/βf(r) = 0. (1.7)

Furthermore, if q < m(p − 1) + p/n (i.e. nβ < 1) and the solution f of (1.6)
satisfies (1.7), then u(x, t) given explicitly by (1.5) satisfies (1.4), i.e., it is a very
singular self-similar solution of (1.1).

Recently, Leoni [14] proved that problem (1.6), (1.7) has a solution, that is,
(1.1) has a self-similar VSS, if and only if q < m(p − 1) + p/n. In the present
paper we will give a complete classification for all singular solutions of (1.1),
under the assumptions that m > 0, p > 1 satisfying m(p− 1) < 1 and q > 1.
More importantly, we obtain the existence and uniqueness of both FS and VSS,
self-similar or otherwise.
Our main results read as follows:

Theorem 1.1 Assume that m > 0, p > 1, m(p− 1) < 1 ,and q > 1. Then the
following statements hold:

(i) Every singular solution of (1.1) is either an FS or a VSS;

(ii) When q ≥ m(p− 1) + p/n, (1.1) does not have any singular solution;

(iii) When q < m(p− 1) + p/n, (1.1) admits a unique VSS, u∞ and for every
c > 0, a unique FS, uc, with initial mass c. In addition, uc1 < uc2 for any
c1 < c2 and uc → u∞ as c→∞;

(iv) When p ≤ n(1 +m)/(1 +mn), (1.1) does not have any singular solution.

Because m(p−1) < 1, the equation (1.1) is called doubly singular, which resem-
bles both the porous medium equations of fast diffusion

ut = ∆(u
m)− uq, (1.8)

and the p-Laplacian equations with 1 < p < 2

ut = div(|∇u|
p−2∇u)− uq. (1.9)
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There have been many works on the singular solutions of (1.8) and (1.9) and
their applications in study intermediate limit of general solutions , see [1]-[5],
[6]-[13], [15]-[19] and the references therein.

This paper is organized as follows. In §2, we study equation (1.6) and prove
the existence and uniqueness of very singular self-similar solution. In §3 we show
the existence and uniqueness of both FS and VSS, discuss various properties of
such solutions and complete the proof of our theorem.
For the convenience of the reader, we list the following special constants that

will be used in this paper:

α =
1

q − 1
, β =

q −m(p− 1)

p
,

µ =
p

1−m(p− 1)
, k =

1

p− n[1−m(p− 1)]
.

Observe that q < m(p − 1) + p/n if and only if nβ < 1. Also, 1 < q <
m(p − 1) + p/n and m(p − 1) < 1 imply that µ > n and k > 0, which is
equivalent to p > n(1 +m)/(1 +mn).

We note in passing that the present case of (1.1) is very different from the
case of m(p− 1) > 1, which is similar to (1.8) with m > 1 or (1.9) with p > 2.
In particular, when m(p − 1) > 1, there exist compact supported solutions
and such solutions have finite speed of propagation. Whereas for our case, the
propagation speed is infinite and any nontrivial, nonnegative solution has Rn

as its support for t > 0. As a matter of fact, the major effort is given to
estimate the decay of singular solutions at |x| = ∞. Once we can do that, a
lot of techniques in [8]-[11] which were developed for degenerate equations such
as (1.8) with m > 1 and (1.9) with p > 2 can be adapted to study the present
singular case.

2 Existence and Uniqueness of Very Singular
Self-similar Solution

In this section we study (1.6) and prove the existence and uniqueness of very
singular self-similar solution. Our proof of existence is different from the one
given in [14]. In particular, through the classification of solutions in relation to
their initial values, we prove the existence of self-similar VSS, rather than the
shooting argument employed in [14].
We consider the solution of (1.6) with initial value

f(0) = a, f ′(0) = 0. (2.1)

For each a > 0, (1.6), (2.1) has a unique solution f(r; a) and the solution is con-
tinuously differentiable in a in a right neighbourhood of r > 0 (see Proposition
1 in Appendix). Since a ≥ 1 implies that f ′ ≥ 0 in its existence interval, we
need only consider the case a ∈ (0, 1). For a ∈ (0, 1), if we denote by (0, R(a))
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the maximal existence interval where f > 0, then f ′ < 0 in (0, R(a)) and either
(i) R(a) = ∞ and limr↘∞ f(r; a) = 0, or (ii) R(a) < ∞ and f(R(a); a) = 0.
The main results of this section read as follows.

Theorem 2.1 Assume that m > 0, p > 1, m(p − 1) < 1 and q > 1. For
each a ∈ (0, 1), let f(r; a) be the solution of (1.6), (2.1). Then the following
conclusions hold:

(i) If nβ ≥ 1, then f > 0 and f ′ < 0 in (0,∞) and lim infr→∞ r1/βf(r; a) > 0.

(ii) If nβ < 1, then there exists a∗ ∈ (0, 1) such that the following classification
is valid:
(a) If a ∈ (0, a∗), then there exists R(a) <∞ such that f ′ < 0 in (0, R(a)]
and f(R(a); a) = 0.
(b) If a ∈ (a∗, 1), then f ′ < 0, f > 0, fa :=

d
da
f > 0, and (rµf)′ > 0

in (0,∞). In addition, limr→∞ r1/βf(r; a) has a finite limit k(a) which,
as a function of a defined on (a∗, 1), is positive, continuous and strictly
increasing, and satisfies lima↘a∗ k(a) = 0 and lima↗1 k(a) =∞.
(c) If a = a∗, then limr→∞ r1/βf(r; a) = 0, limr→∞ rmµfm(r; a) = F ∗,
where

F ∗ =

{
(mµ)p−1(µ− n)[1 −m(p− 1)]

q − 1

}m/[1−m(p−1)]

Nonexistence Results

Now we prove nonexistence results of very singular self-similar solutions. We
note the same result was proved in [14]. For completeness we give a simple proof
here.

Proof of Theorem 2.1(i). Multiplying (1.6) by r1/β−1 we have, for r in
(0, R(a)),

(r1/β−1|(fm)′|p−2(fm)′+ βr1/βf)′ = (n− 1/β)r1/β−2|(fm)′|p−1+ r1/β−1f q > 0

since nβ ≥ 1. Thus the function g(r) := r1/β−1|(fm)′|p−2(fm)′ + βr1/βf is
strictly increasing in (0, R(a)). Note that limr↘0 g(r) = 0, we get g > 0 in
(0, R(a)). Since f ′ < 0 we conclude that R(a) =∞ and f ↘ 0 as r ↗∞. Since
g(r) is increasing,

lim
r→∞
(r1/β−1|(fm)′|p−2(fm)′ + βr1/βf) = lim

r→∞
g(r) = g∞

exists, where g∞ is either a positive constant or∞. Thus, lim infr→∞ r1/βf > 0.
This completes the proof. Q.E.D.
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A Monotonicity Lemma

Observe that f = f(r; a) satisfies

−|(fm)′|p−2(fm)′ = βrf + r1−n
∫ r
0

sn−1[1− nβ − f q−1]fds. (2.2)

Since f ′ < 0, we have that

−(fm)′ =

(
βrf + r1−n

∫ r
0

sn−1[1− nβ − f q−1]fds

)1/(p−1)
.

Using f(0) = a it follows that as r ↘ 0,

fm(r; a) = am −
p− 1

p
(a− aq)1/(p−1)n−1/(p−1)rp/(p−1)(1 + ◦(r)) . (2.3)

To study the behavior of the solution f(r; a), we introduce a function F =
F (r; a) defined by

F (r; a) := {rµf(r; a)}m, where µ =
p

1−m(p− 1)
> 0. (2.4)

Then we have (fm)′ = r−mµ−1(rF ′ −mµF ) and

(|(fm)′|p−2(fm)′)′

= (mµ+ 1)(p− 1)r−(mµ+1)(p−1)−1|mµF − rF ′|p−2(mµF − rF ′)

−(p− 1)r−(mµ+1)(p−1)|mµF − rF ′|p−2(mµF ′ − F ′ − rF ′′).

Since µ = p/(1−m(p− 1)), substituting the above expressions into (1.6) gives

(p− 1)r2F ′′ + [n− 1− 2(p− 1)mµ]rF ′ +mµ(µ− n)F (2.5)

+(mµF − rF ′)2−p{
β

m
rF ′F (1−m)/m + (1 − βµ)F 1/m − rµ(1−q)F q/m} = 0 .

In addition, a differentiation in a gives, for Fa :=
∂F
∂a
,

L(Fa) := (p− 1)r2F ′′a + [n− 1− 2(p− 1)mµ]rF
′
a +mµ(µ− n)Fa

+(2− p)(mµF − rF ′)1−p(mµFa − rF
′
a){

β

m
rF ′F (1−m)/m

+(1− βµ)F 1/m − rµ(1−q)F q/m}+ (mµF − rF ′)2−p

×
{ β
m
rF ′aF

(1−m)/m +
β(1 −m)

m2
rF ′F (1−2m)/mFa

+
1− βµ

m
F (1−m)/mFa −

q

m
rµ(1−q)F (q−m)/mFa

}
= 0 . (2.6)

Lemma 2.1 If F ′ > 0 in a finite interval (0, r1), then µaFa > rF ′ in (0, r1)
and Fa > 0 in (0, r1].
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Proof. Applying the differential operator r d
dr
to (2.5) and using the identity

r[r2F ′′]′ = r2[rF ′]′′, we get

L(rF ′) = µ(1− q)(mµF − rF ′)2−prµ(1−q)F q/m < 0 in (0, R(a)).

In the interval (0, r1), write Fa = C(r)rF ′. Using the expansion (2.3) we have
that, for all r sufficiently small,

C(r) = (µa)−1
{
1 +

q − 1

mp
n−1/(p−1)aq−m(a− aq)(2−p)/(p−1)rp/(p−1)

+O(r2p/(p−1))
}
.

It then follows that C(0) = (µa)−1, and C′(r) > 0 near the origin. Substituting
Fa = C(r)rF

′ into (2.6) we find

(p− 1)r2C′′[rF ′] + C′[· · ·] + CL(rF ′) = 0.

Because L(rF ′) < 0 and rF ′ > 0 in (0, r1), we know that C′(r) can not attain its
first zero in (0, r1). Hence C

′(r) > 0 in (0, r1). Consequently, Fa = C(r)rF ′ >
(µa)−1rF ′ > 0 in (0, r1).
It remains to show that Fa > 0 at r1. For later application, here we provide

an elaborated proof. Let r0 = min{1, r1/2} and ψ be the solution to L(ψ) = 0
in (0, R(a)) with the initial values ψ(r0) = 0 and ψ

′(r0) = 1. Then ψ > 0
in (r0, r1] since between any two zeros of ψ there is a zero of Fa. Set k0 =
C ′rF ′|r=r0 > 0 and c0 = C(r0). We consider the function φ = Fa − k0ψ. It is
obvious that L(φ) = 0 in (0, R(a)). In addition, at r = r0, φ = Fa = c0rF

′

and φ′ = {C′rF ′ +C(rF ′)′ − k0ψ′}|r=r0 = c0(rF
′)′|r=r0 . Writing φ = C(r)rF

′,

we have that C(r0) = c0, C
′
(r0) = 0, and C satisfies the same equation as

that for C. As C
′′
(r0) > 0 (from the differential equation), we get that C

′
> 0

in (r0, r1). Therefore φ = C(r)rF ′ > 0 in [r0, r1). Consequently, Fa ≥ k0ψ > 0
in (r0, r1]. This completes the proof of the lemma. Q.E.D.

For convenience, we denote

A =
{
a ∈ (0, 1) : there exists R1(a) ∈ (0, R(a)) such that F ′(R1(a); a) = 0

}
B =

{
a ∈ (0, 1) : F ′(·; a) > 0 in (0,∞), lim

r→∞
F (r; a) <∞

}
C = {a ∈ (0, 1) : F ′(·; a) > 0 in (0,∞), lim

r→∞
F (r; a) =∞

}
.

Since F ′(r; a) > 0 near the origin, then F ′(r; a) > 0 in (0, R(a)) if a ∈ (0, 1) is
not in A, this implies that R(a) =∞, so that a ∈ B

⋃
C. Thus, A,B and C are

disjoint with each other and A
⋃
B
⋃
C = (0, 1).

Characterization of the set A

Lemma 2.2 Let a ∈ (0, 1). Then the following statements are equivalent:

(i) a ∈ A;
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(ii) there exists R1 ∈ (0, R(a)) such that F ′(r; a) > 0 in (0, R1(a)),
F ′′(R1(a); a) < 0, and F

′(r; a) < 0 in (R1(a), R(a));

(iii) supr∈(0,R(a))F (r; a) < F ∗ =
{
(mµ)p−1(µ−n)[1−m(p−1)]

q−1

}m/[1−m(p−1)]
;

(iv) there exists r1 ∈ (0, R(a)) such that
∫ r1
0
sn−1(1 − nβ − f q−1)fds > 0;

(v) R(a) <∞ and (fm)′(R(a); a) < 0;

(vi) R(a) <∞.

Proof. (i)⇒ (ii). Let (0, R1(a)) be the maximal interval where F ′ > 0. Since
a ∈ A, R1(a) < R(a) and F ′(R1(a); a) = 0, we have that F

′′(R1(a); a) < 0.
In fact, if F ′′(R1(a); a) = 0, then differentiating (2.5) with respect to r and
evaluating the resulting equation at r = R1(a), it yields F

′′′(R1(a); a) < 0. This
contradicts the fact that F ′ > 0 in (0, R1(a)). Therefore, F

′′(R1(a); a) < 0.
Next we show that F ′(r; a) < 0 in (R1(a), R(a)). In fact, if this is not

true, then there exists R2(a) ∈ (R1(a), R(a)) such that F ′(R2(a); a) = 0 and
F ′(r; a) < 0 in (R1(a), R2(a)). Evaluating (2.5) at r = R1(a) with
F ′(R1(a); a) = 0 and F

′′(R1(a); a) < 0, and at r = R2(a) with F
′(R2(a); a) = 0

and F ′′(R2(a); a) ≥ 0, and using the definition F = rmµfm, we obtain

{
q − 1

1−m(p− 1)
+ f q−1}F (1−m(p−1))/m|r=R1(a)

< (mµ)p−1(µ− n) (2.7)

≤ {
q − 1

1−m(p− 1)
+ f q−1}F (1−m(p−1))/m|r=R2(a).

However, this is impossible since F (R1(a); a) > F (R2(a); a) and f(R1(a); a) >
f(R2(a); a). Hence F

′(r; a) < 0 in (R1(a), R(a)).

(ii) ⇒ (iii). Note that the maximum of F is obtained at r = R1(a), so the
assertion follows from the first inequality of (2.7).

(iii) ⇒ (iv). Assume for the contrary that
∫ r
0
sn−1(1 − nβ − f q−1)fds ≤ 0

for all r ∈ (0, R(a)). Then from (2.2) we have that −|(fm)′|p−2(fm)′ ≤ βrf , i.e.
−(fm)′ ≤ (βrf)1/(p−1) for all r ∈ (0, R(a)). Upon integrating this inequality
over (0, r) we have

f(r; a) ≥

(
a[m(p−1)−1]/(p−1) +

1−m(p− 1)

mp
β1/(p−1)rp/(p−1)

)(p−1)/[m(p−1)−1]

for all r ∈ (0, R(a)). Then it follows that R(a) = ∞ and, using (2.4), F̂ :=
lim infr→∞ F > 0.
Note that either F ′ > 0 in (0,∞), or if F ′ changes sign, then a ∈ A

and hence F ′ < 0 in (R1(a),∞). In either case we have limr→∞ F = F̂ and
lim infr→∞ |rF ′| = 0.
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Let {rj}∞j=1 be a sequence with limj→∞ rj =∞ and limj→∞(rF ′)|r=rj = 0.
We claim that {rj} can be chosen such that in addition limj→∞(r2F ′′)|r=rj =
0. In fact, if |rF ′|, which is positive for all large r, oscillates infinitely many
times, then one can choose {rj} to be the local minimum points of |rF ′| so that
0 = (rF ′)′ = rF ′′ + F ′ on {rj}. That is,

lim
j→∞
(r2F ′′)|r=rj = − lim

j→∞
(rF ′)|r=rj = 0 .

If |rF ′| does not oscillate infinitely many times, then |rF ′| eventually mono-
tonically decreases to zero. So that, one can choose {rj} along which r(|rF ′|)′

approaches zero, namely, r2F ′′ = r(rF ′)′ − rF ′ approaches zero along the se-
quence {rj}. Now evaluating (2.5) at rj and sending j →∞ we obtain F̂ = F ∗,
which is a contradiction to the assumption supr∈(0,R(a)) F < F ∗.

(iv) ⇒ (v). Since the function z = 1 − nβ − f q−1 is strictly increasing in
(0, R(a)), by

∫ r1
0
sn−1zfds > 0 we have that z > 0 for all r ∈ [r1, R(a)). It then

follows that for some δ > 0,
∫ r
0
sn−1(1−nβ−f q−1)fds ≥ δ in [r1, R(a)). From

(2.2) we have

−|(fm)′|p−2(fm)′ ≥ βrf + δr1−n ∀r ∈ [r1, R(a)). (2.8)

Since 1 < q < m(p − 1) + p/n and 1 − m(p − 1) > 0, one can choose ε :
1−m(p− 1) < ε < min{1, p/n}. Therefore, 0 < ε < 1 and satisfies

m− (1− ε)/(p− 1) > 0, 1 + (1− nε)/(p− 1) > 0. (2.9)

Using the inequality βrf + δr1−n ≥ (βrf)1−ε(δr1−n)ε = β1−εδεf1−εr1−nε, we
obtain from (2.8) that

|(fm)′|p−1 ≥ β1−εδεf1−εr1−nε for all r ∈ (r1, R(a)).

Due to (fm)′ < 0, we have

−mfm−1−(1−ε)/(p−1)f ′ ≥ Cr(1−nε)/(p−1).

Integrating this inequality over [r1, r), r < R(a), and using (2.9), we ob-
tain immediately that R(a) < ∞. In addition, it follows from (2.8) that
(fm)′(R(a); a) < 0.

(v)⇒ (vi) is trivially true. (vi)⇒ (i) is also trivially true since f(R(a); a) =
0 implies that F (r; a) = (rµf(r; a))m has an interior maximum in (0, R(a)). This
completes the proof of the lemma. Q.E.D.

Lemma 2.3 There exists a∗ ∈ ((1 − nβ)1/(q−1), 1] such that A = (0, a∗).

Its proof is the same as that of Theorem 5.3 in [4].

Characterization of the set C

Lemma 2.4 Let a ∈ (0, 1). Then a ∈ C if and only if

sup
r∈(0,R(a))

F (r; a) > F ∗ .
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Proof. The only if part follows from the definition of C.
If supr∈(0,R(a)) F (r; a) > F ∗, then by Lemma 2.2 (iii), a 6∈ A, and so a ∈ B

⋃
C.

However, if F̂ := limr→∞ F (r; a) is finite, then a sequence {rj} can be found

along which rF ′ and r2F ′′ approach zero. It follows from (2.5) that F̂ = F ∗.
This contradicts the assumption that supr∈(0,R(a)) F (r; a) > F ∗. Q.E.D.

Lemma 2.5 There exists a∗ ∈ (0, 1) such that C = (a∗, 1). In addition, for
every a ∈ C there exists k(a) > 0 such that

lim
r→∞

r1/βf(r; a) = k(a).

Furthermore, k(a), as a function of a ∈ (a∗, 1), is positive, continuous, strictly
increasing, and

lim
a↘a∗

k(a) = 0, lim
a↗1

k(a) =∞.

Proof. Step 1: We first prove that C is open and non-empty. Since, a ∈ C if
and only if supr∈(0,R(a)) F (r; a) > F ∗, by the continuous dependence of initial
data, C is open. In view of lima↗1 f(r; a) = f(r; 1) ≡ 1 uniformly in any
compact subset of [0,∞) and
lima↗1 F ((2F

∗)1/(mµ); a) = 2F ∗, we have (1 − ε, 1) ⊂ C for some sufficiently
small positive ε.

Because A = (0, a∗), [a∗, 1) ⊂ B
⋃
C, we know that F ′(r; a) > 0 for all

r ∈ (0,∞) and all a ∈ [a∗, 1). Consequently, by Lemma 2.1, Fa(r; a) > 0
for all r ∈ (0,∞) and all a ∈ [a∗, 1). This implies that C = (a∗, 1) where
a∗ = inf{a ≥ a∗| limr→∞ F (r; a) > F ∗}.
As a by-product, B = [a∗, a∗] = {a|R(a) = ∞, and F (r; a) ↗ F ∗ as r →

∞}.

Step 2. We are now in a position to study the behavior of the solution f(·; a) for
a ∈ C. For simplicity, we write f(r; a) and F (r; a) as f(r) and F (r) respectively.
It is convenient to use the variable s = ln r. Because f is positive, we can

write f(es) = f(1) exp(−
∫ s
0
G(σ)dσ). Since f ′ < 0 and F ′ = rmµ−1[r(fm)′ +

mµfm] > 0 for all r > 0, we get 0 < G(s) < µ for all s ∈ (−∞,∞). Substituting

this transformation into (1.6) and using the relations r d
dr
= d
ds
, r2 d

2

dr2
= d2

ds2
− d
ds

and rpf1−m(p−1) = F (1−m(p−1))/m, we obtain, writing Ġ = dG/ds,

(p− 1)Ġ = H(G, s)
4
= m(p− 1)G2 + (p− n)G

+m1−pG2−p{1− βG− f q−1}F (1−m(p−1))/m.

Here we consider G as an unknown function, whereas f = f(es) and F = F (es)
as known functions of s.

Since a ∈ C, as s ↗ ∞, f ↘ 0 and F ↗ ∞. If we rewrite H(G, s) =
G2−p[m(p − 1)Gp + (p − n)Gp−1 +m1−p{1 − βG − f q−1}F (1−m(p−1))/m], it is
easy to see that for any ε > 0 there exists sε > 0 such that H(G, s) > 0 for all
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G ∈ (0, (1− ε)/β] and s > sε; H(G, s) < 0 for all G ∈ ((1 + ε)/β, µ] and s > sε.
It then follows from an invariant region argument that

lim
s→∞

G(s) = 1/β.

Step 3. We show that, as s → ∞, G(s) approaches 1/β exponentially fast,
with an exponent at least ν = 1

2 min{
q−1
β , (1−m(p− 1))(µ− 1

β )}.

Considering the function G−(s) = 1
β
[1 − 1

2e
ν(S−s)] defined on [S,∞). We

want to prove that G−(s) is a sub-solution of the equation (p− 1)Ġ = H(G, s)
in [S,∞) provided that S is sufficiently large. For this purpose, first, we let S
be large enough such that f q−1(eS) < 1

4 and G(s) > 1/(2β) for all s > S. Then

f q−1(es) = f q−1(eS) exp{−(q − 1)

∫ s
S

G(σ)dσ} <
1

4
eν(S−s) for all s ≥ S.

Next, by taking a larger S if necessary, we assume that G(s) ≤ 1/β+ 12 (µ−1/β)
for all s ≥ S. Then

F (1−m(p−1))/m(es) = F (1−m(p−1))/m(eS) exp
{
[1−m(p− 1)]

∫ s
S

(µ−G)dσ
}

≥ F (1−m(p−1))/m(eS)eν(s−S) ∀s ≥ S.

Hence,

{1− βG−(s)− f q−1(es)}F (1−m(p−1))/m(es)

≥ [
1

2
eν(S−s) − f q−1(es)]F (1−m(p−1))/m(es)

≥
1

4
eν(S−s)F (1−m(p−1))/m(es)

≥
1

4
F (1−m(p−1))/m(eS) ∀s ≥ S .

Using the fact that 1/(2β) < G−(s) < 1/β we have, for all s ≥ S,

(p− 1)
d

ds
G− −H(G−, s) ≤

ν(p− 1)

2β
+
n

β
−
1

4
λm1−pF (1−m(p−1))/m)(eS) < 0

for all s > S with S large enough, since F (eS)→∞ as S →∞. Here

λ =

{
(2β)p−2, ifp ≤ 2,
βp−2, ifp > 2.

Comparing G(s) to G−(s) in [S,∞) we obtain that G(s) ≥ G−(s) = 1
β
[1 −

1
2e
ν(S−s)] in [S,∞).
In a similar manner we can prove that G(s) ≤ G+(s) = 1

β
[1 + 1

2 (µ −

1/β)eν(S−s)].
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Therefore, |G− 1/β| ≤ 1+µ
2β e

ν(S−s). Consequently, as r→∞,

r1/βf(r) = f(1) exp
{
−

∫ ln r
0

(G(σ) − 1/β)dσ
}

→ f(1) exp
{
−

∫ ∞
0

(G(σ) − 1/β)dσ
}
=: k(a).

Since (fm)a = r
−mµFa > 0 in (0,∞), we know that k(·) is positive, continuous,

and non-decreasing in (a∗, 1).
As G(s) approaches 1/β exponentially fast, we have that r(r1/βf)′ = O(r−ν)

as r→∞.
Recall from Lemma 2.1 that Fa ≥

1
aµ
rF ′, which implies that

fa ≥
1

aµ
[µf + rf ′],

i.e.

(r1/βf)a ≥
1

aµ
[(µ− 1/β)r1/βf + r(r1/βf)′].

Hence, for any a∗ < a1 < a2 < 1,

k(a2)− k(a1) = lim
r→∞

∫ a2
a1

r1/βfada

≥ lim
r→∞

∫ a2
a1

µ− 1/β

aµ
r1/βfda

=
µ− 1/β

aµ

∫ a2
a1

k(a)da.

Because µ > 1/β and k(a) > 0, the above inequality show that k(·) is strictly
increasing.
Now if lima↘a∗ k(a) > 0, it can be derived that supr>0 r

mµfm(r; a∗) > F ∗

because µ > 1/β, which would imply that a∗ ∈ C. It contradicts to the definition
of a∗. Therefore, lima↘a∗ k(a) = 0.
Finally, if K = r1/βf achieves a local maximum, say, at r = r1, which is

the first one, then at r = r1, K ′ = 0, and K ′′ ≤ 0, i.e. βrf ′ + f = 0 and
r2f ′′ ≤ 1+β

β2 f . Substituting these two relations into (1.6) then yields

K(r1; a) < K∗ :=

{(
m

β

)p [
p− 1 +

β

m
(p− n)

]}1/[q−m(p−1)]
.

Hence, once the value of K exceeds K∗, then K monotonously increases there-
after. It then follows that lima↗1 k(a) = ∞ by f(r; 1) ≡ 1 and continuous
dependence of solution on initial value in any finite interval. This completes the
proof of the lemma. Q.E.D.

Characterization of the Set B.

Lemma 2.6 B = {a∗} = {a∗} and F (r; a∗)↗ F ∗ as r ↗∞.
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Proof. From the previous discussion we know that B = [a∗, a∗], and that for
all a ∈ B, Fa > 0 for all r > 0, and F (r; a) ↗ F ∗ as r ↗ ∞. It remains to
show that a∗ = a

∗.
We claim that if a ∈ B, then limr→∞ Fa(r; a) =∞. To this aim we use the

independent variable s = ln r. Note that rF ′ = Ḟ vanishes as s → ∞. The
linear operator L in (2.6) takes the form, for s sufficiently large,

L(φ) = (p− 1)φ̈+ [b+ ◦(1)]φ̇− [c+ ◦(1)]φ

where ◦(1) → 0 as s → ∞, b is a certain constant, and c = µ(µ − n)(1 +
m − mp) > 0 because 1 < q < m(p − 1) + p/n and m(p − 1) < 1. Since
c > 0, it is easy to prove that the solution to L(φ1) = 0 in (S,∞) with initial
value φ1(S) = 0, φ̇1(S) = 1, with S large enough, will have the property that
φ1 →∞ exponentially fast as s→∞.
Note that the function ψ, constructed in the proof of Lemma 2.1, is pos-

itive in (r0,∞). As Fa and ψ are linearly independent, one of them will be
unbounded. Since Fa ≥ k0ψ, we have that Fa →∞ as r →∞.
Finally we prove that a∗ = a∗. In fact, if a

∗ > a∗, then by Fatou’s lemma,

0 = lim
r→∞
(F (r; a∗)− F (r; a∗)) = lim

r→∞

∫ a∗
a∗

Fa(r; a)da

≥

∫ a∗
a∗

lim inf
r→∞

Fa(r; a)da =∞,

which is impossible. This completes the proof of the lemma. Q.E.D.

The proof of Theorem 2.1: follows directly from Lemmas 2.3, 2.5 and 2.6.

3 Existence and Uniqueness of Singular Solu-
tions

In this section we prove the existence and uniqueness of singular solutions of
(1.1), and discuss their properties as well as those of the following equation

ut = div(|∇u
m|p−2∇um) in Rn × (0,+∞). (3.1)

Properties of Singular Solutions and Non-existence Results

Lemma 3.1 Assume that u is a singular solution of (1.1), or (3.1). Then
either (1.3) or (1.4) holds. That is, every singular solution is either an FS or
a VSS.

Its proof is similar to that of Lemma 2.1 in [5]. We omit the details here.

Lemma 3.2 (i) If u is singular solution of (1.1), then for A := ( 1
q−1 )

1/(q−1),

u(x, t) ≤ At−1/(q−1) in Rn × (0,∞). (3.2)
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(ii) If u is a singular solution to (1.1) or (3.1), then for B =
{
nk(mµ)p−1

}µ/p
which is equal to

{
[p−n(1−m(p−1))](mp/[1−m(p−1)])p−1

}1/[1−m(p−1)]
,

we have

u(x, t) ≤ B(t1/p|x|−1)µ = Bt1/[1−m(p−1)]|x|−p/[1−m(p−1)] in Rn×(0,∞).
(3.3)

Proof. (i) The proof is obvious since At−1/(q−1) is a solution of (1.1) with
initial value ∞ in Rn.

(ii) Direct calculation shows that for any ε > 0, the function B(t+ ε)µ/p(|x| −
ε)−µ is a solution to wt = div(|∇wm|p−2∇wm) in {(x, t)| |x| > ε, t ≥ 0}.
Comparing this function with u in the domain {(x, t)| |x| > ε, t ≥ 0} then
gives u(x, t) ≤ B(t + ε)µ/p(|x| − ε)−µ for all |x| > ε, t > 0. Let ε ↘ 0 then
yields u(x, t) ≤ Btµ/p|x|−µ. The desired results are proved.

Lemma 3.3 If (1.1) has a singular solution, then it must have a maximal sin-
gular solution u∗ having the following properties:

(i) Every singular solution of (1.1) is no bigger than u∗.

(ii) u∗ is self-similar; namely, there exists a smooth function f(·) : [0,∞) →
[0,∞) such that u∗ = (α/t)αf(|x|(α/t)αβ) and f solves (1.6).

Proof. For any τ > 0, let uτ (x, t) be the solution of (1.1) in R
n× (τ,∞) with

initial value

uτ (x, τ) = min{Aτ
−1/(q−1), B(τ1/p|x|−1)µ} on Rn × {t = τ}.

By comparison principle we have

uτ (x, t) ≤ min{At
−1/(q−1), B(t1/p|x|−1)µ} on Rn × [t,∞). (3.4)

Consequently, for any τ1 > τ2 > 0, uτ1(·, τ1) ≥ uτ2(·, τ1), so that by comparison,
uτ1 ≥ uτ2 in R

n × [τ1,∞). Hence, limτ↘0 uτ exists for all (x, t) ∈ Rn × (0,∞).
We denote this limit by u∗, which is necessarily a solution of (1.1). Since each
uτ satisfies (3.4), it follows that u

∗(x, t) ≤ min{At−1/(q−1), B(t1/p|x|−1)µ}. It
then yields that u∗ satisfies (1.2).
To show that u∗ is non-trivial, we only need to show that u∗ is no lees

than any singular solution of (1.1). In fact, if u is a singular solution of (1.1),
then from Lemma 3.2 and comparison principle, u ≤ uτ in Rn × [s,∞) for any
0 < τ ≤ s. Thus, u ≤ u∗ in Rn × (0,∞). Consequently, u∗ is non-trivial, and is
the maximal singular solution of (1.1) if (1.1) has one.
Due to the symmetry and the scaling invariance u → uh(x, t) of the equa-

tion (1.1), here uh(x, t) = h
1/(q−1)u(h(q+m−pm)/[p(q−1)]x, ht), we know that the

maximal singular solution u∗ must be self-similar and has the form (1.5). Q.E.D.

Theorem 3.1 (i) If q ≥ m(p−1)+p/n, then (1.1) does not have any singular
solution.
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(ii) If p < n(1 +m)/(1 +mn), then neither (1.1) nor (3.1) has any singular
solution.

Proof. (i) By the results of §2 (see also [14]), we know that if q ≥ m(p−1)+
p/n then (1.6), (1.7) has no positive solution. Using the Lemma 3.3 we know
that assertion holds.
(ii) p < n(1 +m)/(1 +mn) implies µ < n. Suppose for the contrary that (1.1)
or (3.1) has a singular solution u. Then for any t > 0, applying Lemma 3.1 we
have∫

|x|≤1
u(x, t)dx ≤

∫
|x|≤1

Btµ/p|x|−µdx ≤
1

n− µ
Bωnt

µ/p → 0 as t↘ 0,

where ωn is the area of unit sphere in R
n. This contradicts Lemma 3.1. Q.E.D.

Singular Solutions of (3.1)

Theorem 3.2 Assume that p > n(1+m)/(1+mn). Then for any c > 0, (3.1)
has a unique FS with initial mass c. It is given by

Ec(x, t) := t
−nk{a+ b(|x|t−k)p/(p−1)}−θ, (3.5)

where b = k1/(p−1)[1−m(p−1)]/(mp), θ = (p−1)/[1−m(p−1)] and a = a(c) > 0
is the unique constant such that

∫
Rn
(a+ b|y|p/(p−1))−θdy = c.

Proof. It is clear that Ec(x, t) is an FS of (3.1) with initial mass c. We need
only to prove the uniqueness. Assume that u is any FS of (3.1) with initial mass
c, we shall show that u = Ec. The proof is divided into three steps.
Step 1. Consider the sequence {uh}h>0, where uh(x, t) = hnku(hkx, ht). Direct
calculation shows that uh is a solution of (3.1), and∫

Rn

uh(x, t)dx =

∫
Rn

u(y, ht)dx = c ∀h > 0, t > 0 .

In view of (3.3) we have uh(x, t) = hnku(hkx, ht) ≤ Btµ/p|x|−µ. By the regular-
ity results (see [20]) we know that {uh(·, 1)} is equi-continuous in any bounded
domain of Rn, so there exists a subsequence of {uh}, denote also by {uh}, and
a function u0 such that u

h(·, 1) → u0(·) as h ↘ 0 uniformly in any compact
subset of Rn. Since µ > n and uh(x, 1) ≤ B|x|−µ, the Lebesgue’s dominated
convergence theorem then gives uh(·, 1)→ u0 in L

1(Rn). Let v(x, t) be the so-
lution of (3.1) in Rn×(1,∞) with initial data v(·, 1) = u0. Then the contraction
principle yields, for all t > 1,∫

Rn

|uh(·, t)− v(·, t)| ≤

∫
Rn

|uh(·, 1)− v(·, 1)| → 0 as h→ 0. (3.6)

Step 2. Denote, for each h > 0,

eh(t) =

∫
Rn

|uh(·, t)− Ec(·, t)|. (3.7)
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The contraction principle implies that eh(t) is non-increasing. Because Ec = E
h
c ,

we have

eh(t) =

∫
Rn

|uh(·, t)− Ehc (·, t)| = h
nk

∫
Rn

|u(hkx, ht)− E(hkx, ht)|dx

=

∫
Rn

|u(x, ht)− E(x, ht)|dx = e1(ht).

Thus eh(t) is non-increasing in both t and h. Since the initial mass of u and Ec
is c, eh(t) is bounded by 2c. It then follows that limh↘0 e

h(t) exists, and

lim
h↘0

eh(1) = lim
h↘0

e1(h) = lim
h↘0

e1(2h) = lim
h↘0

eh(2).

Denote this limit by e0. Then, in view of (3.6) and (3.7) we obtain

e0 = lim
h→0

eh(1) = lim
h→0

∫
Rn

|uh(·, 1)− Ec(·, 1)|

=

∫
Rn

|v(·, 1)− Ec(·, 1)| (3.8)

= lim
h→0

eh(2) =

∫
Rn

|v(·, 2)− Ec(·, 2)|.

Step 3. We first show that e0 = 0. Suppose for the contrary that e0 > 0. We
define u and u as the solution of (3.1) in Rn × (1,∞) with initial data

u(·, 1) := max{v(·, 1), Ec(·, 1)}, u(·, 1) := min{v(·, 1), Ec(·, )}.

Then the comparison principle gives u ≥ max{v, Ec} ≥ min{v, Ec} ≥ u in
R
n × [1,∞). Since v(·, 2) 6≡ Ec(·, 2) and

∫
Rn
Ec(·, 2) =

∫
Rn
v(·, 2) = c, it follows

that,∫
Rn

[u(·, 2)− u(·, 2)] >

∫
Rn

[max{v(·, 2), Ec(·, 2)} −min{v(·, 2), Ec(·, 2)}]

=

∫
Rn

|v(·, 2)− Ec(·, 2)| = e
0 .

On the other hand, by the contraction principle,∫
Rn

|u(·, 2)− u(·, 2)| ≤

∫
Rn

|u(·, 1)− u(·, 1)| =

∫
Rn

|v(·, 1)− Ec(·, 1)| = e
0.

Here we obtain a contradiction. Therefore, e0 = 0. Because e1(t) is non-
increasing in t, then 0 = e0 = limt↘0 e

1(t) implies that e1(t) ≡ 0. Consequently,
u ≡ Ec. The proof is completed. Q.E.D.

Singular Solutions of (1.1)

Theorem 3.3 Assume that 1 < q < m(p − 1) + p/n, which implies p > n(1 +
m)/(1 +mn). Then for any c > 0, (1.1) has a unique FS, denoted as uc, with
initial mass c. Moreover, uc is monotone increasing in c and uc → u∞ as
c→∞, and u∞ is a VSS of (1.1).
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Proof. Step 1: Existence. Let Ec(x, t) be given by (3.5), and φl(x) =
Ec(x, 1/l). Then∫

Rn

φl(x)dx = c, and lim
l→∞

φl(x) = 0 ∀ x 6= 0.

That is, {φl(x)} is a δ−sequence. Let ul(x, t) and wl(x, t) be the solution of (1.1)
and (3.1) with initial data φl(x) respectively. BecauseEc(x, t+1/l) satisfies (3.1)
and has initial data φl(x), by the uniqueness we have wl(x, t) = Ec(x, t + 1/l).
From comparison it yields ul(x, t) ≤ Ec(x, t + 1/l). This shows that for any
ε > 0, {ul(x, t)} are uniformly bounded in Rn × [ε,∞). Consequently, by
the regularity results (see [20]) it follows that {ul} is equi-continuous in any
compact subset of Rn × (0,∞)\{(0, 0)}. Hence, there exist a function u and a
subsequence, denote still by {ul}, such that ul → u uniformly in any compact
subset of Rn × (0,∞)\{(0, 0)}. The limit function u is necessarily a (weak)
solution of (1.1) in Rn × (0,∞).
Now we show that u is an FS of (1.1) with initial mass c. First, by (3.3) we

have
ul(x, t) ≤ Ec(x, t+ 1/l) ≤ B[(t+ 1/l)

1/p|x|−1]µ. (3.9)

It follows that u(x, t) ≤ Ec(x, t). Therefore, u satisfies (1.2). Next, by Fatou’s
lemma we have∫

Rn

u(x, t)dx ≤ lim inf
l→∞

∫
Rn

ul(x, t)dx ≤ c ∀ t > 0.

Now, we prove that for any δ > 0,

lim
t↘0

∫
|x|<δ

u(x, t)dx = c. (3.10)

¿From the differential equation of (1.1) we obtain

∫
Rn

ul(x, t)dx =

∫
Rn

φl(x)dx −

∫ t
0

∫
Rn

uql (x, t) dx dt = c−

∫ t
0

∫
Rn

uql (x, t) dx dt.

¿From (3.9) it follows that

∫ t
0

∫
Rn

uql (x, t) dx dt

≤

∫ t
0

∫
Rn

(t+
1

l
)−qnk{a+ b(|x|(t+

1

l
)−k)p/(p−1)}−qθ dx dt

=

∫ t
0

∫
Rn

(t+
1

l
)(1−q)nk{a+ b|x|p/(p−1)}−qθ dx dt

= C[(t+
1

l
)1−(q−1)nk − (

1

l
)1−(q−1)nk],

and∫
|x|>δ

uldx ≤

∫
|x|>δ

B(t+ 1/l)µ/p|x|−µdx = C1δ
n−µ(t+ 1/l)µ/p since µ > n.
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Therefore,

∫
|x|≤δ

ul(x, t)dx

=

∫
Rn

ul(x, t)dx −

∫
|x|>δ

ul(x, t)dx

≥
{
c− C[(t+ 1/l)1−(q−1)nk − (1/l)1−(q−1)nk]

}
− C1δ

n−µ(t+
1

l
)µ/p.

Since nk(q − 1) < 1, as l →∞ we obtain

∫
|x|≤δ

ul(x, t)dx ≥ c− Ct
1−(q−1)nk − C1δ

n−µtµ/p.

As t↘ 0 we have (3.10). Hence, u is an FS with initial mass c.

Step 2: Uniqueness. To prove the uniqueness, we first show that for any FS
u of (1.1) with initial mass c, u(x, t) ≤ Ec(x, t).
Let w(x, t) = B(t1/p|x|−1)µ, then (3.3) implies u(x, t) ≤ w(x, t). For any

τ > 0, let uτ be the solution to (3.1) for t > τ with initial value uτ = u on
{t = τ}. Then by comparison, uτ ≥ u for all t > τ . Therefore, when τ1 ≤ τ2,
uτ1 ≥ uτ2 for all t > τ2, i.e., {uτ}τ>0 is monotone decreasing in τ . Consequently,
the limiting function v = limτ↘0 uτ exists.

Since uτ (x, τ) = u(x, τ) ≤ w(x, τ) and w(x, t + τ) satisfies (3.1). By com-
parison we have uτ (x, t) ≤ w(x, t + τ). In view of the regularity of solutions
of (3.1) we conclude that for any t > 0, uτ (·, t) → v(·, t) as τ ↘ 0, uni-
formly in any compact subset of Rn × (0,∞)\{(0, 0)} and in L1(Rn). Since∫
Rn
uτ (x, t)dx =

∫
Rn
u(x, τ)dx → c as τ → 0, we assert that

∫
Rn
v(x, t)dx = c

for all t > 0. Thus, v is an FS of (3.1) with initial mass c. By uniqueness of FS
of (3.1), v = Ec. Consequently, u ≤ limτ↘0 uτ = v = Ec.
Let u1 and u2 be any two FSs of (1.1) with initial mass c. Then ui ≤ Ec for

i = 1, 2. In view of contraction principle, for t > s > 0,

∫
Rn

|u1(x, t) − u2(x, t)|dx

≤

∫
Rn

|u1(x, s)− u2(x, s)|dx

≤

∫
Rn

{|u1(x, s)− Ec(x, s)|+ |Ec(x, s)− u2(x, s)|}dx

=

∫
Rn

{[Ec(x, s)− u1(x, s)] + [Ec(x, s)− u2(x, s)]}dx.

As s↘ 0 we get that u1(x, t) = u2(x, t).

Step 3. From the proof of Step 1 and the results of Step 2 we know that uc is
monotone increasing in c.
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Step 4. By Lemma 3.2 we have

uc(x, t) ≤ At
−1/(q−1) +B(t1/p|x|−1)µ ∀c > 0.

Similar to the arguments of Step 1 we have that the limit limc→∞ uc = u∞ exists
and u∞ is a VSS of (1.1). This completes the proof of the theorem. Q.E.D.

Theorem 3.4 Assume that 1 < q < m(p − 1) + p/n, then (1.1) has a unique
VSS.

Proof. Step 1. We first prove that each FS is no large than a VSS. Let uc
and U be an FS and a VSS of (1.1) respectively. By Lemma 3.3 we obtain
the maximal singular solution u∗ = (α/t)αf(|x|(α/t)αβ), where f solves (1.6).
Therefore,

∫
Rn

U(x, t)dx ≤

∫
Rn

u∗(x, t)dx = tα(nβ−1)αα(1−nβ)
∫ ∞
0

f(y)dy.

For any σ > 0 we define the truncated VSS

Uσ(x, t) =

{
U(x, t) if U(x, t) < σ,
σ if U(x, t) ≥ σ.

Because nβ < 1 and U is a VSS, we conclude that there exist a sequence {τ(l)}
with τ(l)↘ 0 and the corresponding {σ(l)} such that

∫
Rn

Uσ(l)(x, τ(l))dx = c.

Define ψl(x) = Uσ(l)(x, τ(l)), and let vl be the solution of (1.1) with initial
value ψl(x). Because ψl(x) ≤ U(x, τ(l)), by the comparison principle we have
vl(x, t) ≤ U(x, t+ τ(l)) ≤ A(t+ τ(l))−1/(q−1) +B{(t+ τ(l))1/p|x|−1}µ. Similar
to the argument of Step 1 of the proof of Theorem 3.3 we have that limit
liml→∞ vl = v exists and v is an FS of (1.1) with initial mass c, and v(x, t) ≤
U(x, t). By the uniqueness of FS of (1.1) it follows uc = v ≤ U .
Step 2. By Step 1 we know that the VSS u∞ obtained by Theorem 3.3 is the
minimal VSS. Similar to the proof of Lemma 3.3 we have that u∞ is self-similar
and has the form (1.5), and the corresponding function f solves (1.6). Theorem
2.1 shows that u∞ = u

∗. Therefore, VSS is unique. Q.E.D.

Appendix

In this appendix, we show that the initial value problem (1.6), (2.1) has a unique
solution in a right neighbourhood of r = 0.
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Proposition 3.1 Suppose q > 1, m > 0, p > 1 and m(p − 1) < 1. For each
a ∈ R, the following problem

(|(|f |m−1f)′|p−2(|f |m−1f)′)′ +
n− 1

r
|(|f |m−1f)′|p−2(|f |m−1f)′

+βrf ′ + f − |f |q−1f = 0

(|f |m−1f)′(0) = 0, f(0) = a (A.1)

has a unique solution with |f |m−1f in C1 and |(|f |m−1f)′|p−2(|f |m−1f)′ Hölder
continuous in a right neighbourhood of r = 0. Furthermore, f is continuously
differentiable in a for a > 0 and r sufficiently small and the following hold:

1. If a = 0, then f ≡ 0;

2. If a = 1, then f ≡ 1;

3. If a > 1, then f ′ > 0.

Proof: First we derive an integral equation which is equivalent to the initial
value problem (A.1). Integrating (A.1) over (0, r) multiplied by rn−1, we find

−(|(|f |m−1f)′|p−2(|f |m−1f)′) = βrf +
1

rn−1

∫ r
0

ρn−1[1− nβ − |f |q−1]fdρ

=: G[f ](r) (A.2)

Integrating the 1/(p− 1)−th power of both sides then gives

|f |m−1f = |a|m−1a−

∫ r
0

|G[f ](ρ)|(2−p)/(p−1)G[f ](ρ)dρ =: H[f ](r) (A.3)

or equivalently,
f = |H[f ](r)|(1−m)/mH[f ](r).

Now we proceed to prove that (A.1) has a uniques solution with the desired
smoothness.
The first case we consider is 1/(p − 1) > 1 and m ≤ 1. It is clear that

|G[f ](ρ)|(2−p)/(p−1)G[f ](ρ) is continuously differentiable in f , hence the right
hand side of (A.3) is continuously differentiable in |f |m−1f . The existence and
uniqueness of solution follows from classical Picard iteration and Gronwall’s
inequality.
Next, we consider the case of 1/(p − 1) > 1 and m > 1. For any two

continuous functions f1 and f2,∣∣∣|H[f1](r)|(1−m)/mH[f1](r) − |H[f2](r)|(1−m)/mH[f2](r)
∣∣∣

≤ C(‖f1‖∞, ‖f2‖∞)|H[f1](r)|
p−2H[f1](r) − |H[f2](r)|

p−2H[f2](r)|

≤ C(‖f1‖∞, ‖f2‖∞)(

∫ r
0

|G[f1](ρ)− G[f2](ρ)|
1/(p−1)dρ)p−1
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by triangle inequality and our assumption that m(p − 1) < 1. Again, we have
the existence and uniqueness.
At last, we deal with the case of 1/(p − 1) < 1 and m < 1. We show

|G[f ](r)|(2−p)/(p−1)G[f ](r) is a Lipschitz continuous function of |f |m−1f . It is
clear that we can think of G[f ](ρ) =

∫ r
0 Fdµ with certain measure µ, where F (r)

is continuously differentiable in f . In addition, for any two continuous functions
f1 and f2, the corresponding F1 and F2 satisfy

‖ |F1|
(2−p)/(p−1)F1 − |F2|

(2−p)/(p−1)F2‖∞

≤ C(‖f1‖∞, ‖f2‖∞)‖ |f1|
(2−p)/(p−1)f1 − |f2|

(2−p)/(p−1)f2‖∞

≤ C(‖f1‖∞, ‖f2‖∞)‖ |f1|
m−1f1 − |f2|

m−1f2‖∞,

again by triangle inequality and our assumption that m(p− 1) < 1.
If F1, F2 ≥ 0, then∣∣∣ |G[f1](r)|(2−p)/(p−1)G[f1](r) − |G[f2](r)|(2−p)/(p−1)G[f2](r)

∣∣∣
= |(

∫ r
0

F1dµ)
1/(p−1) − (

∫ r
0

F2dµ)
1/(p−1)|

≤ (

∫ r
0

|F 1/(p−1)1 − F 1/(p−1)2 |p−1dµ)1/(p−1)

≤ C(‖f1‖∞, ‖f2‖∞)‖ |f1|
m−1f1 − |f2|

m−1f2‖∞.

In general, if a1 =:
∫ r
0
F+1 dµ ≥ a2 =:

∫ r
0
F−1 dµ and b1 =:

∫ r
0
F+2 dµ ≥ a2 =:∫ r

0 F
−
2 dµ, |(

∫ r
0 F1dµ)

1/p−1−(
∫ r
0 F2dµ)

1/p−1| = |(a1−a2)1/(p−1)−(b1−b2)1/(p−1)|,
by the elementary inequality,

|(a1 − a2)
1/(p−1) − (b1 − b2)

1/(p−1)|

≤ C
(
|a1/(p−1)1 − b1/(p−1)1 |+ |a1/(p−1)2 − b1/(p−1)2 |

)
,

we reduce this case to the case of F1, F2 ≥ 0.
Finally, if a1 ≥ a2 but b2 ≥ b1,

|(

∫ r
0

F1dµ)
1/p−1 − (

∫ r
0

F2dµ)
1/p−1| = |(a1 − a2)

1/(p−1) + (b2 − b1)
1/(p−1)|,

by the elementary inequality,

|(a1 − a2)
1/(p−1) + (b2 − b1)

1/(p−1)|

≤ C
(
|a1/(p−1)1 − b1/(p−1)1 |+ |a1/(p−1)2 − b1/(p−1)2 |

)
,

we again reduce to the case of F1, F2 ≥ 0. Therefore, |G[f ](r)|(2−p)/(p−1)G[f ](r)
is a Lipschitz continuous function of |f |m−1f . This complete the part of exis-
tence and uniqueness of solution with desired smoothness.
The continuous differentiability of f to a when a > 0 and r sufficiently small

follows directly from the positivity of f and the continuous differentiability of
|f |m−1f to a.
The assertions (1) and (2) follows from the uniqueness of solution. (3) can

be seen directly from (A.2). This completes the proof of the proposition.
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