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Cesaro asymptotic equipartition of energy in the

coupled case ∗

Stefan Boller

Abstract

It is well known from earlier results that certain types of selfadjoint
operators, e.g. operators allowing a representation as operator matri-
ces, show equipartition of energy. In this paper we examine the question
whether there are more selfadjoint operators showing equipartition of en-
ergy in the Cesaro mean. For this purpose we proof a necessary and
sufficient criterion for equipartition of energy and use this criterion to
show equipartition for a system of partial differential equations with a
coupled boundary condition.

1 Introduction

In this paper we examine the phenomenon of asymptotic equipartition of energy
for abstract evolution equations involving selfadjoint operators. This means
that if a Hilbert space H is the direct sum of n Hilbert spaces Hi (i = 1, . . . , n),
then, roughly speaking, each component contributes equal parts to the conserved
total energy. More precisely, let πi be the (orthogonal) projections on the i-th
component of H with respect to this decomposition and let A be be a selfadjoint
operator on H with domain D(A). Then we consider the following evolution
equation:

D0u(t) = Au(t)

u(0) = u0,
(1.1)

where D0 =
1
2πi∂0 is the differentiation with respect to the time t. The uniquely

determined solution of (1.1) is the unitary group U(t) := e2πiAt generated by
2πiA.
Since U(·) is unitary, the square of the norm ‖u(t)‖2 (the energy) of u(t) is

conserved, i.e.

n∑
i=1

‖πiu(t)‖
2
= ‖u(t)‖2 = ‖U(t)u0‖

2
= ‖u0‖

2
= const.
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Now we can give the following

Definition 1.1. 1. The selfadjoint operatorA admits asymptotic equipar-
tition of energy, if for all u0 ∈ H and the corresponding solution u(t)
the following asymptotic condition is true

lim
t→∞

‖πiu(t)‖
2
=
1

n
‖u0‖

2
. (1.2)

(See [11])

2. The selfadjoint operator A admits asymptotic equipartition of energy
in the Cesaro sense, if for all u0 ∈ H and the corresponding solution
u(t) the following asymptotic condition is true

lim
T→∞

1

T

∫ T
0

‖πiu(t)‖
2
dt =

1

n
‖u0‖

2
. (1.3)

The earliest results concerning energy equipartition seem to be presented by
Brodsky ([2]) and Lax and Phillips ([14, Cor. 2.3, p. 106]). In the following
there was a continuing interest in this question. In particular Goldstein and
Sandefur contributed a lot to this area (e.g. [7], [8], [11], [9], [12], they treated
also more general situations). Goldstein ([8]) and Duffin ([6]) showed results
concerning energy equipartition from a finite time on. Also Picard and Seidler
(cf. e.g. [19], [17], [18]) examined equipartition results, where they choose
matrices of operators as an ansatz for the operator A. For further contributions
consult the references. A recent paper is written by Goldstein, de Laubenfels
and Sandefur ([13]).
In the known results on equipartition the operator A is assumed to be de-

composable in operators with special properties, e.g. as a matrix of closed
operators or generators of (regularized) semigroups. This is typically the case
for a partial differential equation with decoupled boundary conditions, i.e. when
the boundary condition restricts the components separately.
In this paper we want to examine, if there are more operators not belonging

to this class, which nevertheless show equipartition of energy. For simplicity
we restrict our considerations to the case of energy equipartition in the Cesaro
sense for 2-component systems (n = 2 in Definition 1.1).
After giving some prerequisites in section 2 we proof a necessary and suffi-

cient condition for asymptotic energy equipartition in section 3. This condition
contains some previous results. Further we apply this condition in section 4 to
a system of partial differential equations with a coupled boundary condition.
In the last section we give a short outlook on open questions in this area.

2 Prerequisites

As the starting point for our considerations we use the following ansatz given by
Picard and Seidler in [19] essentially equivalent to that examined by Goldstein
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in [7], [8]. They considered 2× 2-operator-matrices in H = H1⊕H2 of the form

A =

(
0 B∗

B 0

)

with B : D(B) ⊂ H1 → H2 a densely defined, closed operator and the corre-
sponding initial value problem

D0u = Au

u(0) = u0 ∈ H.
(2.1)

They proved the following theorem concerning equipartition in the Cesaro sense:

Theorem 2.1. For every initial value u0 ∈ H the following asymptotic relations
hold

lim
T→∞

1

T

∫ T
0

‖π1u(t)‖
2
dt = 1

2 ‖Qu0‖
2
+ ‖π1Pu0‖

2

lim
T→∞

1

T

∫ T
0

‖π2u(t)‖
2
dt = 1

2 ‖Qu0‖
2
+ ‖π2Pu0‖

2
,

where P , Q = I − P are the projections to the kernel and the closure of the
range of A, respectively.

For the proof of this theorem the following lemma is essential. We will use
this lemma later, so we cite it here.

Lemma 2.2. Let Eλ be the spectral measure of A and T :=

(
1 0
0 −1

)
. Then

TEI = E−IT

for all intervals I ⊂ R.

As a corollary of Theorem 2.1 we get the following result originally showed
by Goldstein in [8, Theorem 4]:

Corollary 2.3. We have energy equipartition in the Cesaro sense for every
initial value u0 ∈ H of (2.1) if and only if 0 is not an eigenvalue of A.

If looking for a criterion for equipartition of energy in the Cesaro sense we
must examine the asymptotic behaviour of

Su0(t) :=
〈
u(t)|Tu(t)

〉
= ‖π1u(t)‖

2 − ‖π2u(t)‖
2
, (2.2)

where u(t) is the solution of (1.1) for the initial value u0 and T is the operator
defined in Lemma 2.2. We see that we have energy equipartition if and only if

lim
T→∞

1

T

∫ T
0

Su0(t)dt = lim
T→∞

1

T

∫ T
0

‖π1u(t)‖
2
dt− lim

T→∞

1

T

∫ T
0

‖π2u(t)‖
2
dt = 0.

(2.3)
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Inserting the unitary group e2πiAt generated by 2πiA in (2.2) we get:

Su0(t) =
〈
exp(2πiAt)u0|T exp(2πiAt)u0

〉
.

For the examination of this expression the following theorem about a functional
calculus for scalar products of non-commuting operator functions is quite useful.

Theorem 2.4. Let A,B be selfadjoint (unbounded) operators on a Hilbert space
H, T a bounded operator on H. Let further f, g : R→ C be measurable functions
(measurable with respect to the Borel-σ-algebras on R and C, respective), and
x ∈ D(f(A)), y ∈ D(g(B)). Further let f ⊗ g be integrable with respect to µx,y,
where µx,y is the uniquely determined (complex) measure on the Borel-σ-algebra
Σ2 in R2, such that for every measurable rectangle R =M1×M2 (M1,M2 ∈ Σ,
Σ the Borel-σ-algebra on R)

µx,y(R) =
〈
EM1x|TFM2y

〉
is valid. Here EM1 and FM2 are the spectral measures with respect to the two
operators A and B, resp. For this measure we have the following result:

〈
f(A)x|Tg(B)y

〉
=

∫
R×R
f ⊗ gd2µx,y. (2.4)

Proof. The proof is standard measure theory, so we omit the details (cf. [1]).

Corollary 2.5. The assertion of Theorem 2.4 applies in particular to bounded,
measurable functions f , g.

3 A Criterion for Energy Equipartition for Self-
adjoint Operators

We want to use Corollary 2.5 for the examination of (2.2). Let T be the following
bounded operator on H:

(u, v) 7→ T (u, v) = (u,−v).

According to Corollary 2.5 we have

Su0(t) =

∫
R×R
exp(−2πi(λ− µ)t)d2νu0(λ, µ), (3.1)

where νu0 is the measure of Theorem 2.4 for
〈
EM1u0|TEM2u0

〉
, with Eλ the

spectral measure of A. Now we will prove the following theorem giving a nec-
essary and sufficient criterion for energy equipartition.

Theorem 3.1. If u0 ∈ H, Su0 as in (3.1), then

lim
T→∞

1

T

∫ T
0

Su0(t)dt =

∫
{λ=µ}

d2νu0(λ, µ).
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Proof. Applying Fubini’s theorem and the dominated convergence theorem we
get

lim
T→∞

1

T

∫ T
0

Su0(t)dt = lim
T→∞

1

T

∫ T
0

(∫
R×R
exp(−2πi(λ− µ)t)d2νu0(λ, µ)

)
dt

= lim
T→∞

1

T

∫
{λ6=µ}

(∫ T
0

exp(−2πi(λ− µ)t)dt

)
d2νu0(λ, µ)

+ lim
T→∞

1

T

∫
{λ=µ}

(∫ T
0

exp(−2πi(λ− µ)t)dt

)
d2νu0(λ, µ)

=

∫
{λ6=µ}

lim
T→∞

exp(−2πi(λ− µ)T )− 1

−2πi(λ− µ)T
d2νu0(λ, µ)

+

∫
{λ=µ}

d2νu0(λ, µ)

=

∫
{λ=µ}

d2νu0(λ, µ),

which proves the assertion.

As a consequence of this theorem we can formulate

Theorem 3.2. Asymptotic energy equipartition in the Cesaro sense for the op-
erator A holds, if and only if∫

{−K<λ=µ≤K}
d2νu0(λ, µ) = 0 (3.2)

for every u0 ∈ H and every K ∈ R+.

Proof. It follows from (2.3) with the help of Theorem 3.1.

For calculation purposes the next lemma is useful.

Lemma 3.3. We have

∫
{−K<λ=µ≤K}

d2νu0(λ, µ) = lim
n→∞

n∑
k=−n

〈
E
I
(n)
k

u0|TEI(n)k

u0
〉
,

where

I
(n)
k :=

{
λ ∈ R|(k − 12 )εn < λ ≤ (k +

1
2 )εn

}
(k = −n, . . . , n)

for n ∈ N and εn =
2K
2n+1 .
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Proof. By the dominated convergence theorem we get∫
χ{−K<λ=µ≤K}d

2νu0(λ, µ) = lim
n→∞

n∑
k=−n

∫
χ
(I
(n)
k
×I(n)
k
)
(λ, µ)d2νu0(λ, µ),

because

χ{−K<λ=µ≤K} = lim
n→∞

χ⋃k=n
k=−n(I

(n)
k ×I

(n)
k )
,

where χM is the characteristic function of the set M . Furthermore we get∫
χ
(I
(n)
k ×I

(n)
k )
(λ, µ)d2νu0(λ, µ) =

∫
χ
I
(n)
k

(λ)χ
I
(n)
k

(µ)d2νu0(λ, µ)

=
〈
E
I
(n)
k

u0|TEI(n)k

u0
〉
.

Remark 3.1. From the last result we can extract the condition given by Picard
and Seidler in [19] using Lemma 2.2.

In the case of operators with compact resolvent we get the following simple
criterion.

Corollary 3.4. Let A be an operator with compact resolvent. Then we have
energy equipartition in the Cesaro sense if and only if

‖π1Pju0‖
2
= ‖π2Pju0‖

2
for all u0 ∈ H.

Proof. If A has a compact resolvent there exists an at most countably infinite
set of eigenvalues of A with no (finite) accumulation point. Hence there exists an

N ∈ N, such that in every interval I(N)k of Lemma 3.3 lies at most one eigenvalue,
i.e. E

I
(n)
k

= 0 or E
I
(n)
k

= Pj , where Pj is the (orthogonal) projection on the

eigenspace for the eigenvalue, which lies in the interval I
(n)
k . Using Lemma 3.3

and Theorem 3.2 we get the condition:

0 = lim
n→∞

n∑
k=−n

〈
E
I
(n)
k

u0|TEI(n)k

u0
〉
=
∑
j

〈
Pju0|TPju0

〉
for all u0 ∈ H.

Here the summation extends over all j, that lie in the interval (−K,K]. Since
the condition is true for every u0 and every K ∈ R+, the assertion follows.

Remark 3.2. The condition of Corollary 3.4 can be formulated also in terms

of the eigenvectors of A. Let Bk :=
{
x
(k)
j

}
be a (finite) orthonormal basis of

the eigenspace of the k-th eigenvalue λk. Then the condition of Corollary 3.4
becomes 〈

πix
(k)
j |πix

(k)
l

〉
=
1

2
δjl i = 1, 2, ∀j, k, l.
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4 Energy Equipartition for a System with Cou-
pled Boundary Condition

In this section we examine as an example for the theorem just proven an operator
which can not be regarded as a matrix of operators like in the articles of Picard
and Seidler ([19], [18]).

We consider on the Hilbert space H := L2,p(I) ⊕ L2,q(I), with the scalar
product

〈
(u, v)|(u′, v′)

〉
H
:=
〈
u|u′

〉
p
+
〈
v|v′

〉
q
:=
〈
p−1u|u′

〉
0
+
〈
q−1v|v′

〉
0
,

where p, q ∈ L∞(I) with p(x), q(x) ≥ c0 > 0 for almost every x ∈ I (I = (a, b)
with a, b ∈ R), the following operator:

A =

(
0 pD
qD 0

)
(4.1a)

with domain

D(A) := {(u, v) ∈ H1(I)⊕H1(I)|u(a) + αv(a) = 0 ∧ u(b) + βv(b) = 0},
(4.1b)

where H1(I) = W 12 (I) is the Sobolev space of once differentiable L2-functions
(H1(I) ⊂ C(I)!). By a simple calculation we see that this operator is selfadjoint
for α, β being purely imaginary but can not be regarded as an operator matrix
(with respect to the given decomposition of H), if α 6= 0 or β 6= 0. Also one can
see that λ = 0 is an eigenvalue if and only if α = β.

With standard arguments we can now show that A is an operator with
compact resolvent (cf. e.g. [15, ch.7.4, p.142ff] or [1]). We get the following

Theorem 4.1. 1. W(A) is closed, where W(A) is the range of A.

2. A−1 :W(A)→ D(A) ∩W(A) exists,

3. A−1 is compact.

If we restrict A to the rangeW(A) we get a selfadjoint operator with compact
resolvent, which will be denoted again with A.

Using Corollary 3.4 we prove now the following

Theorem 4.2. Energy equipartition in the Cesaro sense is true for the operator
A, if and only if the components vi, wi of the (orthonormal) eigenvectors ui
corresponding to the eigenvalue λi fulfill the following condition

[wivj ]
b
a = 0 for every i, j. (4.2)
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Proof. With the orthonormality of the eigenvectors we get

λδij = λ
〈
ui|uj

〉
H
=
〈
λui|uj

〉
H
=
〈
Aui|uj

〉
H
=

=
〈
pDwi|vj

〉
p
+
〈
qDvi|wj

〉
q
=
〈
Dwi|vj

〉
0
+
〈
Dvi|wj

〉
0
.

Integrating by parts and inserting the differential equation we get furthermore〈
Dwi|vj

〉
0
+
〈
Dvi|wj

〉
0
=
〈
wi|Dvj

〉
0
+
〈
Dvi|wj

〉
0
−
1

2πi
[wivj ]

b
a =

=
〈
wi|q

−1λwj
〉
0
+
〈
q−1λwi|wj

〉
0
−
1

2πi
[wivj ]

b
a =

= 2λ
〈
wi|wj

〉
q
−
1

2πi
[wivj ]

b
a .

Hence 〈
wi|wj

〉
q
=
1

2
δij +

1

4πiλ
[wivj ]

b
a .

Similarly we get 〈
vi|vj

〉
q
=
1

2
δij −

1

4πiλ
[wivj ]

b
a ,

which shows the assertion with the help of Corollary 3.4.

As an example for operators satisfying the condition of the last theorem but
not belonging to the class considered in [19], i.e. α 6= 0 or β 6= 0, we examine
now the special case p = q with p ∈ C1(I). Then the components v, w of the
eigenvectors are continuously differentiable and the eigenvalue equation for the
operator A can be formulated classically. So we have simple spectrum by the
Picard-Lindelöf theorem.
Further we get the following conservation law:

Lemma 4.3. Let A be as described above and let u, v be the components of the
eigenvectors of A, then

|v|2 + |w|2 = const.

Proof. By multiplication of the differential equation by (pD)v and (pD)w, resp.,
we get

(pD)v(pD)w = (pD)vλv

(pD)w(pD)v = (pD)wλw.

Hence (0 6= λ ∈ R):

−(Dv)v = (Dw)w

and

D |v|2 = (Dv)v + (Dv)v = −(Dw)w − (Dw)w = −D |w|2 .
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Now we can derive the following

Theorem 4.4. Let A be as in Lemma 4.3. We have energy equipartition in the
Cesaro sense for A iff α = β or α = −1/β.

Proof. Inserting the boundary condition in Lemma 4.3 and Theorem 4.2 we get

|w(b)|2 =
−α2 + 1

−β2 + 1
|w(a)|2 .

and

w(b)v(b)− w(a)v(a) = w(b)(−β)w(b)− w(a)(−α)w(a) =

=

(
β
α2 − 1

−β2 + 1
+ α

)
|w(a)|2 .

The last expression is 0 if and only if the following quadratic equation is fulfilled:

β(α2 − 1) = α(β2 − 1).

(if |v(a)|2 = 0 we get, by Lemma 4.3, that v = 0 which is not an eigensolution.)

Remark 4.1. It can also be shown that this result remains true, when the interval
I is unbounded, e.g. I = (0,∞), and p = q = 1 (see [1]).

5 Outlook

Beginning with the result presented here there a some further questions to solve.
First there is the question, when do we have equipartition in the strong sense,
i.e. when do the components converge pointwise to the ratio 1

n
of the total

energy, not only in the Cesaro mean. Here in analogy to Theorem 3.1 the
behaviour of limt→∞ Su0(t) has to be examined. Here we expect, that we must
state another condition like the Riemann-Lebesgue-Condition or the absolute
continuity of the spectrum in the decoupled case. It could be, that the absolute
continuity of the spectral measure implies also the absolute continuity of the
measure νu0 of Theorem 2.4 on the subsets D1 := {(λ, µ) ∈ R

2|λ < µ} and
D2 := {(λ, µ) ∈ R2|λ > µ}, resp. So for absolute continuous spectrum we
would have the same condition as in the Cesaro case.
Further we could extend the considerations to bigger systems than n = 2.

Now it can easily be seen that you can extend the condition of Theorem 3.2 for
n > 2 to∫

{−K<λ=µ≤K}
d2νu0,k(λ, µ) = 0 for all u0 ∈ H and for every k = 1, . . . , n.,

(5.1)

where the measures νu0,k are constructed like the measure νu0 with the operators
Tk = (δi,j − nδi,jδk,i)i,j (k = 1, . . . , n).
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Last you could omit the restriction to selfadjoint operators and examine
equations as Goldstein et al. did for instance in [9], [12], or [13] where they con-
sidered the ratio of the components of the total energy, which is asymptotically
constant in certain cases.

Acknowledgment. The author thanks professor R. Picard for supporting
this diploma thesis by discussing and useful hints. Also he wishes to thank
professors Voigt and Timmermann, and the referee for his/her comments on
the first version of this paper.
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