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POSITIVE SOLUTIONS FOR A NONLOCAL BOUNDARY-VALUE

PROBLEM WITH INCREASING RESPONSE

G. L. Karakostas & P. Ch. Tsamatos

Abstract. We study a nonlocal boundary-value problem for a second order ordinary

differential equation. Under a monotonicity condition on the response function, we

prove the existence of positive solutions.

1. Introduction

When looking for positive solutions of the equation

u′′(t) + a(t)f(u(t)) = 0, t ∈ [0, 1],

associated with various boundary conditions the main assumption on the response
function f is the existence of the limits of f(u)/u, as u approaches 0 and +∞.
Existence of solutions under these conditions has been shown, for instance, in [1,
4, 5, 6, 7, 11, 18]. Such conditions distinguish two cases: The sublinear case when
the limits are +∞ and 0, and the superlinear case when the limits are 0 and +∞,
respectively. In [16] the authors present a detailed investigation of a twwo-point
boundary-value problem under similar limiting conditions and they introduce the
meaning of the index of convergence.
In this paper, we discuss a general problem with non-local boundary conditions.

We avoid the limits above, and therefore weaken the restriction of the function f .
Instead, we assume that there exist real positive numbers u, v such that f(u) ≥ ρu
and f(v) < θv, where ρ, θ are prescribed positive numbers. This is a rather weak
condition, but we have to pay for it. Indeed, we assume that the function f is
increasing (not necessarily strictly increasing). More precisely, we consider the
ordinary differential equation

(p(t)x′)′ + q(t)f(x) = 0, a.e. t ∈ [0, 1] (1.1)

with the initial condition
x(0) = 0 (1.2)

and the non-local boundary condition

x′(1) =

∫ 1
η

x′(s)dg(s). (1.3)
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Here f : R→ R is an increasing function, the real valued functions p, q, g are defined
at least on the interval [0, 1] and η is a real number in the open interval (0, 1). Also
the integral in (1.3) is meant in the sense of Riemann-Stieljes.
When (1.1) is an equation of Sturm-Liouville type, Il’in and Moiseev [12], mo-

tivated by a work of Bitsadze [2] and Bitsadze and Samarskii [3], investigated the
existence of solutions of the problem (1.1), (1.2) with the multi-point condition

x′(1) =

m∑
i=1

αix
′(ξi), (1.4)

where the real numbers α1, α2, . . . , αm have the same sign. The formed boundary-
value problem (1.1), (1.2), (1.4) was the subject of some recent papers (see, e.g. [9,
10]). Condition (1.3) is the continuous version of (1.4) which happens when g is a
piece-wise constant function that is increasing and has a finitely many jumps.
The question of existence of positive solutions of the boundary-value problem

(1.1)-(1.3) is justified by the large number of papers. For example one can consult
the papers [1, 4, 5, 6, 7, 11, 18] which were motivated by Krasnoselskii [17], who
presented a complete theory for positive solutions of operator equations. One of the
more powerful tools exhibited in [17] is the following general fixed point theorem.
This theorem is an extension of the classical Bolzano-Weierstrass sign theorem for
continuous real valued functions to Banach spaces, when the usual order is replaced
by the order generated by a cone.

Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume that
Ω1 and Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

In the literature, boundary-value problems of the form (1.1)-(1.3) are often solved
by using the well known Leray-Schauder Continuation Theorem (see, e.g. [9, 10,
13, 19]), or the Nonlinear Alternative (see, e.g. [8, 15] and the references therein.
For another approach see, also, [14]). On the other hand Krasnoselskii’s fixed
point theorem, when it is applied, it provides some additional properties of the
solutions, for instance, positivity (see, e.g. [1, 4, 5, 6, 7, 11, 14]). However, the more
information on the solutions the more restrictions on the coefficients are needed.

2. Preliminaries and assumptions

In the sequel we shall denote by R the real line and by I the interval [0, 1]. Then
C(I) will denote the space of all continuous functions x : I → R. Let C10 (I) be
the space of all functions x : I → R, whose the first derivative x′ is absolutely
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continuous on I and x(0) = 0. This is a Banach space when it is furnished with
the norm defined by

‖x‖ := sup{|x′(t)| : t ∈ I}, x ∈ C10 (I).

We denote by L+1 (I) the space of functions x : I → R
+ := [0,+∞) which are

Lebesgue integrable on I.
Consider the system (1.1), (1.2) and the nonlocal-value condition (1.3). By a

solution of the problem (1.1)-(1.3) we mean a function x ∈ C10 (I) satisfying equation
(1.1) for almost all t ∈ I and condition (1.3).

Before presenting our results we give our basic assumptions:

(H1) f : R→ R is an increasing continuous function, with f(x) ≥ 0, when x > 0
(H2) The functions p, q belong to C(I) and they are such that p > 0, q ≥ 0 and

sup{q(s) : η ≤ s ≤ 1} > 0. Without loss of generality we can assume that
p(1) = 1.

(H3) The function g : I → R is increasing and such that g(η) = 0 < g(η+).

(H4)

∫ 1
η

1

p(s)
dg(s) < 1

To search for solutions to problem (1.1)-(1.3), we first re-formulate the problem
as an operator equation of the form x = Ax, for an appropriate operator A. To
find this operator consider the equation (1.1) and integrate it from t to 1. Then we
derive

x′(t) =
1

p(t)
x′(1) +

1

p(t)

∫ 1
t

q(s)f(x(s))ds. (2.1)

Taking into account the condition (1.3) we obtain

x′(1) =

∫ 1
η

x′(s)dg(s) = x′(1)

∫ 1
η

1

p(s)
dg(s) +

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

and so

x′(1) = α

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s),

where

α :=

(
1−

∫ 1
η

1

p(s)
dg(s)

)−1
.

Then, from (2.1), we get

x(t) = α

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

∫ t
0

1

p(s)
ds+

∫ t
0

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθds.

(Notice that x(0) = 0.)
This process shows that solving the boundary-value problem (1.1)-(1.3) is equiv-

alent to solve the operator equation x = Ax in C10 (I), where A is the operator
defined by

Ax(t) := αP (t)

∫ 1
η

Φ(f(x))(s)dg(s) +

∫ t
0

Φ(f(x))(s)ds, (2.2)
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where we have set

P (t) :=

∫ t
0

1

p(s)
ds, t ∈ I

and

(Φy)(t) :=
1

p(t)

∫ 1
t

q(s)y(s)ds, t ∈ I, y ∈ C(I).

It is clear that A is a completely continuous operator. We set

b0 = g(η+)(> 0).

The following lemma is the basic tool in the proof of our main result.

Lemma 2.1. If y ∈ C(I) is a nonnegative and increasing function, then it holds

∫ 1
η

Φ(y)(s)dg(s) ≥ λb

∫ 1
0

q(s)y(s)ds, b ∈ [0, b0],

where

λ :=

∫ 1
η
q(s)ds∫ 1

0
q(s)ds

(
sup
s∈I
p(s)

)−1
.

Proof. Since the function g is increasing, for every b ∈ (0, b0] we have

g(s) ≥ b, s ∈ (η, 1]. (2.3)

Hence it follows that∫ 1
0

q(s)y(s)ds =

∫ η
0

q(s)y(s)ds +

∫ 1
η

q(s)y(s)ds

≤ y(η)

∫ η
0

q(s)ds +

∫ 1
η

q(s)y(s)ds

≤

∫ η
0
q(s)ds∫ 1

η
q(s)ds

∫ 1
η

q(s)y(s)ds+

∫ 1
η

q(s)y(s)ds

=

∫ 1
0
q(s)ds∫ 1

η
q(s)ds

∫ 1
η

q(s)y(s)ds.

Now we use assumption (H3) and relation (2.3) to obtain that

∫ 1
0

q(s)y(s)ds ≤ b−1
∫ 1
0
q(s)ds∫ 1

η
q(s)ds

∫ 1
η

q(s)y(s)g(s)ds

= −b−1
∫ 1
0
q(s)ds∫ 1

η
q(s)ds

∫ 1
η

d

(∫ 1
s

q(θ)y(θ)dθ

)
g(s)

= b−1
∫ 1
0
q(s)ds∫ 1

η
q(s)ds

∫ 1
η

∫ 1
s

q(θ)y(θ)dθdg(s)

≤ (λb)−1
∫ 1
η

1

p(s)

∫ 1
s

q(θ)y(θ)dθdg(s).
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The proof is complete. �
For convenience we set

D :=

∫ 1
η

Φ(P )(s)dg(s), H :=

∫ 1
η

Φ(1)(s)dg(s)

and we observe the following:

Lemma 2.2. Let b be a fixed real number such that

0 < b ≤ min

{
H

αλ|Dηp(0) −H|
, b0

}
.

Then ση ≤ H, where σ :=
αλbp(0)

αλb+ 1
D.

Proof. Obviously b ≤ H
αλ|Dηp(0)−H| . If Dηp(0)−H > 0, by a simple calculation we

have the result. Also, if Dηp(0)−H < 0, then

ση =
αλbp(0)η

αλb+ 1
D <

αλbH

αλb+ 1
≤ H .

3. Main results

Before presenting our main theorem we set ρ := 1
αση
and let θ := p(0)

αH+
∫ 1
0
q(s)ds

where σ and H are the constants defined in Lemma 2.2.

Theorem 3.1. Assume that f, p, q and g satisfy (H1)-(H4). If

(H5) There exist u > 0 and v > 0 such that f(u) ≥ ρu and f(v) < θv,

then the boundary-value problem (1.1)-(1.3) admits at least one positive solution.

Proof. Our main purpose is to make the appropriate arrangements so that Theorem
1.1 to be applicable. Define the set

K :=

{
x ∈ C10 (I) : x ≥ 0, x

′ ≥ 0, x is concave and

∫ 1
η

Φ(x)(s)dg(s) ≥ σ‖x‖

}
,

which is a cone in C10 (I).
First we claim that the operator A maps K into K. To this end take a point

x ∈ K. Then observe that it holds Ax ≥ 0, (Ax)′ ≥ 0 and (Ax)′′ ≤ 0. Moreover,
we observe that∫ 1

η

Φ(Ax)(s)dg(s) ≥α

∫ 1
η

Φ(P )(s)dg(s)

∫ 1
η

Φ(f(x))(s)dg(s)

=αD

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

=
σ(αλb+ 1)

λbp(0)

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

=
σ

p(0)

(
α+

1

λb

)∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

=σ[
α

p(0)

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

+
1

p(0)

1

λb

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)].
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Now we use Lemma 2.1 and get∫ 1
η

Φ(Ax)(s)dg(s) ≥σ[
α

p(0)

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

+
1

p(0)

∫ 1
0

q(θ)f(x(θ))dθ]

=σ(Ax)′(0)

=σ‖(Ax)‖.

This proves our first claim.
Now consider an arbitrary x ∈ K. The fact that the function x is concave implies

that
ηx(1) ≤ x(η) ≤ x(r) ≤ x(1) ≤ ‖x‖, for every r ∈ [η, 1].

So,

σ‖x‖ ≤

∫ 1
η

Φ(x)(s)dg(s)

=

∫ 1
η

1

p(s)

∫ 1
s

q(θ)x(θ)dθdg(s)

≤ x(1)

∫ 1
η

1

p(s)

∫ 1
s

q(θ)dθdg(s)

= x(1)

∫ 1
η

Φ(1)(s)dg(s)

= x(1)H.

Thus we have x(1) ≥ σ‖x‖
H
, which implies that

x(r) ≥
ησ

H
‖x‖, r ∈ [η, 1].

Hence, for every r ∈ [η, 1] we have
ησ

H
‖x‖ ≤ x(r) ≤ ‖x‖,

where, notice that, by Lemma 2.2, ησ
H
≤ 1. Then, by assumption (H5), there exists

u > 0 such that f(u) ≥ ρu.
Set

M :=
H

ησ
u

and fix a function x ∈ K with ‖x‖ =M . Then
ησ

H
M ≤ x(r) ≤M, for every r ∈ [η, 1]

and therefore

(Ax)′(1) ≥ α

∫ 1
η

1

p(s)

∫ 1
s

q(θ)f(x(θ))dθdg(s)

≥ αf(x(η))

∫ 1
η

Φ(1)(s)dg(s) = αHf(x(η))

≥ αHf(
ησM

H
) = αHf(u) ≥ αHρu

= αρησM ≥M = ‖x‖.
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Thus we proved that, if ‖x‖ =M , then ‖Ax‖ ≥ ‖x‖.
Now, again, from assumption (H5), it follows that there exists v > 0 such that

0 ≤ f(v) < θv. Fix any function x ∈ K with ‖x‖ = v. Then 0 ≤ x(r) ≤ v, r ∈ I.
Therefore

‖Ax‖ = (Ax)′(0) =
α

p(0)

∫ 1
η

Φ(f(x))(s)dg(s) +
1

p(0)

∫ 1
0

q(s)f(x(s))ds

=
α

p(0)

∫ 1
η

1

p(s)

∫ 1
0

q(r)f(x(r))drdg(s) +
1

p(0)

∫ 1
0

q(s)f(x(s))ds

≤ f(v)

[
αH

p(0)
+
1

p(0)

∫ 1
0

q(s)ds

]

≤ θv

[
αH

p(0)
+
1

p(0)

∫ 1
0

q(s)ds

]

= v = ‖x‖.

So we proved that, if ‖x‖ = v, then ‖Ax‖ ≤ ‖x‖.
Finally, we set Ω1 := {x ∈ C10 (I) : ‖x‖ < r1} and Ω2 := {x ∈ C

1
0 (I) : ‖x‖ < r2},

where r1 = min{M,v} and r2 = max{M,v}. Without loss of generality we can
assume that M 6= v and hence r1 < r2. Then taking into account the fact that A
is a completely continuous operator, by Theorem 1.1, the result follows. �

Next we show that some information on the lower and upper limits of the quantity
f(u)/u at the points 0 and +∞, are enough to guarrantee existence of a positive
solution of the problem (1.1)-(1.3).

Corollary 3.2. Consider the functions f, p, q and g satisfying the assumptions
(H1)-(H4). Moreover assume that

(H6) lim supx→+∞
f(x)
x
= +∞ and lim infx→0+

f(x)
x
= 0.

or

(H7) lim supx→0+
f(x)
x
= +∞ and lim infx→+∞

f(x)
x
= 0.

Then the boundary-value problem (1.1)-(1.3) admits at least one positive solution.

Proof. It is easy to see that each of assumptions (H6), (H7) imply the validity of
(H5). Hence the result follows from Theorem 3.1.
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