Non-collision solutions for a class of planar singular Lagrangian systems *

Morched Boughariou

Abstract

In this paper, we show the existence of non-collision periodic solutions of minimal period for a class of singular second order Hamiltonian systems in \mathbb{R}^{2} with weak forcing terms. We consider the fixed period problem and the fixed energy problem in the autonomous case.

1 Introduction and statement of results

This paper deals with the existence of non-collision periodic solutions of minimal period for the problem

$$
\ddot{q}+V_{q}(t, q)=0
$$

where $q \in \mathbb{R}^{N} \backslash\{0\}$ with $N=2$, the potential V is of the form $V(t, q)=$ $-\frac{1}{|q|^{\alpha}}+W(q)$ in a neighborhood of $q=0$ with $1<\alpha<2$ and W is such that $|q|^{\alpha} W(q),|q|^{\alpha+1} W^{\prime}(q) \rightarrow 0$ as $|q| \rightarrow 0$.

We will consider to cases: the fixed period problem

$$
\begin{gather*}
\ddot{q}+V_{q}(t, q)=0 \\
q(t+T)=q(t) \tag{T}
\end{gather*}
$$

and the fixed energy problem (autonomous case)

$$
\begin{gather*}
\ddot{q}+V^{\prime}(q)=0 \\
\frac{1}{2}|\dot{q}|^{2}+V(q)=h \tag{h}\\
q \text { periodic. }
\end{gather*}
$$

The case $\alpha \geq 2$ "Strong force" and $N \geq 2$ has been studied by many authors. The existence of classical (non-collision) solutions of $\left(P_{T}\right)$ and $\left(P_{h}\right)$ has been proved via variational methods(See $[1,5,11,13,14]$). The case $0<\alpha<2$ "weak force" is more complicated because the lose of control of the functional, whose critical points correspond to periodic solutions on the functions passing

[^0]through the origin. Recently, there has been several works which deal with these two problems for $N \geq 3$ (See also [1, 2, 4, 8, 17, 18]).

In our situation $(N=2)$, we refer for the study of $\left(P_{T}\right)$ to DegiovanniGiannoni [10], Ambrosetti-Coti Zelati [3], Serra-Terracini [16] where they treated also case of $N \geq 3$, and to Coti Zelati [7]. In [10], they obtained the existence of classical solutions under a global conditions like

$$
\begin{equation*}
\frac{a}{|q|^{\alpha}} \leq-V(q) \leq \frac{b}{|q|^{\alpha}}, \quad \forall q \neq 0 \tag{1.1}
\end{equation*}
$$

In [3], they found solutions of large period T. In [16]-[7], they used a radially symmetric assumption on V in a neighborhood of the singularity in order to get a non-collision solution of $\left(P_{T}\right)$. For the study of $\left(P_{h}\right)$, we know the result of Benci-Giannoni [6] where the existence of classical solution strongly depend on the pertubation W. The other result has been obtained by Coti Zelati-Serra [9]. There arguments are based on the fact that the topology of $\{V \leq h\}$ is non trivial; We remark that the case $V(q)=-\frac{1}{|q|^{\alpha}}$ is excluded in this work.

In the present paper, we are able to find estimates in minima of suitable minimisation perturbed problems using a re-scaling argument. Such estimates give actually non-collision solutions with minimal period to our problems without assuming a radially symmetric condition on V. More precisely, in section 2 , we study the fixed period problem; We deal with non-autonomous potentials V satisfying the hypotheses:
(V0) $V \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N} \backslash\{0\} ; \mathbb{R}\right)$ and T-periodic in t;
(V1) $V(t, q)<0, \forall(t, q) \in[0, T] \times \mathbb{R}^{N} \backslash\{0\}$;
$(\mathrm{V} 2)\left|\frac{\partial V}{\partial t}(t, q)\right| \leq-V(t, q), \forall(t, q) \in[0, T] \times \mathbb{R}^{N} \backslash\{0\} ;$
(V3) There exist $r>0,1<\alpha<2$ and $W \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$ satisfying $|q|^{\alpha} W(q),|q|^{\alpha+1} W^{\prime}(q) \rightarrow 0$ as $|q| \rightarrow 0$ such that:

$$
V(t, q)=-\frac{1}{|q|^{\alpha}}+W(q), \forall 0<|q|<r
$$

Theorem 1.1 Assume (V0)-(V3) with $N=2$. Then for any $T>0,\left(P_{T}\right)$ possesses at least one non-collision solution having T as minimal period.

Remark 1.1 For $N \geq 3$, Theorem 1.1 was proved in [17] under condition (V3) by Morse theoretical arguments.

In section 3, we study the fixed energy problem. Here, we assume:
$\left(\mathrm{V}^{\prime} 0\right) V \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right) ;$
$\left(\mathrm{V}^{\prime} 1\right) 3 V^{\prime}(q) q+V^{\prime \prime}(q) q q>0, \forall q \neq 0 ;$
(V'2) There exists an constant $\left.\alpha_{1} \in\right] 0,2[$ such that:

$$
V^{\prime}(q) q \geq-\alpha_{1} V(q)>0, \forall q \neq 0
$$

(V'3) $\liminf \left[V(q)+\frac{1}{2} V^{\prime}(q) q\right] \geq 0$ as $|q| \rightarrow \infty$;
(V'4) The same as (V3) with $V(t, q)=V(q)$.
Theorem 1.2 Assume ($\left.V^{\prime} 0\right)-\left(V^{\prime} 4\right)$ with $N=2$. Then for any $h<0$, $\left(P_{h}\right)$ possesses at least one classical solution with a minimal period.

Remark 1.2 i) For $N \geq 3$, ($V^{\prime} 1$) is used in [2] to prove existence of a generalized solution (that may enter the singularity) and in [18] to avoid collision solutions in the case $N=3$ and $1<\alpha<\frac{4}{3}$.
ii) Assumptions (V'1)-(V'2) can be made only in $\{V \leq h\}$ (See [2]).

Notation. For any $u \in H^{1}\left([0, T] ; \mathbb{R}^{2}\right)$, we note $u(t)=(|u(t)|, \theta(u)(t))$ in polar coordinates. We consider the following function space:

$$
E_{0}^{T}=\left\{u \in H^{1}\left([0, T] ; \mathbb{R}^{2}\right) ; u(0)=u(T) ; \int_{0}^{T} \dot{\theta}(u)(t) d t=2 \pi\right\}
$$

i.e., E_{0}^{T} is the set of T-periodic functions $u \in H^{1}\left([0, T] ; \mathbb{R}^{2}\right)$ such that θ : $[0, T] /\{0, T\} \sim S^{1} \rightarrow S^{1}$ has degre 1.

We shall work in the function set:

$$
\Lambda_{0}^{T}=\left\{u \in E_{0}^{T} ; u(t) \neq 0 \forall t\right\} .
$$

2 The fixed period problem

In this section we proof Theorem 1.1. Let us define

$$
f(q)=\frac{1}{2} \int_{0}^{T}|\dot{q}|^{2} d t-\int_{0}^{T} V(t, q) d t
$$

It is well known that $f \in C^{1}\left(\Lambda_{0}^{T} ; \mathbb{R}\right)$ and any critical point $u \in \Lambda_{0}^{T}$ is a solution of $\left(P_{T}\right)$.

Since we deal with "weak force" potentials, we know the existence of situation where the minimum of f is assumed on functions going through the origin(See [12]). For any $\varepsilon \in] 0,1]$, we introduce the perturbed potential:

$$
V_{\varepsilon}(t, q)=V(t, q)-\frac{\varepsilon}{|q|^{2}} .
$$

The corresponding Lagrangian systems are

$$
\begin{gather*}
\ddot{q}+\left(V_{\varepsilon}\right)_{q}(t, q)=0 \tag{T}\\
q(t+T)=q(t)
\end{gather*}
$$

and the associated functionals are

$$
f_{\varepsilon}(q)=\frac{1}{2} \int_{0}^{T}|\dot{q}|^{2} d t-\int_{0}^{T} V_{\varepsilon}(t, q) d t .
$$

One has that $f_{\varepsilon}\left(q_{n}\right) \rightarrow+\infty$ as $q_{n} \rightarrow \partial \lambda_{0}^{T}$ weakly in $H^{1}\left([0, T] ; \mathbb{R}^{2}\right)$. We recall that in Λ_{0}^{T},

$$
\|\dot{u}\|_{2}=\left(\int_{0}^{T}|\dot{u}|^{2} d t\right)^{\frac{1}{2}}
$$

is a norm. Set

$$
m_{\varepsilon}=\inf _{q \in \Lambda_{0}^{T}} f_{\varepsilon}(q)
$$

The following result is closely related to this of [11] (See [1]).
Lemma 2.1 For any $\varepsilon \in] 0,1], m_{\varepsilon}$ is a critical value for f_{ε}; i.e. there exists $q_{\varepsilon} \in \Lambda_{0}^{T}$ such that $f_{\varepsilon}\left(q_{\varepsilon}\right)=m_{\varepsilon}$ and $f_{\varepsilon}^{\prime}\left(q_{\varepsilon}\right)=0$.

The fact that $f_{\varepsilon}\left(q_{\varepsilon}\right)=m_{\varepsilon} \leq m_{1}$ implies

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{T}\left|\dot{q}_{\varepsilon}\right|^{2} d t \leq m_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} V\left(t, q_{\varepsilon}\right) d t \leq m_{1} \tag{2.2}
\end{equation*}
$$

It follows from 2.1 the existence of $\varepsilon_{n} \rightarrow 0$ such that

$$
q_{n}=q_{\varepsilon_{n}} \rightarrow q \text { weakly in } H^{1}\left([0, T] ; \mathbb{R}^{2}\right) \text { and uniformly in }[0, T]
$$

We say that q is a weak solution of $\left(P_{T}\right)$ in the sense of [1].
Setting $C(q)=\{t \in[0, T], q(t)=0\}$, one can see from 2.2 and (V3), that $\operatorname{mes} C(q)=0$ (Lebesgue measure). Moreover, we have

$$
\begin{equation*}
q_{n} \rightarrow q \text { in } C^{2}\left(K ; \mathbb{R}^{2}\right), \forall K \text { compact } \subset[0, T] \backslash C(q) \tag{2.3}
\end{equation*}
$$

Hence, we have that

$$
\ddot{q}+V_{q}(t, q)=0, \forall t \in[0, T] \backslash C(q)
$$

Therefore q is a generalized solution of $\left(P_{T}\right)$ in the sense of [5].
Now, we state these properties of approximated solutions q_{n} :
Lemma 2.2 (i) There exists an constant $C_{1}>0$ independent of n, such that

$$
\left.\left.\left|\frac{1}{2}\right| \dot{q}_{n}\right|^{2}+V\left(t, q_{n}\right)-\frac{\varepsilon_{n}}{\left|q_{n}\right|^{2}} \right\rvert\, \leq C_{1}
$$

(ii) There exist constants $0<\mu<r$ and $C_{2}>0$ independent of n, such that:

$$
\frac{1}{2} \frac{d^{2}}{d t^{2}}\left|q_{n}(t)\right|^{2} \geq C_{2}, \forall t:\left|q_{n}(t)\right|<\mu
$$

Proof. (i) follows from (V2) and 2.2, while for (ii), it is a consequence of (i) and (V3). For more details, we refer to $[8,1]$.

Remark 2.1 (ii) of Lemma 2.2 does not hold in general when q is merely a generalized solution of $\left(P_{T}\right)$ as in [17].

Proof of theorem 1.1. We will prove how the function q is actually a noncollision solution of $\left(P_{T}\right)$. We suppose that q has a collision in \bar{t}. The contradiction will be showed in two steps.

Step 1. The solution q_{n} have a self-intersection. We study the angle that the approximated solution q_{n} describes close to the singularity. By (ii) of Lemma 2.2 and 2.3 , we get

$$
\frac{1}{2} \frac{d^{2}}{d t^{2}}|q(t)|^{2} \geq C_{2}>0, \forall t: 0<|q(t)|<\mu
$$

Take $\mu_{0}<\min (\mu, r)$ and $t_{1}<\bar{t}<t_{2}$ such that

$$
\left|q\left(t_{1}\right)\right|=\left|q\left(t_{2}\right)\right|=\frac{\mu_{0}}{2}
$$

This implies that, for sufficiently large n,

$$
\begin{gathered}
\frac{\mu_{0}}{4}<\left|q_{n}\left(t_{1}\right)\right|,\left|q_{n}\left(t_{2}\right)\right|<\mu_{0} \\
\left|q_{n}(t)\right|<\mu_{0}, \forall t \in\left[t_{1}, t_{2}\right]
\end{gathered}
$$

Let $t_{n} \in\left[t_{1}, t_{2}\right]$ be such that

$$
\left|q_{n}\left(t_{n}\right)\right|=\min _{t \in\left[t_{1}, t_{2}\right]}\left|q_{n}(t)\right| .
$$

Then, we have

$$
\begin{aligned}
& \frac{d}{d t}\left|q_{n}(t)\right|<0, \forall t \in\left[t_{1}, t_{n}[\right. \\
& \left.\left.\frac{d}{d t}\left|q_{n}(t)\right|>0, \forall t \in\right] t_{n}, t_{2}\right] .
\end{aligned}
$$

Now, we will use a re-scaling argument as in ([17]-[18]). We set for any $L>0$,

$$
x_{n}(s)=\delta_{n}^{-1} q_{n}\left(\delta_{n}^{\frac{\alpha+2}{2}} s+t_{n}\right), s \in[-L, L]
$$

when $\delta_{n}=\left|q_{n}\left(t_{n}\right)\right| \rightarrow 0$. Let us remark that for sufficiently large $n, \delta_{n}^{\frac{\alpha+2}{2}} s+t_{n} \in$ $\left[t_{1}, t_{2}\right]$ for $s \in[-L, L]$ and then $\delta_{n}\left|x_{n}(s)\right|<\mu$. Hence, $x_{n}(s)$ satisfies
(i) $\left|x_{n}(0)\right|=1 ; x_{n}(0) \cdot \dot{x}_{n}(0)=0 ; \frac{d}{d s}\left|x_{n}(s)\right|<0, \forall s \in[-L, 0[$;

$$
\left.\left.\frac{d}{d s}\left|x_{n}(s)\right|>0, \forall s \in\right] 0, L\right] ;
$$

(ii) $\ddot{x}_{n}+\frac{\alpha x_{n}}{\left|x_{n}\right|^{\alpha+2}}+\delta_{n}^{\alpha+1} W^{\prime}\left(\delta_{n} x_{n}\right)+\frac{2 \varepsilon_{n}}{\delta_{n}^{2-\alpha}} \frac{x_{n}}{\left|x_{n}\right|^{4}}=0$;
(iii) $\left.\left.\left|\frac{1}{2}\right| \dot{x}_{n}\right|^{2}-\frac{1}{\left|x_{n}\right|^{\alpha}}+\delta_{n}^{\alpha} W\left(\delta_{n} x_{n}\right)-\frac{\varepsilon_{n}}{\delta_{n}^{2-\alpha}\left|x_{n}\right|^{2}} \right\rvert\, \leq C_{1} \delta_{n}^{\alpha}$.

We may assume the existence -up a subsequence- of

$$
d=\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}}{\delta_{n}^{2-\alpha}} \in[0, \infty]
$$

We consider the following two cases:

Case1: $d<\infty$ From (i) and (iii), we may assume

$$
\begin{aligned}
& x_{n}(0) \rightarrow e_{1} \\
& \dot{x}_{n}(0) \rightarrow \sqrt{2(1+d)} e_{2}
\end{aligned}
$$

where $\left(e_{1}, e_{2}\right)$ is an orthogonal basis of \mathbb{R}^{2}. By the continuous dependence of solutions in initial data and equations, one can see from (V3) that, $x_{n}(s)$ converge to a function $y_{\alpha, d}$ in $C^{2}\left(-L, L ; \mathbb{R}^{2}\right)$ where $y_{\alpha, d}$ is the solution of

$$
\begin{gathered}
\ddot{y}+\frac{\alpha y}{|y|^{\alpha+2}}+\frac{d y}{|y|^{4}}=0 \\
y(0)=e_{1}, \quad \dot{y}(0)=\sqrt{2(1+d)} e_{2}
\end{gathered}
$$

Here we state some properties of $y_{\alpha, d}$ (c.f. [17]-[18]).

$$
\begin{gather*}
\left|y_{\alpha, d}(s)\right|=\left|y_{\alpha, 0}(s)\right| \geq 1, \quad \forall s \in \mathbb{R} ; \tag{2.4}\\
\left|y_{\alpha, d}(s)\right|^{2} \dot{\theta}\left(y_{\alpha, d}\right)(s)=\sqrt{2(1+d)}, \forall s \in \mathbb{R} ; \tag{2.5}\\
\lim _{s \rightarrow-\infty} \theta\left(y_{\alpha, 0}\right)(s)=-\frac{\pi}{2-\alpha} ; \tag{2.6}\\
\lim _{s \rightarrow+\infty} \theta\left(y_{\alpha, 0}\right)(s)=+\frac{\pi}{2-\alpha} \tag{2.7}
\end{gather*}
$$

Since $1<\alpha<2$, we get from 2.4-2.7, the existence of $\bar{L}>0$ such that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[\theta\left(x_{n}\right)(\bar{L})-\theta\left(x_{n}\right)(-\bar{L})\right] & =\theta\left(y_{\alpha, d}\right)(\bar{L})-\theta\left(y_{\alpha, d}\right)(-\bar{L}) \\
& \geq \theta\left(y_{\alpha, 0}\right)(\bar{L})-\theta\left(y_{\alpha, 0}\right)(-\bar{L}) \\
& >2 \pi
\end{aligned}
$$

Thus, for sufficiently large n, there exist $-\bar{L}<s_{0}<0<s_{1}<\bar{L}$ such that

$$
x_{n}\left(s_{0}\right)=x_{n}\left(s_{1}\right) ; \dot{\theta}\left(x_{n}\right)(s)>0 \text { for } s=s_{0}, s_{1}
$$

Case 2: $d=+\infty$ In this case, we set for $L>0$

$$
z_{n}(s)=\delta_{n}^{-1} q_{n}\left(\varepsilon_{n}^{-\frac{1}{2}} \delta_{n}^{2} s+t_{n}\right), s \in[-L, L]
$$

Since $\varepsilon_{n}^{-\frac{1}{2}} \delta_{n}^{2} \rightarrow 0$, we see that $\delta_{n}\left|z_{n}(s)\right|<\mu$ for sufficiently large n for any $L>0$. As in case 1, we find:

$$
\begin{gathered}
\left|z_{n}(0)\right|=1, z_{n}(0) . \dot{z}_{n}(0)=0 \\
\frac{d}{d s}\left|z_{n}(s)\right|<0, \forall s \in\left[-L, 0\left[; \quad \frac{d}{d s}\left|z_{n}(s)\right|>0, \forall s \in\right] 0, L\right] ; \\
z_{n}(s) \rightarrow y_{\infty}(s) \text { in } C^{2}\left([-L, L] ; \mathbb{R}^{2}\right)
\end{gathered}
$$

where y_{∞} is the solution of the system

$$
\begin{gathered}
\ddot{y}+\frac{2 y}{|y|^{4}}=0 \\
y(0)=e_{1} \quad \dot{y}(0)=\sqrt{2} e_{2}
\end{gathered}
$$

for a suitable orthogonal basis $\left(e_{1}, e_{2}\right)$ of \mathbb{R}^{2}. Then,

$$
y_{\infty}(s)=e_{1} \cos \sqrt{2} s+e_{2} \sin \sqrt{2} s
$$

We remark that $\dot{\theta}\left(z_{n}\right) \rightarrow \sqrt{2}$ uniformly in $[-L, L]$. So z_{n} has at least a self intersection for $L>\frac{\sqrt{2} \pi}{2}$.

From the two cases, it follows the existence of $\left.t_{1, n}, t_{2, n} \in\right] t_{1}, t_{2}[$ such that

$$
\begin{gathered}
q_{n}\left(t_{1, n}\right)=q_{n}\left(t_{2, n}\right) \\
\frac{d}{d t}\left|q_{n}(t)\right| \neq 0 \text { and } \dot{\theta}\left(q_{n}\right)(t)>0 \text { for } t=t_{1, n}, t_{2, n}
\end{gathered}
$$

Step 2. The solution q_{n} cannot have a self intersection. Let

$$
q_{n}{ }^{*}(t)= \begin{cases}q_{n}(t) & \text { if } t \notin\left[t_{1, n}, t_{2, n}\right] \\ q_{n}\left(t_{1, n}+t_{2, n}-t\right) & \text { if } t \in\left[t_{1, n}, t_{2, n}\right]\end{cases}
$$

We have

$$
\int_{0}^{T} \dot{\theta}\left(q_{n}{ }^{*}\right)(t) d t=\int_{0}^{T} \dot{\theta}\left(q_{n}\right)(t) d t=2 \pi
$$

Hence $q_{n}{ }^{*} \in \Lambda_{0}^{T}$. Since $f_{\varepsilon_{n}}\left(q_{n}{ }^{*}\right)=f_{\varepsilon_{n}}\left(q_{n}\right)=m_{\varepsilon_{n}}, q_{n}{ }^{*}$ must be a solution of $\left(P_{T}\right)_{\varepsilon_{n}}$ and then of class C^{1}. This is a contradiction with the fact

$$
\lim _{t \rightarrow t_{1, n^{-}}}{\dot{q_{n}}}^{*}(t)=\dot{q}_{n}\left(t_{1, n}\right) \neq-\dot{q}_{n}\left(t_{2, n}\right)=\lim _{t \rightarrow t_{1, n}^{+}} \dot{q}_{n}^{*}(t) .
$$

Therefore, we proved that q is a non-collision solution of $\left(P_{T}\right)$. The minimality of the period T follows from the fact that $q_{n} \rightarrow q \in \Lambda_{0}^{T}$.

3 The fixed energy problem

We give an outline of the proof of Theorem 1.2. According to the variational principle given by [2], we define

$$
I(u)=\frac{1}{2} \int_{0}^{1}|\dot{u}|^{2} d t \int_{0}^{1}[h-V(u)] d t
$$

on the set $M_{h}=\left\{u \in \Lambda_{0}^{1} ; g(u)=h\right\}$ where

$$
g(u)=\int_{0}^{1}\left[V(u)+\frac{1}{2} V^{\prime}(u) u\right] d t
$$

We know, if $u \in \Lambda_{0}^{1}$ is any possible solution of $\left(P_{h}\right)$, then $g(u)=h$. Moreover, under assumptions ($\mathrm{V}^{\prime} 0$)-($\left.\mathrm{V}^{\prime} 4\right), M_{h} \neq \emptyset$ is a C^{1} manifold of codimension 1 and if $u \in M_{h}$ is a critical point of I constrained on M_{h} such that $I(u)>0$, set

$$
w^{2}=\frac{\int_{0}^{1} V^{\prime}(u) u d t}{\int_{0}^{1}|\dot{u}|^{2} d t}
$$

then $q(t)=u(w t)$ is a non-constant classical solution of $\left(P_{h}\right)$.
We modify V, as in section 2 , setting

$$
\left.\left.V_{\varepsilon}(u)=V(u)-\frac{\varepsilon}{|u|^{2}}, \quad \varepsilon \in\right] 0,1\right]
$$

Let

$$
I_{\varepsilon}(u)=\frac{1}{2} \int_{0}^{1}|\dot{u}|^{2} d t \int_{0}^{1}\left[h-V_{\varepsilon}(u)\right] d t
$$

We remark that

$$
g(u)=\int_{0}^{1}\left[V_{\varepsilon}(u)+\frac{1}{2} V_{\varepsilon}^{\prime}(u) u\right] d t
$$

It follows from (V'2) that

$$
I_{\varepsilon}(u) \geq \frac{h}{\frac{1}{2}-\frac{1}{\alpha_{1}}} \int_{0}^{1}|\dot{u}|^{2} d t, \quad \forall u \in M_{h}
$$

Therefore, I_{ε} is bounded below and coercive on M_{h}. Since V_{ε} is a "strong force" potential, one can see that I_{ε} is lower semi continuous on M_{h} and has a minimum u_{ε} on M_{h}. Set

$$
w_{\varepsilon}^{2}=\frac{\int_{0}^{1} V_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right) u_{\varepsilon} d t}{\int_{0}^{1}\left|\dot{u}_{\varepsilon}\right|^{2} d t}
$$

the function $q_{\varepsilon}(t)=u_{\varepsilon}\left(w_{\varepsilon} t\right)$ is a solution of the modified system $\left(P_{h}\right)_{\varepsilon}$. Uniform estimates with respect to ε allow to show that u_{ε} converges uniformly on $[0,1]$ to $u, w_{\varepsilon}{ }^{2} \rightarrow w^{2}>0$ and that $q(t)=u(w t)$ satisfies the equations of the system $\left(P_{h}\right)$ for any $t \in\left\{t \in\left[0, \frac{1}{w}\right], u(t) \neq 0\right\}$.

Repeating the argument of section 2, one prove that q is in fact a non-collision solution of $\left(P_{h}\right)$ with minimal period. If not, a new minimizer $u_{n}{ }^{*} \in M_{h}$ for large n can be constructed; But $u_{n}{ }^{*}$ being a minimum of $I_{\varepsilon_{n}}$ on M_{h} correspond to a solution of $\left(P_{h}\right)_{\varepsilon_{n}}$, on the other hand it does not have the required regularity.

Remark 3.1 (i)The existence of solutions q_{ε} of $\left(P_{h}\right)_{\varepsilon}$ can be found without assuming condition ($V^{\prime} 1$). The proof relies on an application of the mountainpass theorem to I_{ε}. However, $q(t)=\lim q_{\varepsilon}(t)$ is a generalized solution of $\left(P_{h}\right)$ and collisions are possible.
(ii) Theorem 1.2 can be related to the work of Rabinowitz [15] (see also [9]). He prove under a less restrictive setting than (V'0)-(V'4) that there exists a collision orbit of $\left(P_{h}\right)$. Combining this result with Theorem 1.2 shows the existence of a collision and a non-collision periodic solution of $\left(P_{h}\right)$ for a suitable class of planar singular potentials.

Acknowledgments. I would like to express my gratitude to professor P. H. Rabinowitz for his interest in this work.

References

[1] A. Ambrosetti and V. Coti Zelati, "Periodic solutions of singular Lagrangian systems", Birkhauser, Boston, Basel, Berlin, 1993.
[2] A. Ambrosetti and V. Coti Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal. 112(1990), 339-362.
[3] A. Ambrosetti and V. Coti Zelati, Non-collision orbits for a class of Keplerian- like potentials, Ann. Inst. H. Poincarre. Anal. Non lineaire, 5 (1988), 287-295.
[4] A.Ambrosetti and M. Struwe, Periodic motions for concervative systems with singular potentials, No.D.E.A. 1(1994), 179-202.
[5] A.Bahri and P. H. Rabinowitz, A minmax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82, 412-428 (1989).
[6] V.Benci and F. Giannoni, Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82, 60-70 (1989).
[7] V. Coti Zelati, Periodic solutions for a class of planar singular dynamical systems, J. Math. pures et appl. 68, 1989, p. 109-119.
[8] V. Coti Zelati and E. Serra, Collisions and non-collisions solutions for a class of Keplerian like dynamicals systems, Tech. report, SISSA, Trieste, Italy , 1991.
[9] V. Coti Zelati and E. Serra, Multiple brake orbits for some classes of singular Hamiltonian systems, Nonlinear Analysis, T.M.A., Vol. 20, No. 8, pp. 1001-1012, (1993).
[10] M.Degiovanni and F. Giannoni, Dynamical systems with Newtonian type potentials, Schol N. Sup. Pisa P.467-493 (1987).
[11] W. Gordon, Concervative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135.
[12] W. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math. 99(1975), 961-971.
[13] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis, T.M.A. 12 (1988), 259-269.
[14] L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving stong forces, Nonlinear Analysis, T.M.A., Vol 21, No. 3, pp. 167-179, 1993.
[15] P. H. Rabinowitz, A note on periodic solutions of prescribed energy for singular Hamiltonian systems, J. Comp. Applied Math. 52 (1994), 147-154.
[16] E. Serra and S. Terracini, Noncollision solutions to some singular minimisation problems with Keplerian-like potentials, Nonlinear Analysis, T.M.A., Vol. 22, No. 1, pp. 45-62, (1994).
[17] K. Tanaka, Non-collision solutions for a second order singular Hamiltonian system with weak force, Ann. Inst. H. Poincarre. Anal. Non lineaire, 10(1993), 215-238.
[18] K. Tanaka, A prescribed energy problem for a singular Hamiltonian system with weak force,J. Funct. Anal. 113, (1993), pp. 351-390.

Morched Boughariou

Faculté des Sciences de Tunis
Département de Mathématiques, Campus Universitaire, 1060 Tunis, Tunisie
e-mail: Morched.Boughariou@fst.rnu.tn

[^0]: *Mathematics Subject Classifications: 35D05, 35D10, 58E30.
 Key words: Singular Lagrangian system, periodic solution, non-collision.
 (C) 2000 Southwest Texas State University.

 Submitted September 18, 2000. Published December 15, 2000.

