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ON THE SINGULARITIES OF 3-D PROTTER’S PROBLEM

FOR THE WAVE EQUATION

MYRON K. GRAMMATIKOPOULOS, TZVETAN D. HRISTOV,
& NEDYU I. POPIVANOV

Abstract. In this paper we study boundary-value problems for the wave
equation, which are three-dimensional analogue of Darboux-problems (or of
Cauchy-Goursat problems) on the plane. It is shown that for n in N there
exists a right hand side smooth function from Cn(Ω̄0), for which the corre-
sponding unique generalized solution belongs to Cn(Ω̄0\O), and it has a strong
power-type singularity at the point O. This singularity is isolated at the ver-
tex O of the characteristic cone and does not propagate along the cone. In
this paper we investigate the behavior of the singular solutions at the point
O. Also, we study more general boundary-value problems and find that there
exist an infinite number of smooth right-hand side functions for which the cor-
responding unique generalized solutions are singular. Some a priori estimates
are also stated.

1. Introduction

Consider the wave equation

�u ≡ 4xu− utt ≡
1

%
(%u%)% +

1

%2
uϕϕ − utt = f (1.1)

in polar or Cartesian coordinates with x1 = % cosϕ, x2 = % sinϕ, and t in a simply
connected region Ω0 ⊂ R3. The region

Ω0 := {(x1,x2, t) : 0 < t < 1/2, t <
√
x21 + x

2
2 < 1− t}

is bounded by the disk

Σ0 := {(x1, x2, t) : t = 0, x
2
1 + x

2
2 < 1}

and the characteristic surfaces of (1.1):

Σ1 := {(x1, x2, t) : 0 < t < 1/2,
√
x21 + x

2
2 = 1− t},

Σ2,0 := {(x1, x2, t) : 0 < t < 1/2,
√
x21 + x

2
2 = t}.

In this work we seek sufficient conditions for the existence and uniqueness of a
generalized solution of
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Problem Pα. Find a solution of the wave equation (1.1) in Ω0, which satisfies the
boundary conditions

Pα : u|Σ1 = 0, [ut + αu]|Σ0 = 0, (1.2)

where α ∈ C(Σ0).

The adjoint problem is
Problem P∗α. Find a solution of the wave equation (1.1) in Ω0 with the boundary
conditions:

P
∗

α : u|Σ2,0 = 0, [ut + αu]|Σ0 = 0. (1.3)

The following problems were stated by Protter [22].
Protter’s Problems. Find a solution of the wave equation (1.1) in Ω0 with the
boundary conditions

P1 : u|Σ0∪Σ1 = 0, P1∗ : u|Σ0∪Σ2,0 = 0 ;
P2 : u|Σ1 = 0, ut|Σ0 = 0, P2∗ : u|Σ2,0 = 0, ut|Σ0 = 0 .

(1.4)

The boundary conditions of problem P1∗ (respectively of P2∗) are the adjoint
boundary conditions to such ones of P1 (respectively of P2) for the equation (1.1)
in Ω0. Protter [22] formulated and investigated problems P1 and P1

∗ in Ω0 as
multi-dimensional analogue of the Darboux problem on the plane. It is well known
that the corresponding Darboux problems in R2 are well posed, but this is not true
for the Protter’s problems in R3. For recent known results concerning the problems
(1.4) see papers of Popivanov, Schneider [20, 21] and references therein. For further
publications in this area see [2, 3, 7, 11, 14, 15, 18]. On the other hand, Bazarbekov
[5] gives another analogue of the classical Darboux problem in the same domain
Ω0. Some other statements of Darboux type problems can be found in [4, 6, 13, 16]
in bounded or unbounded domains different from Ω0.
In [1], using Wiener-Hopf techniques for the case α(ρ) = c/ρ, c 6= 0, Aldashev

studied the Problems Pα and P
∗
α. For Problem Pα, which we study in this paper,

in [1] he claimed uniqueness of the solution of the class C1(Ω̄0) ∩ C2(Ω0), but he
did not mention any possible singular solutions.
Next, we present the following well known result (see [24, 19])

Theorem 1.1. For all n ∈ N, n ≥ 4, an, bn arbitrary constants, the functions

vn(%, ϕ, t) = t%
−n[%2 − t2]n−

3
2 (an cosnϕ+ bn sinnϕ) (1.5)

are classical solutions of the homogeneous problem P1∗ and the functions

wn(%, ϕ, t) = %
−n[%2 − t2]n−

1
2 (an cosnϕ+ bn sinnϕ) (1.6)

are classical solutions of the homogeneous problem P2∗.

This theorem shows that for the classical solvability of the problem P1 (re-
spectively, P2) the function f at least must be orthogonal to all functions (1.5)
(respectively,(1.6)). Using Theorem 1.1, Popivanov, Schneider [21] proved the ex-
istence of some generalized solutions of Problems P1 and P2, which have at least
power-type singularities at the vertex (0,0,0) of the cone Σ2,0. For the homoge-
neous Problem Pα

∗ (except the case α ≡ 0, i.e. except Problem P2∗) we do not
know nontrivial solutions analogous to (1.5) and (1.6). Anyway, in the present
paper we prove results (see, Theorems 6.1 and 6.2), which ensure the existence of
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many singular solutions. Here we refer also to Khe Kan Cher [15], who gives some
nontrivial solutions found for the homogeneous Problems P1∗ and P2∗, but for the
Euler-Poisson-Darboux equation, which are closely connected with the results of
Theorem 1.1.
In order to obtain our results, we give the following definition of a solution of

Problem Pα with a possible singularity at (0,0,0).

Definition 1.1. A function u = u(x1,x2, t) is called a generalized solution of the
problem

Pα : �u = f, u
∣∣
Σ1
= 0, [ut + α(x)u]

∣∣
Σ0
= 0,

in Ω0, if:
1) u ∈ C1(Ω̄0 \ (0, 0, 0)), [ut + α(x)u]

∣∣
Σ0\(0,0,0)

= 0, u
∣∣
Σ1
= 0,

2) the identity∫
Ω0

[utvt − ux1vx1 − ux2vx2 − fv]dx1dx2dt =

∫
Σ0

α(x)(uv)(x, 0)dx1dx2 (1.7)

holds for all v in

V0 := {v ∈ C
1(Ω̄0) : [vt + α(x)v]

∣∣
Σ0
= 0, v = 0 in a neighbourhood of Σ2,0}.

To deal successfully with the encountered difficulties, as are the singularities on
the cone Σ2,0, we introduce the region

Ωε = Ω0 ∩ {ρ− t > ε}, ε ∈ [0, 1),

which in polar coordinates becomes

Ωε = {(%, ϕ, t) : t > 0, 0 ≤ ϕ < 2π, ε+ t < % < 1− t} (1.8)

and we define the notion of a generalized solution of Problem Pα in Ωε, ε ∈ (0, 1) (see
Definition 2.1). Note that, if a generalized solution u belongs to C1(Ω̄ε)∩C2(Ωε) ,
it is called a classical solution of Problem Pα in Ωε, ε ∈ (0, 1), and it satisfies the
wave equation (1.1) in Ωε. It should be pointed out that the case ε = 0 is totally
different from the case ε 6= 0.

This paper consists of the Introduction and five more sections. In Section 2, using
some appropriate technics, we formulate the 2-D boundary problems Pα,1 and Pα,2,
corresponding to the 3-D Problem Pα. The aim of Section 3 is to treat Problem Pα,2.
For this reason, we construct and study the integral equation assigned to the under
consideration wave equation of general form. Also we present results concerning the
classical solutions of Problem Pα,2 in Ωε, ε ∈ (0, 1) and give corresponding a priori
estimates. In Section 4 we prove Theorems 4.1 and 4.2 which ensure the existence
and uniqueness of a generalized solution of Problem Pα,1 in Ωε, ε ∈ [0, 1). Using the
results of the previous section, in Section 5 we study the existence and uniqueness of
a generalized solution of 3-D Problem Pα. More precisely, Theorem 5.1 ensure the
uniqueness of a generalized solution of problem Pα in Ωε, ε ∈ [0, 1), while Theorems
5.2 and 5.3 ensure the existence of a generalized solution, satisfying corresponding
a priori estimates for problem Pα in the case, where the right-hand side of the wave
equation is a trigonometric polynomial or trigonometric series. Finally, in Section
6 we present some singular generalized solutions which are smooth enough away
from the point (0, 0, 0), while at the point (0, 0, 0) they have power-type singularity
of the class ρ−n. Precisely, in Theorem 6.1 we prove the following result:
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Let α ≥ 0 and α ∈ C∞. Then for each n ∈ N , n ≥ 4, there exists a function
fn(%, ϕ, t) ∈ Cn−2(Ω̄0), for which the corresponding generalized solution un of
problem Pα belongs to C

n(Ω̄0\(0, 0, 0)) and satisfies the estimate

|un(ρ, ϕ, ρ)| ≥ ρ
−n| cosnϕ|, 0 < ρ < 1 . (1.9)

When α ≡ 0 the upper estimate holds, and in this case we have also the following
two-sided estimate

ρ−n| cosnϕ| ≤ |un(ρ, ϕ, ρ)|, |un(ρ, ϕ, 0)| ≤ Cρ
−n| cosnϕ|, (1.10)

with C = const. That is, in the case of Problem P2 the exact behavior of
un(x1, x2, t) around (0,0,0) is (x

2
1 + x

2
2)
−n/2.

Remark 1.1. In Theorem 6.2 we find some different singular solutions for the
same problem Pα. It is particularly interesting that for any parameter α(x) ≥ 0,
involved in the boundary condition (1.2) on Σ0, there are infinitely many singular
solutions of the wave equation. Note, that all these solutions have strong singu-
larities at the vertex (0, 0, 0) of the cone Σ2,0. These singularities of generalized
solutions do not propagate in the direction of the bicharacteristics on the character-
istic cone. It is traditionally assumed that the wave equation with right-hand side
sufficiently smooth in Ω̄0 cannot have a solution with an isolated singular point.
For results concerning the propagation of singularities for second order operators,
see Hörmander [10], Chapter 24.5. For some related results in the case of plane
Darboux-Problem, see [17].

Remark 1.2. In 1960 Garabedian [8] proved the uniqueness of classical solution
of Problem P1. Existence and uniqueness results for a generalized solution of
Problems P1 and P2 can be found in [20, 21].

Remark 1.3. Considering Problems P1 and P2, Popivanov, Schneider [19] an-
nounced the existence of singular solutions of both wave and degenerate hyperbolic
equation. The proofs of that results are given in [21] and [20] respectively. First a
priori estimates for singular solutions of Protter’s Problems P1 and P2, concerning
the wave equation in R3, were obtained in [21]. In [2] Aldashev mentions the results
of [19] and, for the case of the wave equation in Rm+1, he shows that there exist
solutions of Problem P1 (respectively, P2) in the domain Ωε, which grow up on
the cones Σ2,ε like ε

−(n+m−2) (respectively, ε−(n+m−1)), when for ε→ 0 the cones
Σ2,ε := {ρ = t+ ε} approximate Σ2,0. It is obvious that for m = 2 this results can
be compared with the estimate (1.10) of Theorem 6.1 and the analogous estimate of
Theorem 6.2. More comments, concerning Aldashev’s results [2], we give in Section
6. Finally, we point out that in the case of an equation, which involves the wave
operator and nonzero lower terms, Karatoprakliev [12] obtained a priori estimates
for the smooth solutions of Problem P1 in Ω0.

2. Preliminaries

In this section we consider the wave equation (1.1) in the simply connected region

Ωε := {(%, ϕ, t) : 0 < t < (1 − ε)/2, 0 ≤ ϕ < 2π, ε+ t < % < 1− t} (2.1)
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which is bounded by the disc Σ0 := {(%, ϕ, t) : t = 0, % < 1} and the characteristic
surfaces of (1.1)

Σ1 := {(%, ϕ, t) : 0 ≤ ϕ < 2π, % = 1− t},

Σ2,ε := {(%, ϕ, t) : 0 ≤ ϕ < 2π, % = ε+ t}.

We seek sufficient conditions for the existence and uniqueness of a generalized so-
lution of the equation (1.1) with f ∈ C(Ω̄ε), which satisfies the following boundary
conditions:

Pα : u
∣∣
Σ1∩∂Ωε

= 0, [ut + α(ρ)u]
∣∣
Σ0∩∂Ωε

= 0; (2.2)

P ∗α : u
∣∣
Σ2,ε
= 0, [ut + α(ρ)u]

∣∣
Σ0∩∂Ωε

= 0. (2.3)

Here for the sake of simplicity, we set α(x) ≡ α(|x|) = α(ρ) ∈ C1([0, 1]). The
problem P ∗α is the adjoint one to Problem Pα in Ωε.

Now, to obtain our results we define the notion of a generalized solution as
follows.

Definition 2.1. A function u = u(%, ϕ, t) is called a generalized solution of Prob-
lem Pα in Ωε, ε > 0, if:
1) u ∈ C1(Ω̄ε), u

∣∣
Σ1∩∂Ωε

= 0; [ut + α(%)u]
∣∣
Σ0∩∂Ωε

= 0,

2) the identity∫
Ωε

[utvt − u%v% −
1

%2
uϕvϕ − fv]% d% dϕ dt =

∫
Σ0∩∂Ωε

%α(%)uv d%dϕ (2.4)

holds for all v ∈ Vε := {v ∈ C1(Ω̄ε) : [vt + α(%)v]
∣∣
Σ0∩∂Ωε

= 0, v
∣∣
Σ2,ε
= 0}.

The following proposition describes the properties of generalized solutions of
Problem Pα in Ωε.

Lemma 2.1. Each generalized solution of Problem Pα in Ω0 is also a generalized
solution of the same problem in Ωε for ε > 0.

In view of (1.7), the equality (2.4) holds for each function v ∈ V0 with the
property v ≡ 0 in Ω0 \ Ωε. To approximate an arbitrary function v1 ∈ Vε by such
functions in W 1

2 (Ωε) we make the following steps:
Step 1. Setting v2(%, ϕ, t) = e

tα(%)v1(%, ϕ, t), we get

∂v2

∂t

∣∣
Σ0
= 0, v2

∣∣
Σ2,ε
= 0. (2.5)

Step 2. The function v2(%, ϕ, t) could be approximated in W
1
2 (Ωε) by functions,

which satisfy (2.5) and are zero in a neighborhood of the circle {% = ε, t = 0}. In
fact, such functions are:

v2m(%, ϕ, t) := v2(%, ϕ, t)ψ(m
√
(%− ε)2 + t2 ), m→∞,

where ψ ∈ C∞(R1), ψ(s) = 0, for s ≤ 1 and ψ(s) = 1, for s > 2.
Step 3. Each function v2m(%, ϕ, t) could be approximated in W

1
2 (Ωε) by some

functions, which satisfy (2.5), and are zero in a neighborhood of the cone {% = t+ε}.
Such functions are:

vk(%, ϕ, t) := v2m(%, ϕ, t)ψ((t− %+ ε)k), k →∞.
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In the special, but main case, when

f(%, ϕ, t) = f (1)n (%, t) cosnϕ+ f
(2)
n (%, t) sinnϕ (2.6)

we ask the generalized solution to be of the form

u(%, ϕ, t) = u(1)n (%, t) cosnϕ+ u
(2)
n (%, t) sinnϕ (2.7)

If we introduce the function

u(1)(%, t) :=

{
u
(1)
n for f (1) = f

(1)
n ,

u
(2)
n for f (1) = f

(2)
n ,

then, in view of (1.1), we conclude that

�̃u(1) = 1
%
(%u(1)% )% −

n2

%2
u(1) − u(1)tt = f

(1) (2.8)

in Gε = {(%, t) : t > 0, ε+ t < % < 1− t}, which is bounded by the sets

S0 = {(%, t) : t = 0, 0 < % < 1},

S1 = {(%, t) : % = 1− t},

S2,ε = {(%, t) : % = t+ ε}.

(2.9)

Next, instead of the equation (2.8), consider the more general equation

Lu(1) =
1

%
(%u(1)% )% − u

(1)
tt + d(ρ, t)u

(1) = f (1), (2.10)

with the same boundary conditions. In this case, the two–dimensional problem
corresponding to Pα is

Pα,1 :

{
Lu(1) = f (1) in Gε,

u(1)
∣∣
S1∩∂Gε

= 0, [u
(1)
t + α(%)u

(1)]
∣∣
S0∩∂Gε

= 0
(2.11)

and its generalized solution is defined by

Definition 2.2. A function u(1) = u(1)(%, t) is called a generalized solution of
problem Pα,1 in Gε, ε > 0, if:
1) u ∈ C1(Ḡε), [ut + α(%)u]

∣∣
S0∩∂Gε

= 0, u
∣∣
S1∩∂Gε

= 0;

2) The identity∫
Gε

[u
(1)
t vt − u

(1)
% v% + d(%, t)u

(1)v − f (1)v]%d% dt =

∫
S0∩∂Gε

%α(%)u(1)v d% (2.12)

holds for all v in

V (1)ε = {v ∈ C1(Ḡε) : [vt + α(ρ)v]
∣∣
S0
= 0, v

∣∣
S2,ε
= 0}.

By introducing a new function

u(2)(%, t) = %
1
2 u(1)(%, t), (2.13)

we transform (2.10) to the equation

u(2)%% − u
(2)
tt +

[
d(%, t) +

1

4%2

]
u(2) = %

1
2 f (1), (2.14)

with the string operator in the main part. Substituting the new coordinates

ξ = 1− %− t, η = 1− %+ t, (2.15)
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from (2.14) we derive

Uξη +
1

4

[
d(2)(ξ, η) + (2− η − ξ)−2

]
U =

1

4
√
2
(2− η − ξ)

1
2F (ξ, η) (2.16)

in Dε = {(ξ, η) : 0 < ξ < η < 1− ε}, where

U(ξ, η) = u(2)(ρ(ξ, η), t(ξ, η)), F (ξ, η) = f (1)(ρ(ξ, η), t(ξ, η)). (2.17)

Thus, we reduced the problem Pα,1 to the Darboux-Goursat problem for the more
general equation (2.10) with the same boundary conditions:

Pα,2 :

{
Uξη + c(ξ, η)U = g(ξ, η) in Dε,

U(0, η) = 0, (Uη − Uξ)(ξ, ξ) + α(1 − ξ)U(ξ, ξ) = 0.
(2.18)

In view of the above observations, the wave equation (1.1) transforms finally to the
equation

Uξη +
1− 4n2

4(2− ξ − η)2
U =

1

4
√
2
(2− η − ξ)

1
2F (ξ, η), (2.19)

which is of the form (2.16).

3. The integral equation corresponding to Problem Pα,2

Set

c(ξ, η) =
1− 4n2

4(2− ξ − η)2
∈ C∞(D̄0 \ (1, 1)),

g(ξ, η) =
1

4
√
2
(2− ξ − η)

1
2F (ξ, η).

(3.1)

Then the equation (2.19), in new terms, takes the form of the equation in (2.18).

Remark, that if f
(i)
n ∈ C0(Ḡ0), i = 1, 2, then g ∈ C(D̄0), while if f

(i)
n ∈ Ck(Ḡ0),

i = 1, 2, then g ∈ Ck(D̄0\(1, 1)).
In order to investigate the smoothness and the singularity of a solution of the

original 3-D problem Pα on Σ2,0, we are seeking for a classical solution of the
corresponding 2-D problem Pα,2 not only in the domain Dε, but also in the domain

D(1)ε := {(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε}, ε > 0. (3.2)

Clearly, Dε ⊂ D
(1)
ε .

Consider now the equation from (2.18), i.e.

Uξη + c(ξ, η)U = g(ξ, η) in D
(1)
ε , (3.3)

where c(ξ, η) ∈ C(D̄(1)ε ), g(ξ, η) ∈ C(D̄
(1)
ε ), ε > 0.

Next, for any (ξ0, η0) ∈ D
(1)
ε , we consider the sets

Π := {(ξ, η) : 0 < ξ < ξ0, ξ0 < η < η0}, T := {(ξ, η) : 0 < ξ < η, 0 < η < ξ0}

and we construct an equivalent to the problem Pα,2 integral equation, in such a
way that any solution of the problem Pα,2 to be also a solution of the constructed



8 M. K. GRAMMATIKOPOULOS, T. D. HRISTOV, & N. I. POPIVANOV EJDE–2001/01

integral equation. For this reason, we consider the following integrals:

I0 :=

∫∫
Π

[g(ξ, η)− c(ξ, η)U(ξ, η)] dη dξ =

∫ ξ0
0

∫ η0
ξ0

Uξη(ξ, η) dη dξ

=

∫ ξ0
0

[Uξ(ξ, η0)− Uξ(ξ, ξ0)] dξ = U(ξ0, η0)− U(ξ0, ξ0)

and

I1 :=

∫∫
T

[g(ξ, η)− c(ξ, η)U(ξ, η)] dη dξ =

∫ ξ0
0

∫ ξ0
ξ

Uξη(ξ, η) dη dξ

=

∫ ξ0
0

[Uξ(ξ, ξ0)− Uξ(ξ, ξ)] dξ = U(ξ0, ξ0)−

∫ ξ0
0

Uξ(ξ, ξ) dξ.

On the other side,

I1 =

∫ ξ0
0

∫ η
0

Uξη(ξ, η) dξ dη =

∫ ξ0
0

Uη(η, η) dη.

Hence, we see that:

2I1 = U(ξ0, ξ0) +

∫ ξ0
0

[Uη(ξ, ξ) − Uξ(ξ, ξ)] dξ

= U(ξ0, ξ0)−

∫ ξ0
0

α(1 − ξ)U(ξ, ξ) dξ,

I0 + 2I1 = U(ξ0, η0)−

∫ ξ0
0

α(1 − ξ)U(ξ, ξ) dξ.

From the latest relation we obtain

U(ξ0, η0) =

∫ ξ0
0

∫ η0
ξ0

[g(ξ, η)− c(ξ, η)U(ξ, η)] dη dξ

+ 2

∫ ξ0
0

∫ η
0

[g(ξ, η)− c(ξ, η)U(ξ, η)] dξ dη

+

∫ ξ0
0

α(1 − ξ)U(ξ, ξ) dξ, for (ξ0, η0) ∈ D̄
(1)
ε ,

(3.4)

which is the desired integral equation.
Next, we set

Mg := sup
D
(1)
ε

|g(ξ, η)|, c(ε) := sup
D
(1)
ε

|c(ξ, η)|, Mα := sup
[0,1]

|α(ξ)| (3.5)

and state the following

Theorem 3.1. Let c(ξ, η) ∈ C(D̄(1)ε ), g(ξ, η) ∈ C(D̄
(1)
ε ), ε > 0. Then there exists

a classical solution U(ξ, η) ∈ C1(D̄
(1)
ε ) of the equation (3.3) which satisfies the

boundary conditions (2.18) with Uξη(ξ, η) ∈ C(D̄
(1)
ε ) and

|U(ξ0, η0)| ≤ ξ0Mg[c(ε) +Mα]
−1 exp[c(ε) +Mα] in D

(1)
ε ,

sup
D
(1)
ε

{|Uξ|, |Uη|} ≤Mg[c(ε) +Mα]
−1 exp[c(ε) + 2Mα].

(3.6)
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Proof. In order to get our results, we will solve the integral equation (3.4). For this
reason we use the following sequence of successive approximations U (n), defined by
the formula

U (n+1)(ξ0, η0) =

∫ ξ0
0

∫ η0
ξ0

[g(ξ, η)− c(ξ, η)U (n)(ξ, η)] dη dξ

+ 2

∫ ξ0
0

∫ η
0

[g(ξ, η)− c(ξ, η)U (n)(ξ, η)] dξ dη

+

∫ ξ0
0

α(1 − ξ)U (n)(ξ, ξ) dξ,

U (0)(ξ0, η0) = 0, in D1ε .

(3.7)

We will show that for any (ξ0, η0) ∈ D̄
(1)
ε and n ∈ N

|(U (n+1) − U (n))(ξ0, η0)| ≤
Mg[c(ε) +Mα]

nξn+10

(n+ 1)!
. (3.8)

Indeed: 1)

U (1)(ξ0, η0) =

∫ ξ0
0

∫ η0
ξ0

g(ξ, η) dη dξ + 2

∫ ξ0
0

∫ η
0

g(ξ, η) dξ dη,

and hence

|U (1)(ξ0, η0)| ≤Mg[ξ0(η0 − ξ0) + ξ
2
0 ] =Mgξ0η0 ≤Mgξ0.

2) Let, by the induction hypothesis (3.8),

|(U (n) − U (n−1))(ξ0, η0)| ≤
Mg

n!
[c(ε) +Mα]

n−1ξn0 := Anξ
n
0

be satisfied. Then, it follows that

|(U (n+1) − U (n))(ξ0, η0)| =

∣∣∣∣−
∫ ξ0
0

∫ η0
ξ0

c(ξ, η)(U (n) − U (n−1))(ξ, η) dη dξ

−2

∫ ξ0
0

∫ η
0

c(ξ, η)(U (n)−U (n−1))(ξ, η) dξ dη+

∫ ξ0
0

α(1−ξ)(U (n)−U (n−1))(ξ, ξ) dξ

∣∣∣∣
≤ An

[
c(ε)

(∫ ξ0
0

∫ η0
ξ0

ξn dη dξ + 2

∫ ξ0
0

∫ η
0

ξn dξ dη

)
+Mα

∫ ξ0
0

ξn dξ

]

= An

[
c(ε)

(
1

n+ 1
ξn+10 (η0 − ξ0) +

2

(n+ 1)(n+ 2)
ξn+20

)
+

Mα

n+ 1
ξn+10

]

= An

[
c(ε)

(
1

n+ 1
ξn+10 η0 −

n

(n+ 1)(n+ 2)
ξn+20

)
+

Mα

n+ 1
ξn+10

]

≤ An

[
c(ε)

n+ 1
ξn+10 +

Mα

n+ 1
ξn+10

]
=

Mg

(n+ 1)!
[c(ε) +Mα]

nξn+10 = An+1ξ
n+1
0 .

So, the inequality (3.8) holds and hence the uniform convergence of the sequence

{U (m)(ξ, η)}m∈N in D̄
(1)
ε is obvious. For the limit function U ∈ C(D̄(1)ε ) we obtain

the integral equality (3.4) and U(0, η0) = 0.
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Also, in view of (3.8), we see that

|(U (n+1)(ξ0, η0)| =

∣∣∣∣∣
n∑
k=0

(U (k+1) − U (k))(ξ0, η0)

∣∣∣∣∣ ≤ ξ0Mg
n∑
k=0

[c(ε) +Mα]
k

(k + 1)!
ξk0

≤ ξ0Mg[c(ε) +Mα]
−1 exp[c(ε) +Mα],

and therefore

|U(ξ0, η0)| ≤ ξ0Mg[c(ε) +Mα]
−1 exp[c(ε) +Mα].

To estimate the first derivatives of U , by (3.7), we get

U
(n+1)
ξ0

(ξ0, η0) =α(1− ξ0)U
(n)(ξ0, ξ0)

+

∫ ξ0
0

[g(ξ, ξ0)− c(ξ, ξ0)U
(n)(ξ, ξ0)] dξ

+

∫ η0
ξ0

[g(ξ0, η)− c(ξ0, η)U
(n)(ξ0, η)] dη,

(3.9)

and

U (n+1)η0 (ξ0, η0) =

∫ ξ0
0

[g(ξ, η0)− c(ξ, η0)U
(n)(ξ, η0)] dξ. (3.10)

Using (3.8) and (3.9), we see that

|U (1)ξ0 (ξ0, η0)| =

∣∣∣∣
∫ ξ0
0

g(ξ, ξ0) dξ +

∫ η0
ξ0

g(ξ0, η) dη

∣∣∣∣
≤Mg(ξ0 + η0 − ξ0) =Mgη0 ≤Mg,

and

|(U (n+1)ξ0
− U (n)ξ0 )(ξ0, η0)| =

∣∣∣∣−
∫ ξ0
0

c(ξ, ξ0)(U
(n) − U (n−1))(ξ, ξ0)] dξ

−

∫ η0
ξ0

c(ξ0, η)(U
(n) − U (n−1))(ξ0, η) dη + α(1− ξ0)(U

(n) − U (n−1))(ξ0, ξ0)

∣∣∣∣
≤
Mg

n!
[c(ε) +Mα]

n−1

[
c(ε)(

∫ ξ0
0

ξn dξ +

∫ η0
ξ0

ξn0 dη) +Mαξ
n
0

]

≤
Mg

n!
[c(ε) +Mα]

n−1

[
c(ε)

n+ 1
+Mα

]
.

So, for the derivative Uξ0(ξ0, η0) we get the estimate:

|Uξ0(ξ0, η0)| = |limU
(n+1)
ξ0

(ξ0, η0)| = |
∞∑
k=0

(U
(k+1)
ξ0

− U
(k)
ξ0
)(ξ0, η0)| (3.11)

≤Mg

∞∑
k=0

[c(ε) +Mα]
k−1

k!

[
c(ε)

k + 1
+Mα

]
≤Mg[c(ε) +Mα]

−1 exp[c(ε) + 2Mα].

Using (3.8) and (3.10), we find

|(U (n+1)η0 − U (n)η0 )(ξ0, η0)| = |−

∫ ξ0
0

c(ξ, η0)(U
(n) − U (n−1))(ξ, η0)] dξ|
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≤
c(ε)Mg
n!

[c(ε) +Mα]
n−1

∫ ξ0
0

ξn dξ ≤
Mg

(n+ 1)!
[c(ε) +Mα]

nξn+10 .

Therefore, U ∈ C1(D̄(1)ε ) and

|Uη0(ξ0, η0)|≤ ξ0[c(ε) +Mα]
−1 exp[c(ε) +Mα], (3.12)

which shows (3.6). Also, by (3.10), it follows that

U
(n+1)
η0ξ0

(ξ0, η0) = g(ξ0, η0)− c(ξ0, η0)U
(n)(ξ0, η0).

Thus, the function U(ξ0, η0) is a solution of (3.3) and Uξη ∈ C(D̄
(1)
ε ). Finally,

using (3.9) and (3.10), we see that

lim
n→∞

[U (n+1)η0 − U
(n+1)
ξ0

+ α(1− ξ0)U
(n+1)](ξ0, η0)

= α(1 − ξ0) lim
n→∞

[(U (n+1) − U (n))(ξ0, ξ0)] = 0,

i.e. U(ξ0, η0) satisfies boundary conditions (2.18). ♦
The next result is very important for the investigation of the singularity of a

generalized solution of problem Pα.

Lemma 3.1. Let c(ξ, η), g(ξ, η) ∈ C(D̄(1)ε ) and

g(ξ, η) ≥ 0, c(ξ, η) ≤ 0 in D̄(1)ε ; α(ξ) ≥ 0 for 0 ≤ ξ ≤ 1. (3.13)

Then for the solution U(ξ, η) of the problem (3.3), (2.18) (already found in Theorem
3.1) we have

U(ξ, η) ≥ 0, Uη(ξ, η) ≥ 0, Uξ(ξ, η) ≥ 0 in D̄(1)ε . (3.14)

Proof. In view of (3.7), from (3.13) we have

U (1)(ξ0, η0) =

∫ ξ0
0

∫ η0
ξ0

g(ξ, η) dη dξ + 2

∫ ξ0
0

∫ η
0

g(ξ, η) dξ dη ≥ 0.

Suppose that (U (n) − U (n−1))(ξ0, η0) ≥ 0 for some n ∈ N. Then

(U (n+1) − U (n))(ξ0, η0) =−

∫ ξ0
0

∫ η0
ξ0

c(ξ, η)(U (n) − U (n−1))(ξ, η) dη dξ

− 2

∫ ξ0
0

∫ η
0

c(ξ, η)(U (n) − U (n−1))(ξ, η) dξ dη

+

∫ ξ0
0

α(1 − ξ)(U (n) − U (n−1))(ξ, ξ) dξ ≥ 0

and

U(ξ0, η0) =

∞∑
n=0

(U (n+1) − U (n))(ξ0, η0) ≥ 0. (3.15)

Since U(ξ0, η0) ≥ 0 for any (ξ0, η0) ∈ D̄
(1)
ε and

Uξ0(ξ0, η0) = α(1 − ξ0)U(ξ0, ξ0) (3.16)

+

∫ ξ0
0

[g(ξ, ξ0)− c(ξ, ξ0)U(ξ, ξ0)] dξ +

∫ η0
ξ0

[g(ξ0, η)− c(ξ0, η)U(ξ0, η)] dη,
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Uη0(ξ0, η0) =

∫ ξ0
0

[g(ξ, η0)− c(ξ, η0)U(ξ, η0)] dξ, (3.17)

we conclude that Uξ0 ≥ 0 and Uη0 ≥ 0 in D̄
(1)
ε . ♦

As an immediate consequence of Theorem 3.1, (3.16) and (3.17), we have the
following

Theorem 3.2. Let c(ξ, η) ∈ Ck(D̄(1)ε ) , g(ξ, η) ∈ Ck(D̄
(1)
ε ), α ∈ Ck((0, 1]), where

k ≥ 1, ε > 0. Then there exists a classical solution U ∈ Ck+1(D̄(1)ε ) of the problem
Pα,2.

4. Existence and uniqueness for the 2-D Problem Pα,1

Consider the problem

Pα,1 :

{
Lu(1) = 1

ρ (ρu
(1)
ρ )− u

(1)
tt + d(ρ, t)u

(1) = f (1) in Gε,

u(1)
∣∣
S1∩∂Gε

= 0, [u
(1)
t + α(ρ)u

(1)]
∣∣
S0∩∂Gε

= 0.
(4.1)

The notion of the generalized solution of the problem Pα,1 in the domain Gε ,
ε ∈ (0, 1), has been introduced in Definition 2.2.

Theorem 4.1. If d(ρ, t), f (1)(%, t) ∈ C1(Ḡ0 \ (0, 0)), then there exists a generalized
solution u(1) ∈ C2(Ḡ0 \ (0, 0)) of problem Pα,1 in G0, which is a classical solution
of the problem Pα,1 in any domain Gε, ε ∈ (0, 1).

Proof. In view of (2.13) and (2.15), i.e. u(2)(%, t) = %1/2u(1)(%, t) and ξ = 1−%− t,
η = 1− %+ t, consider the function

U(ξ,η)= u(2)(%(ξ ,η),t(ξ,η)).

Then Problem Pα,1 (see (4.1)) becomes Pα,2, i.e.

Uξη +
1

4

[
d(2)(ξ, η) + (2− ξ − η)−2

]
U =

1

4
√
2
(2 − η − ξ)1/2F (ξ, η), (4.2)

U(0, η) = 0, (Uη − Uξ)(ξ, ξ) + α(1 − ξ)U(ξ, ξ) = 0. (4.3)

For each ε ∈ (0, 1) Theorem 3.2 ensures the existence of a classical solution U(ξ, η) ∈

C2(D̄
(1)
ε ) of the problem Pα,2. The inverse transformations lead to a function

u(1)(%, t) ∈ C2(Ḡ0 \ (0, 0)), which is a classical solution of Problem Pα,1 in Gε. This
solution is also a generalized solution of the same problem in G0, because each one
of test functions v ∈ V0 is zero in G0\Gε for some ε > 0 and, for the concrete v,
(1.6) coincides with (2.4). The proof of the theorem is complete. ♦

Theorem 4.2. For each fixed ε ∈ (0, 1) there exists at most one generalized solu-
tion of the problem Pα,1 in Gε.

Proof. If u1 and u2 are two generalized solutions of Pα,1, then for u
(1) := u1 − u2

we see that

u(1) ∈ C1(Ḡε), u(1)
∣∣
S1∩Ḡε

= 0, [u
(1)
t + α(r)u

(1)]
∣∣
S0∩Ḡε

= 0

and the identity∫
Gε

[u
(1)
t vt − u

(1)
% v% + d(%, t)u

(1)v]%d%dt−

∫
S0∩∂Gε

%α(%)u(1)v d% = 0 (4.4)
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holds for all functions v ∈ V (1)ε .
Let h(ρ, t) ∈ C1(Ḡ0 \ (0, 0)). Set

g(ξ, η) := 1
4
√
2
[2− ξ − η]1/2h((2 − ξ − η)/2, (η − ξ)/2) ∈ C1(D̄

(1)
ε ),

c(ξ, η) = 1
4

[
d(ρ(ξ, η), t(ξ, η)) + (2− η − ξ)−2

]
∈ C1(D̄(1)ε ),

(4.5)

and consider the boundary-value problem

Vξη + c(ξ, η)V = g(ξ, η) in Dε, (4.6)

V
∣∣
η=1−ε

= 0, [Vη − Vξ + α(1 − ξ)V ]
∣∣
η=ξ
= 0. (4.7)

By using the substitutions ξ1 = 1− ε− η, η1 = 1− ε− ξ, and by setting

V (1)(ξ1, η1) = V (1− ε− η1, 1− ε− ξ1), (4.8)

the problem (4.6), (4.7) becomes

V
(1)
ξ1η1
+ c(1)(ξ1, η1)V

(1) = g(1)(ξ1, η1) in Dε, (4.9)

V (1)
∣∣
ξ1=0

= 0, [V (1)η1 − V
(1)
ξ1
+ α(ε+ ξ1)V

(1)]
∣∣
η1=ξ1

= 0 (4.10)

where

c(1)(ξ1, η1) =
1

4

[
d(1)(ξ1, η1) + (ξ1 + η1 + 2ε)

−2
]
∈ C1(

−
Dε).

But (4.9), (4.10) is the Goursat–Darboux problem Pα,2 in the domain Dε, for

which Theorem 3.2 holds. Consequently, there exists a classical solution V (1) ∈ C2

of (4.9), (4.10). The inverse transformation leads to a classical solution V = V (ξ, η)
of (4.6), (4.7) in Dε. Similar arguments show that v(%, t) = %

−1/2V (ξ(%, t), η(%, t))
is a classical solution of the problem

Lv =
1

%
(%v%)% − vtt + dv = h(%, t) in Gε, (4.11)

v
∣∣
S2,ε
= 0, [vt + α(%)v]

∣∣
S0∩∂Gε

= 0, (4.12)

for fixed ε ∈ (0, 1).
Multiplying (4.11) by a generalized solution u(1) ∈ C1(Ḡε) and integrating by

parts, we find∫
Gε

[vtu
(1)
t − v%u

(1)
% + dvu

(1) − hu(1)]% d% dt−

∫
S0∩∂Gε

%α(%)vu(1) d% = 0. (4.13)

Comparing (4.13) and (4.4), we see that∫
Gε

h(%, t)u(1)(%, t) ρd% dt = 0. (4.14)

But the function h(%, t) ∈ C1(Ḡ0 \ (0, 0)) has been arbitrarily chosen. Thus (4.14)
gives u(1)(%, t) =0 in Gε. The proof is complete. ♦

5. Existence and uniqueness for the 3-D Problem Pα

In this section we consider the wave equation

�u := 1
%
(%u%)% +

1

%2
uϕϕ − utt = f(%, ϕ, t), (5.1)

subject to the boundary-value problem

Pα : �u = f in Ωε, u
∣∣
Σ1∩∂Ωε

= 0, [ut + α(%)u]
∣∣
Σ0∩∂Ωε

= 0 (5.2)
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and prove the following results.

Theorem 5.1. For 0 ≤ ε < 1 there exists at most one generalized solution of
Problem Pα in Ωε.

Proof. Case 0 < ε < 1. If u1, u2 are two generalized solutions of Pα in Ωε , then
for u(1) := u1 − u2 ∈ C1(Ω̄ε) we know that

u(1)
∣∣
Σ1∩∂Ωε

= 0, [u
(1)
t + α(%)u

(1)]
∣∣
Σ0∩∂Ωε

= 0;

and the identity∫
Ωε

[
u
(1)
t vt − u

(1)
ρ vρ −

1

ρ2
u(1)ϕ vϕ

]
ρ dρ dϕ dt =

∫
Σ0∩∂Ωε

ρα(ρ)u(1)v dρ dϕ (5.3)

holds for all v ∈ Vε. We will show that in the Fourier expansion

u(1)(ρ, ϕ, t) =
∞∑
n=0

{
u(11)n (ρ, t) cosnϕ+ u(12)n (ρ, t) sinnϕ

}
(5.4)

the Fourier–coefficients u
(1i)
n (%, t) ≡ 0 in Ωε, i.e. u(1) ≡ 0 in Ωε.

Since u(1) ∈ C1(Ω̄ε), using

v1(ρ, ϕ, t) = w(ρ, t) cosnϕ ∈ Vε or v2(ρ, ϕ, t) = w(ρ, t) sinnϕ ∈ Vε

in (5.3), we derive∫
Gε

[
u
(1i)
n,t wt − u

(1i)
n,ρwρ −

n2

ρ2
u(1i)n w

]
ρ dρ dt−

∫
∂Gε∩S0

ρα(ρ)u(1i)n w dρ = 0 (5.5)

for all w ∈ V (1)ε , n ∈ N, i = 1, 2. From Definition 2.2 it follows that the functions

u
(1i)
n (%, t) are generalized solutions of the homogeneous problem Pα,1 with d(%, t) =

n2ρ−2 ∈ C∞(Ḡ0\(0, 0)). Clearly Theorem 4.2 gives u
(1i)
n (%, t) ≡ 0 in Ωε for n ∈ N,

i = 1, 2 and thus u(1) = u1 − u2 ≡ 0 in Ωε.
Case ε = 0. In this case from Lemma 2.1 it follows that the generalized solution

u(1) ∈ C1(Ω̄0 \ (0, 0, 0)) of Problem Pα in Ω0 is also a generalized solution of the
homogeneous problem Pα in Ωε for each ε ∈ (0, 1). From the previous case we know
that u(1) ≡ 0 in Ωε for each ε >0 and thus u(1) = u1 − u2 ≡ 0 in Ω0. ♦

Theorem 5.2. Let the function f ∈ C(
−
Ω0) ∩ C1(

−
Ω0\(0, 0, 0)) be of the form:

f (1)(%, ϕ, t) =

k∑
n=0

{
f (11)n (%, t) cosnϕ+ f (12)n (%, t) sinnϕ

}
. (5.6)

Then there exists one and only one generalized solution

u(1)(%, ϕ, t) =

k∑
n=0

{
u(11)n (%, t) cosnϕ+ u(12)n (%, t) sinnϕ

}
(5.7)

of the problem Pα in Ω0, u
(1) ∈ C2(Ω̄0 \ (0, ., 0)), which is a classical solution of the

problem Pα in each domain Ωε, ε ∈ (0, 1). Moreover, for a fixed n the corresponding
trigonometric polynomial un of degree n satisfies a priori estimates: for n = 0:

‖u0(x1, x2, t)‖C1(Ω̃ε) =
∑
|α|≤1

sup
Ω̃ε

|Dαu0|

≤8 exp(2Mα)ε
1/2 exp(1/4ε2)‖f

(11)
0 ‖C0(Ḡ0);

(5.8)
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for n ∈ N,

‖un(x1, x2, t)‖C1(Ω̃ε)

≤ 8 exp(2Mα)
ε1/2

n
exp

(
n2

ε2

)(
‖f (11)n ‖C◦(Ḡ0) + ‖f

(12)
n ‖C◦(Ḡ0)

)
, (5.9)

where Ω̃ε = Ω0 ∩ {(%, t) : %+ t > ε}.

Proof. It suffices to consider the case of a fixed number n. Let

U (1)(%, t) =

{
u
(11)
n (%, t) in case F (1)(%, t) = f

(11)
n (%, t),

u
(12)
n (%, t) in case F (1)(%, t) = f

(12)
n (%, t) .

(5.10)

Then by (5.7) and (5.10), the equation (5.1) becomes

1

%
(%U (1)% )% − U

(1)
tt −

n2

%2
U (1) = F (1)(%, t). (5.11)

As in Section 2, we make the substitutions

ξ = 1− %− t , η = 1− %+ t, (5.12)

and introduce the new function

U (2)(ξ, η) = %1/2U (1)(%(ξ, η), t(ξ, η)). (5.13)

Then (5.11) reduces to (2.18), where

c(ξ, η) = 1−4n2

4(2−η−ξ)2 ∈ C
∞(D̄0 \ (1, 1)) ,

g(ξ, η) = 1
4
√
2
(2− η − ξ)1/2f (2i)n (ξ, η) ∈ C1(D̄0\(1, 1)) ,

f
(2i)
n (ξ, η) = f

(1i)
n (%(ξ, η), t(ξ, η)),

(5.14)

and satisfies the Goursat–Darboux problem Pα,2. Theorems 3.1 and 3.2 ensure the

existence of a classical solution U (2) = U (2)(ξ, η) of this problem with the properties
(3.6).
Case n ∈ N. In view of (3.5), (5.14), it is easy to see that

c(ε) := sup
D
(1)
ε
|c(ξ, η)| ≤ n2

ε2 ,

Mg := supD(1)ε
| 1
4
√
2
(2− η − ξ)1/2f (2i)n (ξ, η)| ≤ 1

4 ||f
(1i)
n ||C0(Ḡ0) ,

(5.15)

where D
(1)
ε = {(ξ, η)|0 < ξ < η < 1, 0 < ξ < 1 − ε}, ε > 0. Hence, on one hand

Theorems 3.1 and 3.2 ensure the smoothness of the solution U (2) of Problem Pα,2,
i.e.

U (2i)n (ξ, η) := U (2) ∈ C2(D̄(1)ε ), (5.16)

on the other hand, they ensure the a priori estimates:

sup
D
(1)
ε
|U (2i)n (ξ, η)| ≤ 1

4‖f
(1i)
n ‖C◦(Ḡ0)

ε2

n2 exp(Mα) exp
(
n2

ε2

)
,

sup
D
(1)
ε
{|U

(2i)
n,ξ |, |U

(2i)
n,η |} ≤ 1

4‖f
(1i)
n ‖C◦(Ḡ0)

ε2

n2 exp(2Mα) exp
(
n2

ε2

)
.

(5.17)
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Also, by (5.12) and (5.13), we have

U (1i)n (%, t) = %−
1
2U (2i)n (ξ, η) .

Since % ≥ ε/2 for (ξ, η) ∈ D
(1)
ε , by the inverse transformation:

|u(1i)n (%, t)| ≤ exp(Mα)
ε3/2

n2
exp
(
n2

ε2

)
‖f (1i)n ‖C◦(Ḡ0) ,

|u(1i)n,t (%, t)| ≤ exp(2Mα)
ε3/2

n2
exp
(
n2

ε2

)
‖f (1i)n ‖C◦(Ḡ0) ,

|u(1i)n,% (%, t)| ≤ 2 exp(2Mα)
ε1/2

n2 exp
(
n2

ε2

)
‖f (1i)n ‖C◦(Ḡ0) .

(5.18)

Therefore, in view of (5.7) and (5.18), we derive

‖ 1
%
u
(1)
n,ϕ(%, ϕ, t)‖C◦(Ω̃ε)

≤ exp(2Mα)
ε1/2

n
exp
(
n2

ε2

)(
‖f (11)n ‖C◦(Ḡ0) + ‖f

(12)
n ‖C◦(Ḡ0)

)
.

(5.19)

Since un(% cosϕ, % sinϕ, t) = u
(1)
n (%, ϕ, t), obviously

|un,xi(x1, x2, t)| ≤ 3 exp(2Mα)
ε1/2

n
exp

(
n2

ε2

)(
‖f (11)n ‖C◦(Ḡ0) + ‖f

(12)
n ‖C◦(Ḡ0)

)
,

i = 1, 2. So, the estimate (5.9) holds in Ω̃ε.

Case n = 0. In this case, by (5.6) and (5.7), it follows that f
(1)
0 (%, ϕ, t) =

f
(11)
0 (%, t) and u0(x1, x2, t) = u

(1)
0 (%, ϕ, t) = u

(11)
0 (%, t). Problem Pα,2 in this case

becomes

U
(2)
ξη + c(ξ, η)U

(2) = g(ξ, η) , U (2)|ξ=0 = 0 , U
(2)|η=ξ = 0,

where

c(ξ, η) = [2(2− η − ξ)]−2 ∈ C∞(D̄0 \ {1, 1})

and

c(ε) = sup
D
(1)
ε

|c(ξ, η)| ≤
1

4ε2
, Mg ≤

1

4
‖f (11)0 ‖C◦(Ḡ0).

Arguments similar to the previous case lead to (5.8). ♦

The following theorem is an immediate consequence of Theorems 5.1 and 5.2

Theorem 5.3. Let the function f ∈ C1(Ω̄0) be of the form

f(ρ, ϕ, t) =

∞∑
n=0

{f (1)n (ρ, t) cosnϕ+ f
(2)
n (ρ, t) sinnϕ}. (5.20)

Suppose that the Fourier coefficients f
(1)
n (ρ, t) and f

(2)
n (ρ, t) satisfy

‖f‖exp (ε) := exp

(
1

4ε2

)
‖f (11)0 ‖C◦(Ḡ0)

+
∞∑
n=1

1

n
exp

(
n2

ε2

)(
‖f (11)n ‖C◦(Ḡ0) + ‖f

(12)
n ‖C◦(Ḡ0)

)
<∞ .

(5.21)
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Then there exists one and only one generalized solution u ∈ C1(Ω̃ε) of the problem
Pα in Ωε and the a priori estimate

‖u‖C1(Ω̃ε) ≤ 8 exp(2Mα)‖f‖exp (ε) (5.22)

holds. If the series (5.20) is finite, then u ∈ C2(Ω̄0 \ (0, 0, 0)) and it is a classical
solution of the problem Pα in Ωε, ε ∈ (0, 1)

Remark 5.1. Condition (5.21) is valid for each ε ∈ (0, 1), if there exists a function
ψ with ψ(n)→∞ as n→∞ such that

∞∑
n=1

1

n
exp(n2ψ(n))

(
‖f (11)n ‖C0(Ḡ0) + ‖f

(12)
n ‖C0(Ḡ0)

)
<∞. (5.23)

Remark 5.2. As we see, the norm (5.21) on the right-hand side of (5.22) tends
to infinity as ε→ 0. At this point, it is reasonable to remained that, according to
Theorem 6.1 (see, the discussion in Introduction) the estimate (5.22) is satisfied also
by the generalized solutions which have singularities at the point (0, 0, 0). Therefore,
the left-hand side of (5.22) tends to infinity as ε → 0. The above phenomenon is
subject to the new paper [9].

6. On the singularity of solutions of Problem Pα

For the wave equation

�u = 1
%
(%u%)% +

1

%2
uϕϕ − utt = f(%, ϕ, t) (6.1)

we consider again the boundary-value problem Pα, i.e.

Pα : �u = f in Ω0, u
∣∣
Σ1
= 0, [ut + α(%)u]

∣∣
Σ0
= 0 (6.2)

and begin with the following interesting result of this section

Theorem 6.1. Let α(%) ≥ 0, % ∈ [0, 1]; α(%) ∈ C∞([0, 1]). Then for each n ∈ N,
n ≥ 4, there exists a function fn(%, ϕ, t) ∈ Cn−2(Ω̄0), for which the correspond-
ing generalized solution un of the problem Pα belongs to C

n(Ω̄0\(0, 0, 0)) and the
estimate

|un(ρ, ϕ, ρ)| ≥
1

2
|un(2ρ, ϕ, 0)|+ ρ

−n| cosnϕ| ≥ ρ−n| cosnϕ|, 0 < ρ < 1, (6.3)

holds. In the case α(%) ≡ 0 the upper estimate

|un(%, ϕ, t)| ≤ cµρ
−1/2

(
ρ

(ρ+ t)(ρ− t)

)n− 12
| cosnϕ|, (%, t) ∈ Dµ1 (6.4)

holds, where cµ = const and

Dµ1 := {(ρ, t) : 0 < ρ− t ≤ ρ+ t ≤ µ(ρ− t)} , µ < 2
2n+1
2n−1 − 1.

Thus, for α(%) ≡ 0 we have two-sided estimates, which in the limit cases t = ρ and
t = 0 are:

ρ−n| cosnϕ| ≤ |un(ρ, ϕ, ρ)|, |un(ρ, ϕ, 0)| ≤ Cρ
−n| cosnϕ|, (6.5)

with C =const. That is, in the case of Problem P2 the exact behavior of un(x1, x2, t)
around (0,0,0) is (x21 + x

2
2)
−n/2.
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Proof. Note that, by Theorem 1.1, the functions

wn(%, ϕ, t) = %
−n(%2 − t2)n−1/2(an cosnϕ+ bn sinnϕ), n ≥ 4,

are classical solutions of Problem P ∗α with α ≡ 0,where obviously wn ∈ C
n−2(Ω̄0).

We consider the special case of Problem Pα :

�u = %−n(%2 − t2)n−1/2 cosnϕ in Ω0, (6.6)

u
∣∣
Σ1
= 0, [ut + α(%)u]

∣∣
Σ0�(0,0,0)

= 0. (6.7)

Theorem 5.1 declares that the problem (6.6), (6.7) has at most one generalized
solution. On the other hand, from Theorem 5.2 we know that for this right-hand
side there exists a generalized solution in Ω0 of the form

un(%, ϕ, t) = u
(1)
n (%, t) cosnϕ ∈ C

n−1(Ω̄0\(0, 0, 0)),

which is classical solution in Ωε, ε ∈ (0, 1). By setting u
(2)
n (%, t) = %

1
2u
(1)
n (%, t) and

substituting

ξ = 1− %− t, η = 1− %+ t, (6.8)

the problem (6.6), (6.7), in view of

Un(ξ, η) = u
(2)
n (%(ξ, η), t(ξ, η)), (6.9)

becomes a Goursat–Darboux problem Pα,2 :

Un,ξη + c(ξ, η)Un = g(ξ, η), (6.10)

Un(0, η) = 0, [Un,η − Un,ξ + α(1 − ξ)Un]
∣∣
η=ξ
= 0. (6.11)

The coefficients

c(ξ, η) =
1− 4n2

4(2− η − ξ)2
∈ C∞(D̄(1)ε ), n ≥ 4, (6.12)

g(ξ, η) = 2n−
5
2

[
(1− ξ)(1 − η)

2− η − ξ

]n− 12
∈ Cn−1(D̄(1)ε ) (6.13)

are defined by (3.1). It is obvious that in this case c(ξ, η) ≤ 0, g(ξ, η) ≥ 0 in D̄
(1)
ε

with ε in (0, 1). Thus, for α(ξ) ≥ 0, in view of Theorem 3.1 and Lemma 3.1, we
formulate the following result.

Proposition 6.1. There exists a classical solution U(ξ, η) ∈ Cn(D̄0 \ (1, 1)) for
the problem (6.10), (6.11) for which

U (ξ, η) ≥ 0 , U ξ(ξ, η) ≥ 0 , U η(ξ, η) ≥ 0 in D̄(1)ε .

Let

K =

∫
D
(1)

1/2

g2(ξ, η) dη dξ > 0. (6.14)
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From (6.10) for 0 < ε < 1/2 it follows that

0 < K ≤

∫
D
(1)
ε

g2(ξ, η) dη dξ

=

∫
D
(1)
ε

Uξηg(ξ, η) dη dξ +

∫
D
(1)
ε

c(ξ, η)U(ξ, η)g(ξ, η) dη dξ =: I1 + I2,

(6.15)

where

I1 =

∫ 1−ε
0

∫ 1
ξ

(Uξηg)(ξ, η) dη dξ

=

∫ 1−ε
0

[Uξ(ξ, 1)g(ξ, 1)− Uξ(ξ, ξ)g(ξ, ξ)] dξ −

∫
D
(1)
ε

(Uξgη)(ξ, η) dη dξ.

By (6.13), it is obvious that g(ξ, 1) = 0. So,

I1 = −

∫ 1−ε
0

Uξ(ξ, ξ)g(ξ, ξ) dξ −

∫
D
(1)
ε

(Uξgη)(ξ, η) dη dξ. (6.16)

Since∫
D
(1)
ε

(Uξgη)(ξ, η) dξ dη

=

∫ 1−ε
0

∫ η
0

(Uξgη)(ξ, η) dξ dη +

∫ 1
1−ε

∫ 1−ε
0

(Uξgη)(ξ, η) dξ dη

=

∫ 1−ε
0

[(Ugη)(η, η) − (Ugη)(0, η)] dη

+

∫ 1
1−ε
[(Ugη)(1 − ε, η)− (Ugη)(0, η)] dη −

∫
D
(1)
ε

Ugξη(ξ, η) dξ dη

=

∫ 1−ε
0

(Ugη)(η, η) dη +

∫ 1
1−ε
(Ugη)(1− ε, η) dη −

∫
D
(1)
ε

(Ugξη)(ξ, η) dξ dη,

equation (6.16) becomes

I1 = −

∫ 1−ε
0

[Uξ(ξ, ξ)g(ξ, ξ) + U(ξ, ξ)gη(ξ, ξ)] dξ

−

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη +

∫
D
(1)
ε

(Ugξη)(ξ, η) dξ dη.

(6.17)

An elementary calculation shows that

gξ(ξ, η) = −(n−
1

2
)2n−

5
2

[
(1− ξ)(1 − η)

2− η − ξ

]n− 32 [ (1 − η)
2− η − ξ

]2
≤ 0, (6.18)

gη(ξ, η) = −(n−
1

2
)2n−

5
2

[
(1− ξ)(1 − η)

2− η − ξ

]n− 32 [ (1 − ξ)
2− η − ξ

]2
≤ 0, (6.19)

and

gξ(ξ, ξ) = gη(ξ, ξ) =
1

16
(1 − 2n)(1− ξ)n−

3
2 . (6.20)
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From (6.17) and (6.15) it follows that

0 < K ≤I1 + I2

=−

∫ 1−ε
0

[Uξ(ξ, ξ)g(ξ, ξ) + U(ξ, ξ)gξ(ξ, ξ)] dξ

−

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη +

∫
D
(1)
ε

U [gξη + cg](ξ, η) dξ dη.

(6.21)

Also, it is easy to check that gξη(ξ, η) + c(ξ, η)g(ξ, η) = 0. Thus,

0 < K ≤ I1 + I2 = −

∫ 1−ε
0

[Uξ(ξ, ξ)g(ξ, ξ) + U(ξ, ξ)gξ(ξ, ξ)] dξ

−

∫ 1
1−ε

U(1− ε, η)gη(1 − ε, η) dη,

(6.22)

where, as it is easy to check,

gξ(ξ, ξ) =
1

2
[g(ξ, ξ)]ξ. (6.23)

The function U(ξ, η) is a classical solution of (6.10), (6.11) in D̄ε, ε ∈ (0, 1) with

Uξ(ξ, ξ) =
1

2
[U(ξ, ξ)]ξ +

1

2
α(1 − ξ)U(ξ, ξ). (6.24)

When we substitute (6.23) and (6.24) in (6.22), we get

K ≤I1 + I2

=−
1

2

∫ 1−ε
0

[g(ξ, ξ)U(ξ, ξ)]ξ dξ −
1

2

∫ 1−ε
0

α(1− ξ)U(ξ, ξ)g(ξ, ξ) dξ

−

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη

=−
1

2
(gU)(1− ε, 1− ε)−

1

2

∫ 1−ε
0

α(1− ξ)U(ξ, ξ)g(ξ, ξ) dξ

−

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη.

(6.25)

According to Proposition 6.1 and the choice of right-hand side of (6.8), we have

U(ξ, η) ≥ 0, Uη(ξ, η) ≥ 0, α(ξ) ≥ 0, g(ξ, η) ≥ 0, gη(ξ, η) ≤ 0 in D̄
(1)
ε ,

which together with (6.25) implies

K ≤I1 + I2 ≤ −

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη −
1

2
(gU)(1− ε, 1− ε)

=

∫ 1
1−ε

U(1− ε, η)|gη(1− ε, η)| dη −
1

2
(gU)(1− ε, 1− ε)

≤

∫ 1
1−ε

U(1− ε, 1)|gη(1 − ε, η)| dη −
1

2
(gU)(1− ε, 1− ε)

=

[
U(1− ε, 1)−

1

2
U(1− ε, 1− ε)

]
g(1− ε, 1− ε),
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because g(1− ε, 1) = 0. Since g(1− ε, 1− ε) = 1
4ε
n− 12 , we see that

0 < K ≤

[
U(1− ε, 1)−

1

2
U(1− ε, 1− ε)

]
1

4
εn−

1
2 .

For ξ = 1− ε, η = 1 we have % = t = ε/2 and so

0 < 4Kε
1
2−n ≤ u(2)n

(ε
2
,
ε

2

)
−
1

2
u(2)n (ε, 0). (6.26)

Finally, the inverse transformation gives

u(1)n

(ε
2
,
ε

2

)
≥
1

2
u(1)n (ε, 0) + C̃1ε

−n ≥ C̃1ε
−n, 0 < ε <

1

2
,

with C̃1 = 2
5
2K. Multiplying the function un by C̃

−1
1 , we see that (6.3) holds.

In order to obtain an upper estimate of the singular solution, we consider the
case α(%) ≡ 0. In this case (6.25) gives

I1 + I2 =

∫
D̄
(1)
ε

g2(ξ, η) dξ dη = −
1

2
(Ug)(1− ε, 1− ε)−

∫ 1
1−ε
(Ugη)(1 − ε, η) dη

Put

K1 =

∫
D
(1)
0

g2(ξ, η) dξ dη > 0.

Then for 0 < δ < ε < 1 we have

K1 ≥ I1 + I2

= −
1

2
(gU)(1 − ε, 1− ε) +

∫ 1
1−ε

U(1− ε, η)|gη(1 − ε, η)| dη

≥ −
1

2
(gU)(1 − ε, 1− ε) +

∫ 1
1−δ

U(1− ε, 1− ε)|gη(1− ε, η)| dη

≥ −
1

2
(gU)(1 − ε, 1− ε) +

∫ 1
1−δ

U(1− ε, 1− δ)|gη(1− ε, η)| dη

≥ −
1

2
(gU)(1 − ε, 1− ε) + (gU)(1− ε, 1− δ)

≥ U(1− ε, 1− δ)

[
g(1− ε, 1− δ)−

1

2
g(1− ε, 1− ε)

]
≥ λ(gU)(1 − ε, 1− δ),

(6.27)

where the constant λ > 0 is such that

(1− λ)g(1 − ε, 1− δ) ≥ g(1− ε, 1− ε). (6.28)

Using the explicit formula (6.16) for the function g(ξ, η), we see that the last in-
equality is equivalent to

(1− λ)

(
δ

ε+ δ

)n− 12
≥ 2−n+

1
2 , (6.29)

which implies

0 < λ ≤ 1−
1

2

(
ε+ δ

2δ

)n− 12
. (6.30)
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A necessary condition, for (6.30) to be satisfied is

1 ≤
ε

δ
< 2

2n+1
2n−1 − 1. (6.31)

Using (6.31), we can find an upper estimate for the generalized solution un in this
concrete case. To do that we consider the domain

Dµ := {(ξ, η) : 1− η ≤ 1− ξ ≤ µ(1− η)}, (6.32)

where 1 ≤ µ < 2
2n+1
2n−1 − 1. Observe that

inf
Dµ

{
1−
1

2

(
1− ξ + 1− η

2(1− η)

)n− 12}
= 1−

1

2

(
1 + µ

2

)n− 12
=: Cµ > 0.

For λ = Cµ, the inequalities (6.29) and (6.28) are satisfied and so, by (6.27), we see
that

U(ξ, η) ≤ 2−n+5/2K1C
−1
µ

(
2− ξ − η

(1− ξ)(1− η)

)n− 12
, (ξ, η) ∈ Dµ. (6.33)

By (6.9) and (6.8), the inequality (6.33) transforms to

u(2)n (%, t) ≤ 4K1C
−1
µ

(
ρ

(ρ+ t)(ρ− t)

)n− 12
, (6.34)

which is satisfied for

(%, t) ∈ Dµ1 := {0 < ρ− t ≤ ρ+ t ≤ µ(ρ− t)} .

Finally, (6.34) implies

u(1)n (%, t) ≤ 4K1C
−1
µ ρ−1/2

(
ρ

(ρ+ t)(ρ− t)

)n− 12
for (%, t) ∈ Dµ1 , (6.35)

which coincides with the estimate (6.4)
Note that Cµ = 1/2 on {t = 0} and so

u(1)n (ρ, 0) ≤ 8K1ρ
−n, 0 < ρ < 1, (6.36)

which is the upper estimate in (6.5). The proof of theorem is complete. ♦

We conclude this section with

Theorem 6.2. Let α(%) ≥ 0 for ρ ∈ [0, 1], α ∈ Cn−2[0, 1]. Then for n ∈ N,
n ≥ 4 there exists a function fn1(%, ϕ, t) ∈ Cn−2(Ω̄0) (different from the function
of Theorem 6.1) such that for the corresponding to it generalized solution un of the
problem Pα

un(ρ, ϕ, t) ∈ C
n−1(Ω̄0 \ (0, 0, 0)),

un(ρ, ϕ, ρ) ≥ un(2ρ, ϕ, 0) + ρ
1−n| cosnϕ| ≥ ρ1−n| cosnϕ|. (6.37)

Proof. The functions

vn(ρ, ϕ, t) = tρ
−n(ρ2 − t2)n−3/2(an cosnϕ+ bn sinnϕ)

are classical solutions of Protter’s problem P1∗. We consider the problem

�u = tρ−n(ρ2 − t2)n−3/2 cosnϕ (6.38)
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u
∣∣
Σ1
= 0, [ut + α(ρ)u]

∣∣
Σ0�(0,0,0)

= 0. (6.39)

According to Theorem 5.1, the problem (6.38), (6.39) has at most one generalized
solution. Simultaneously Theorem 5.2 for this right-hand side ensure the existence
of a generalized solution in Ω0 , which is of the form

un(%, ϕ, t) = u
(1)
n (%, t) cosnϕ ∈ C

n−1(Ω̄0\(0, 0, 0))

and is a classical solution in Ωε, ε ∈ (0, 1).

Using the substitutions u
(2)
n (%, t) = %

1
2u
(1)
n (%, t), (6.8) and (6.9), the problem

(6.38), (6.39) becomes a Goursat-Darboux problem

Un,ξη + c(ξ, η)Un = g(ξ, η), (6.40)

Un(0, η) = 0, [Un,η − Un,ξ + α(1 − ξ)Un]
∣∣
η=ξ
= 0, (6.41)

where c(ξ, η) is defined by (6.12), while

g(ξ, η) = 2n−
7
2 (η − ξ)(2− η − ξ)

1
2−n [(1− η)(1 − ξ)]n−

3
2 ∈ Cn−2(D̄(1)ε ). (6.42)

From (6.10) and (6.42) it follows that c(ξ, η) ≤ 0 g(ξ, η) ≥ 0 in D̄(1)ε for ε ∈ (0, 1).
Hence Theorem 3.1 and Lemma 3.1 imply the following proposition.

Proposition 6.2. There exists a classical solution U(ξ, η) ∈ Cn−1(D̄0 \ (1, 1)) for
the problem (6.40), (6.41) for which

U (ξ, η) ≥ 0 , U η(ξ, η) ≥ 0 , U ξ(ξ, η) ≥ 0 in D̄(1)ε .

An elementary calculation shows that g(ξ, ξ) = 0,

gη(ξ, ξ) = −gξ(ξ, ξ) =
1

8
(1− ξ)n−

5
2 ≥ 0 (6.43)

gξη(ξ, η) + c(ξ, η)g(ξ, η) = 0 . (6.44)

Since

gη(ξ, η) = g(ξ, η)

[
1

η − ξ
+

n− 12
2− η − ξ

−
n− 32
1− η

]
and

gη(1− ε, η) =
εg(1− ε, η)

(1− η)(ε2 − (1 − η)2)

[
1

2
+ n− η(

1

2
+ n) + ε(

3

2
− n)

]
,

for ηε = 1− ε
2n−3
2n+1 we have

gη(1 − ε, η) > 0 for 1− ε < η < ηε, (6.45)

gη(1− ε, η) < 0 for ηε < η < 1 . (6.46)

To show (6.37), let

K2 =

∫
D̄
(1)
1
2

g2(ξ, η) dξ dη > 0.

Then

0 < K2 ≤

∫
D̄
(1)
ε

g2(ξ, η) dξ dη, 0 < ε <
1

2
.
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Using arguments similar to those of Theorem 6.1, we arrive to (6.17) . By (6.44),
we get

0 <K2 ≤

∫
D
(1)
ε

g2(ξ, η) dξ dη

=−

∫ 1
1−ε

U(1− ε, η)gη(1− ε, η) dη −

∫ 1−ε
0

[Uξ(ξ, ξ)g(ξ, ξ) + U(ξ, ξ)gη(ξ, ξ)] dξ

Since g(ξ, ξ) = 0, the above inequality becomes

0 < K2 ≤ −

∫ 1−ε
0

U(ξ, ξ)gη(ξ, ξ) dξ −

∫ ηε
1−ε

U(1− ε, η)gη(1− ε, η) dη

−

∫ 1
ηε

U(1− ε, η)gη(1 − ε, η) dη.

Following the steps of the proof of Theorem 6.1 and using the Proposition 6.2, we
find

0 < K2 ≤

∫ 1
ηε

U(1− ε, η)|gη(1 − ε, η)| dη −

∫ ηε
1−ε

U(1− ε, η)|gη(1− ε, η)| dη

≤

∫ 1
ηε

U(1− ε, 1)|gη(1− ε, η)| dη −

∫ ηε
1−ε

U(1− ε, 1− ε)|gη(1− ε, η)| dη

= [U(1− ε, 1)− U(1− ε, 1− ε)] g(1− ε, ηε).

By (6.42), it follows that g(1− ε, ηε) ≤ εn−
3
2 and so

0 < K2 ≤ [U(1− ε, 1)− U(1− ε, 1− ε)] ε
n− 32 .

Finally, using (6.9), it follows that

0 < K2 ≤
[
u(2)n

(ε
2
,
ε

2

)
− u(2)n (ε, 0)

]
εn−

3
2 ,

i.e.

u(1)n (%, %) ≥ u
(1)
n (2%, 0) +K3%

1−n ≥ K3%
1−n,K3 = 2

1−nK2,

and so the estimate (6.37) holds. The proof of Theorem 6.2 is complete. ♦

Remark 6.1. In [2], Theorem 2, Aldashev considers the following type problems:
Find a solution of the homogeneous wave equation �u = 0 in Ω0, satisfying one of
the the non-homogeneous boundary conditions:

P1′ : u|Σ0 = τ0(x) , u|Σ1 = σ1(x)
P2′ : ut|Σ0 = ν0(x) , u|Σ1 = σ1(x) .

Under certain conditions, imposed on the functions τ0, σ1, ν0, he asserts that both
Problems P1′and P2′ are solvable in the class C(Ω̄0) ∩C2(Ω0).
Comparing these conclusion with Theorems 6.1, 6.2 and the results presented

in [21], it is not difficult to see the appearing contradiction. Indeed, applying the
Duhamel’s formula to the non-homogeous wave equation (6.6) in Ω0 with homoge-
neous Cauchy initial datas on Σ0, we find the solution of this problem in C

n−1(Ω̄0),
expressed by explicit formulas (see, [23], pp. 226-234). Therefore, the problem (6.6),
(6.7) transforms to the problem P2′ with ν0(x) ≡ 0 and σ1 ∈ Cn−1(Σ̄0). But the
last problem cannot be solved in C(Ω̄0), because, by Theorem 6.1, for α ≡ 0 the
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unique generalized solution of Problem Pα has a power-type singularity of the form
ρ−n (see, (6.3)) at the point (0, 0, 0).
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