ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. 2001(2001), No. 06, pp. 1-15.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

Four-parameter bifurcation for a
p-Laplacian system *

Jacqueline Fleckinger, Rosa Pardo, & Frangois de Thélin

Abstract

We study a four-parameter bifurcation phenomenum arising in a sys-
tem involving p-Laplacians:

—Apu = agp(u) + bop(v) + f(a, pp(u), dp(v)),
—Apv = chp(u) + dop(v)) + g(d, pp(u), pp(v)),

with v = v = 0 on the boundary of a bounded and sufficiently smooth
domain in RY; here Apu = div(|Vu|P~?Vu), with p > 1 and p # 2, is
the p-Laplacian operator, and ¢,(s) = |s|P"2s with p > 1. We assume
that a,b,c,d are real parameters. Thwn we use a bifurcation method
to exhibit some nontrivial solutions. The associated eigenvalue problem,
with f = g =0, is also studied here.

1 Introduction and Hypotheses

We study some four-parameter bifurcation phenomena arising in the system

—Apu = adp(u) + bp(v) + f(a, gp(u), ¢p(v)),
A = cy(u) + dgp(v) + g(d, dp(u), dp(v)),  in © (L1)
u=v=0, onodf.

where A,u = div(|Vu|P~2Vu) for p > 1, p # 2, is the p-Laplacian operator,
¢p : R — R is given by ¢,(s) = |s|P~2s, p > 1, Q C RV is a sufficiently smooth
bounded domain, and a, b, ¢, d are real parameters.

The operator —A, occurs in problems arising in pure mathematics, such
as the theory of quasiregular and quasiconformal mappings (see [24] and the
references therein), and in a variety of applications, such as non-Newtonian flu-
ids, reaction-diffusion problems, flow through porous media, nonlinear elasticity,
glaciology, petroleum extraction, astronomy, etc (see [6, 7, 12, 5]). We also em-
phasize that systems such as (1.1) are not easy generalizations of equations
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2 Four-parameter bifurcation EJDE-2001/06

because the solutions cannot be obtained by variational methods. Here we use
a bifurcation method to exhibit some nontrivial solutions. Another approach for
non variational systems can be found in [8]. Moreover the problem considered
here where p # 2 is not a straightforward extension of the case p = 2 due to the
fact that the translations of the p-Laplacian are not always invertible neither
commutative. In this paper we obtain bifurcation results for (1.1). The linear
case (p = 2) is studied in [15]. The case where g = 0 is considered in [14].

We assume through this article that the functions f and g satisfy the fol-
lowing Hypothesis:

A continuous function f : R® — R satisfies Hypothesis (H) if there exists p
such that 1 < p < #’{p’p,) for min(p,p’) < N and 1 < p for min(p,p’) > N,
and such that

A
(H1) ( ligl‘l . % =0 uniformly with respect to A on bounded sets,
r,8)|— r,s
A
(H2) furs) 0 uniformly with respect to A on bounded sets.

lim L 2D%
|(r.s)| =00 |(r,5)]P

where, as usual, for a given q > 1, ¢’ is defined by:

Definitions: By a solution of the system (1.1) we mean a pair (4, (u,v)) €

R* x (WP ()2, with A := < fj

for all w, z € Wy P(Q),

Z ), satisfying (1.1) in the weak sense, i.e.,

/ |Vu|P2Vu.Vw = / alulP~2uw + blv[P2ow + f(a, ¢p(u), ¢p(v))w

Q Q

/ |VolP2Vou.Vz = / clulP~2uz 4 d|v|P vz + g(d, ¢p(u), ¢p(v))2 (1.2)
Q Q

The set of solutions will be denoted by S. Obviously (4, (0,0)) is a solution of
(1.1) for every (a,b,c,d) € R*. The set of these pairs will be called the trivial
solution set, and will be denoted by Sy.

We say that (Ao, (0,0)) € Sp is a bifurcation point of (1.1) with respect to
the trivial solution set iff every neighborhood of (Ao, (0,0)) contains solutions
of (1.1) belonging to S\ So.

We will show that whenever (H) is satisfied, any matrix Ay with a negative
eigenvalue, the other being the principal eigenvalue of the p-Laplacian, is such
that (Ao, (0,0)) € Sp is a bifurcation point to positive solutions for (1.1).

To establish our results, we combine and adapt methods of [15] and [14]. Our
paper is organized as follows: In Section 2, we recalls some results concerning
the p-Laplacian. We recall in particular several lemmas established in [14] con-
cerning spaces that we will use. In Section 3, we show that if (Ag, (0,0)) € Sp
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is a bifurcation point, then the homogeneous system: —A,U = AyU has a non
trivial solution. In Section 4 we obtain conditions on A( for this to happen.
In Section 5 we compute the Leray-Schauder degree for the eigenvalue problem
and in Section 6 we state and establish our result.

2 Notation and preliminaries

In this section, we recall briefly some notation and results concerning the p-
Laplacian.

The p-Laplacian, —A,, defined on Wol’p(Q) has a first eigenvalue A1 (p) := A1
which is simple and isolated [3]; it is associated to a simple eigenfunction ¢
(normalized as |||l = 1) which is positive. Moreover, \; is characterized by

M= inf / |Vu P . (2.1)
Q

uEWOI’p;fQ |ulp=1
The following results are known for the equation

—Apu = klulP?u+f inQ (2.2)
u=0 on Q. (2.3)

Lemma 2.1 ([25]) If f € L>®(Q), f > 0, f # 0, Equation (2.2-2.3) has at
least one solution and satisfies the mazimum principle (i.e. any solution u is
non-negative) if and only if k < Ay.

Lemma 2.2 ([13]) For f € L™, f > 0, f # 0, and for k = A1, Equation
(2.2-2.3) has no solution in W, " ().

The operator T,. We introduce now some notation and results used in [14].
Let
—_ Na" i i 1
Alg) = { Fminggy I min(e,¢) <N (2.4)
400 if min(q,q’') > N
B(q) = qu—vl%+q if min(g,q") < N
+1 if min(q,q’) > N.

(2.5)
Then we introduce the operator T, := —A, o ¢ with domain
D(T,) := {2z € L*D(Q) : ¢y (2) € WyP(Q) and — Ay(dg (2)) € LA D(Q)}

Then )
(W) = L& — [P — W

where a(q), 3(q) are real numbers satisfying B(q) < 8, a < A(q).

We notice that the operator T, is homogeneous of degree 1. We also notice
that the equation T,u = Au has a solution u # 0, u € Wol’q(Q) if and only
if —Agu = Apg(u) has a nontrivial solution. Such a A is an eigenvalue and
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we denote by o(—A,) = o(T,) these eigenvalues. If this solution is positive,
then A = A\ and v =k, k> 0.
We have the following embeddings.

Lemma 2.3 (Lemma 2.2 in [14]) If a < A(q) the embedding ¢,(W?) into
L% is compact. If B > B(q), the embedding L® into W14 is compact.

Lemma 2.4 ([14]) For a < A(q), 8> B(q), and k < 0, the operators
T,:D(T,)c L* — LP and (T,—k)':L° — L°
are well defined and (T, —k)~': LB — L* is completely continuous.

Lemma 2.5 For a < A(q), 3> B(q), k<X and f € LB, f >0, (T, — k)~ f
is well defined or equivalently (2.2) has a unique solution.

Remark 2.6 Obviously, Ay(—u) = —Agu and ¢4(—s) = —@4(s), then it fol-
lows that T,(—u) = —T,(u) and by the previous Lemma with £ < A\; and
felLf f<0,(T,—k)"'f is also well defined. When f changes sign several
solutions may appear [21, 16].

We also introduce N
a(q) =4 N-a 1 q<
400 ifg> N.
From their definitions, it is easy to prove that, for any ¢ > 1, we have
(a(q))' < ¢ < Alg) < a(d),

and that the functions (a(q))’,a(q’) are decreasing in gq.

Lemma 2.7 Assume that F : R® — R is continuous and satisfies (H). Choose
o € R such that o
(a(p))" < - <1’ <o < A@p).

Then for any A € R and for any (w,z) € L® x L%, we have F(\w,z) € LP,

where 3 = %, Moreover, for any sequence {wn,z,} € L® x L%, satisfying
(Wny zn) # (0,0) and lm ||(wWn, 2n)||Lexne = 0, we have that
n—oo

=0

lim sup
n—oo

H F(\ wp, 2,)
|

‘wnvzn |L“><L°‘ LB

Proof. By (H) p satisfies 1 < p < #ﬂ‘g;q,), if min(q,¢’) < N and 1 < p
if min(q,q’) > N. It follows from Lemma 2.1 in [14] that we can choose «
satisfying

(a(p))’ < % <p <a<Alp).
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Moreover, for any § > 0, there exists a constant C' such that
[F(A, 7 s)] <0+ C|(r, )7, V(r,s) e RxR;

hence the first assertion holds. Now, by Hoélder s inequality,

/‘ F(A wmzn) B
H ’LUn,Zn |L"><L“
< /‘ )\ wnazn |_ /P /| 'wn’zn | )1/P
o wnazn H Wn,, Zn ||L"><L<¥
(A wn,zn a/(p—1)\ /P
< O /\ ) (2.6)
’LUn,Zn
From (H) we deduce
F(A\ Wy 2n) P o
e L <414 C @,
o <57+ w2

Since lim ||(wp, 2n)||Lexpe = 0, for every § > 0,
n—oo

F(\ wp,zn)|?

-1
< 57,
|(wn, 2n)|

lim sup /
n—oo O

Taking into account (2.6) the results follows. &

3 Preliminary results

In this section we show that if (A, (0,0)) is a bifurcation point, then the eigen-
value problem

—Apu = agpp(u) + body(v),
—Apv = copp(u) + dogp(v), in Q (3.1)
u=v=0, on0f.

has a non-trivial solution. This is well-known in the case p = 2, (cf. [10]), but
due to the nonlinearity of 7}, the proof is much more delicate.

Theorem 3.1 Let f,g satisfy (H1), and (Ao, (0,0)) be a bifurcation point of
(1.1) in RY x (WyP(Q))? ; then the eigenvalue problem (3.1) has a non-trivial
solution .

Proof. If (A, (0,0)) is a bifurcation point, then there exists a sequence
{(Ay, (un,vy))} of nontrivial solutions of (1.1), with A,, = (an, by, cn,dy,) € R
and (un,v,) € (WgP(Q))2, such that

A, — Ay inR* and (up,v,)— (0,0) in (Wol’p(ﬂ))Q.
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Define wy, = ¢p(un), 2n = ¢p(vn). Due to Lemma 2.2 (cf. [14] ; Lemma 2.2),
Wp, 2zn € L® whenever a@ < A(p). Moreover, (A, (wn,2y)) is a nontrivial
solution of the system

prn = ApWn + bp2y + f(ana Wn, Zn)7 (32)
Tpzn = CpWn, + dpzn + g(dp, Wy, 2,)  in Q.

Let s, = max{||wnl||Le, ||zn]lze} > 0. By Lemma 2.2 above it is obvious that
sp — 0 as n — co. We define

Wn,

Wo=—, Z,=—, neN

Sn Sn

Dividing each equation of System (3.2) by s,, we can write
W, = Tp_l (aan + b2, + S%Lf(amwmzn)) s
Zo =Ty (eaWa + duZo+ L g(dn,wn, ), in Q.

From Lemma 2.7, f(R x L% x L) C L? for B = S and

=0.
L8

lim sup

H f(an, wn, 2n)
n—00

Sn

Of course an analogous result holds for g. Therefore,

1 1
an Wy +bnZy + S_f(ana Wn,, Zn) and c,W, +d,Z, + s_g(d'm W, Zn)

n

are bounded sequences in L? with 3 < «. It follows from the compactness
Tp_1 : LB — L* that there exists two convergent subsequences

1
Tyt (n W+ buZn + — f(an, way20) ) > W,
n
1
Tp71<Can + ann + _g(dnawnv Z’ﬂ)) — Z
Sn

in L* and (W, Z) # (0,0). Moreover (W,,, Z,,) — (W, Z) in L* and

TpW =agW + boZ,
TpZ = CQW + dQZ, in Q,

or equivalently, (W, Z) is a nontrivial solution of the eigenvalue problem (3.1).

4 An Eigenvalue problem

In this section we consider the eigenvalue problem (3.1) with (ag, bo, co,do) =
(a,b,c,d). We establish necessary and sufficient conditions so that System (3.1
has a nontrivial positive solution.
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a

Definition. We say that A = b ) satisfies the solvability condition, and

d
we write A € §(T), if there exists a nontrivial solution of

T,,(Z’):A(";’), (4.1)

where w := ¢p(u), 2 = ¢p(v), w,z € D(T}p) with
D(T,) :={z € L*P(Q) : ¢ (2) € Wy "(Q), =By (¢p(2)) € LT (Q)},
and a(p), B(p) satisty

(B(p))' < B(p) < a(p) < A(p). (4.2)

We remark that Problem (3.1) is equivalent to the operator equation (4.1).

Definition. Let o(A) denote the spectrum of the Matrix A. Let M~ be the
set of matrices that have a negative eigenvalue.

Remark 4.1 Since A has real coefficients the eigenvalues are complex conju-
gate; and if one is real, both eigenvalues are real. The eigenvalues, denoted by
~ and §, are the roots of the equation

X? —(a+d)X +ad —bc=0. (4.3)

If the eigenvalues are not real, v = & + in and 6 = £ — in; therefore, 7§ =
&2+ 1% > 0. since y6 = ad — bc, complex values occur only when ad — be > 0.

When A in M~, we denote by ~ the negative eigenvalue.

Proposition 4.2 (a) If o(T,) No(A) is not empty, then A is in S(Tp). More
precisely, let X be in o(T,) N o(A), let D € R? be its corresponding A-
eigenvector, let ¢ € D(T,) be its corresponding T),-eigenfunction, then D¢
solves (4.1). Consequently, if M1 € o(A), and either b(A —a) > 0, (>
0) or ¢(\1 —d) > 0, (> 0) the eigenvalue problem (4.1) has a positive
(nonnegative) solution.

(b) Conversely, if A € M~ NS(Ty), then o(Tp)No(A) is not empty. Moreover
if A € M~ and if the eigenvalue problem (4.1) has a positive solution,
then o(Tp) No(A) = {\}.

This proposition can also be stated as follows:
(a) If one of the eigenvalues of A is in o (T},) then there exists a nontrivial solution
of (4.1).
(b) Conversely, if A has a negative eigenvalue, and if there exists a nontrivial
solution of (4.1), then the other eigenvalue of A is in o(T}).

Remark 4.3 In part (b) above, if o(A) = {v,8} and if v < 0, necessarily
4 >0, and we have v6 = ad — bc < 0.
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Proof of Proposition (4.2) (a) Assume that A € 0(A)No(T,). By definition
of A, there exists an eigenfunction ¢ € D(T},), ¢ such that T, = Ap. Since

31 > € R? such that AD =
2

AD. Define (1, ) := (di1p, d2¢). Since T}, is homogeneous of order 1,

A € 0(A) C R, there exists an eigenvector D =

Tp< 2)szDgo—DTpgo—)\Dgo—ADgo—A<Z>

i.e. (n,¢) is a nontrivial solution of (4.1), and (d1 ¢, (@), d2¢p () # (0,0) is a
nontrivial solution of (3.1). Moreover, if A = A1, we can take ¢ > 0, and either
(w,z) = (]b],|A\1 — a])¢ or (w,z) = (|¢|,|\1 — d|)¢ is a positive (nonnegative)
solution (orb=c¢=0,a =d = A\ and (1,0)¢, (0,1)¢ are nonnegative solutions).

(b) Let (w,z) # (0,0) be a nontrivial solution of (4.1), i.e. (w,z) is a
nontrivial solution of

Tyw = aw + bz
Tpz = cw +dz (4.4)
w=2z=0 ond.

We first consider some obvious cases.

If w = 0, then z # 0 satisfies T,z = dz, therefore d € o(T},) and (T, —al)w =
bz implies b = 0; consequently d € o(A) is an eigenvalue of A and of T),.
Likewise, z = 0 implies that a € o(A) is an eigenvalue of A. Hence we assume
now that w # 0, z #0.

If b = 0, then Tpw = aw with w # 0, implies that a € o(A) No(Tp). On
the same way, ¢ = 0 implies that d € 0(A) N o(T,). Hence we assume now that
be # 0.

Now bc # 0, and assume that 7 is a negative eigenvalue of A. Moreover let
us assume that w # 0, z # 0 are solutions of (4.1).

System (4.1) can also be written as

(T;;—~VI)<Z})—<CL;7 dfq)(f). (4.5)

Moreover, since v € o(A), it satisfies

(a—)(d— ) = be. (4.6)

From the first equation in (4.4), we obtain (T, — al)w = bz with z € D(T},).
Applying (T, —~I) on both sides of this equation, and taking into account the
second equation in (4.4) we obtain:

(Tp —yI)(Tp — al)w = (T, — yI)bz = bew + b(d — )z.
Taking into account ( 4.6) and (4.5) we derive

(Ty =) (Tp — al)w = (d = y)[(a — y)w + bz] = (T, —vI)(d —y)w. (4.7)
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We observe that, in order to obtain the previous relations, we use the homo-
geneity of T}, but we cannot commute T, — I and T}, — al because of the non
linearity of 7T},.

Since v < 0, (T, —yI)~! is well defined, applying it into (4.7) we obtain:
(Tp — al)w = (d — y)w, or equivalently

Tyw = (a+d—7)w

so that a + d — v is an eigenvalue of T},. Since the eigenvalues of A are real and
equal to

(a+d)/2++/((a—d)/2)? + b, (4.8)

if v < 0 is an eigenvalue of A, the other is § = a + d — . Moreover, if w > 0,
z >0, Tyw = dw implies § = A;.

5 The Leray-Schauder degree for the eigenvalue
problem

In this section we study the Leray-Schauder degree in terms of the Jordan
canonical form of matrices A € M~. For this purpose we use the following
property: If A € M~ and ¢(4) No(T,) = 0 then A ¢ S(T,,). Therefore (4.1)
has only the trivial solution, which comes from Proposition 4.2.(b).

We denote by o(A) = {~,d} the spectrum of Matrix A , and o(—4,) =
o(T,) the set of eigenvalues of the operator —A, with Dirichlet boundary
conditions.

Proposition 5.1 Let U C (L°®)(Q))? be open bounded and 0 € U. Let J
be the Jordan canonical form of the matriz A. Assume that A € M~ and
o(A)No(—A,) =0. Then

degys(I — T, ' A,U,0) = deg;s(I — T, ' J,U,0).
Moreover, one of the following two conditions is satisfied
1 J= ( 7 0 ) and deg 5(T — T=1J,U,0)
. - 0 ¢ grs p Uy

= degps(I =T, 1, U N LAP)(Q),0) degps(I — 6T, ", U N LFP)(Q),0)

2. J= < 7 0 ) and
Ly
degLS(I - Tp_l‘Luv 0) = [degLS(I - ’YTp_lvu N Lﬁ(p)(Q)v 0)]2

Remark 5.2 This result has been obtained for p = 2 in [15, Proposition 2.1].
In this case, the Leray-Schauder degree for compact linear operators applies
[11, 20]).

For p # 2, the question of calculating deg; ¢(I — fyTp_l,Z/l N LA®)(Q),0) has
been answered in the following cases
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o When the spatial dimension N =1 [19, 21].

e With radial symmetry [4, 22].

e Whenever v < A1 or A1 <7y < Az [3, 22]).
The other cases are still open problems. We consider here the case v < 0 < A;.
Proof of Proposition 5.1 Let P be the invertible matrix such that A =
P=1JP. Let May2(R) be the space of 2 x 2-matrix with real coefficients. Let
us consider a continuous function P : [0,1] — May2(R) such that: 1) P(t)~?

exists for all ¢ € [0,1], 2) P(0) = I, and 3) P(1) = P.
Let us now define the homotopy & : [0,1] x (L#®)(Q))? — (L) (Q))? by

h <t< i’:’ >> =T, [Pt) LIP(1)] < Z’ )
so that

o ()= () (1)) =)

If there exists some nontrivial solution of

(1)) - (1)
then [P(¢t)"'JP(t)] € S(T,) which is impossible by Proposition 4.2, since
o [P(t)"*JP()] = o(J) = 0(A), A € M~ and o(T,) No [P(t)"*JP(t)] = 0.

So (e, () # (Y ) forany (V)£ (o).

z
Now the invariance property for homotopies of the Leray-Schauder degree
proves that

degLS(I - Tp71A7u7 0) = degLS(I - TpilJ,uv 0),

with A = P~1JP.

We consider separately the following two cases:
Case (i): By the product formulae [11, Theorem 8.5], and since 7,6 ¢ o(—A4,),
we have

degLS(I - Tpiljvz/{? 0) = degLS((I - fyTp717 I)?“v 0) degLS((I7 I— 5Tp71)7 Ka 0)

where (I—~T,; ', I)(w, z) = (I—~T, ")w, z) and K is the connected component
of LAW)(Q)2\ (I — T, 'J)(0U) containing zero. The reduction property states
that

degLS((I - ,yTp_17 I):“v 0) = degLS(I - ’)/Tp_l,u N Lﬁ(p) (Q)7 0)
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and Part (i) is proved.

Case (ii): J = z 3) Here o(A) = {v,7 < 0} and A is a non-

diagonalizable matrix.
Let us define the homotopy H : [0,1] x (LA®)(Q))? — (L*®)(Q))? by

n(e (%)= (7 5) (%)

We have o ( Z 3 > =0 ( g ’OY ) = o(A). By Proposition 4.2, and due to

A e M~ if H(t,.) has a non-trivial solution then o Z 3 No(=Ap) # 0,

which contradicts the hypothesis 0(A) N o(—A,) = 0. Therefore degy¢(I —
H(t,.),U,0) is well defined and independent of ¢ € [0,1]. Moreover by using
again the product formulae

degLS(I - (Tp)il‘]vu,o) = degLS(I - H(17 )7“70)

deg s (I — H(0,.),,0)
[deg s (1 —(Tp) ™4, U N LAP (), 0)%.

6 Existence of Positive Bifurcated Solutions

In this section we study sufficient conditions for the existence of positive solu-

tions bifurcating from (Ao, (0,0)) where Ag = @ bo ) From Theorem 3.1

Co d()
we will need that the eigenvalue problem has a (nontrivial) non negative so-
lution, and therefore we will require, from Proposition 4.2, that A; € o(A4p)
and therefore o(T,) No(Ap) # 0. Another usual requirement is that there is
a changement of topological degree (cf. [23],[11, Theorem 28.1], [1], ...). More
explicitly, we have the following

Theorem 6.1 Assume that f, g satisfy (H), that \1 € 0(Ao) and that Ay € M.
Then (Ao, (0,0)) is a bifurcation point to positive solutions of (1.1) in R* x
(WeP())2.

Moreover, there is a connected component of topological dimension > 4 of
the set of nontrivial solutions of (1.1) in R* x (W, P (Q))? whose closure contains
the point (Ao, (0,0)).

Remark 6.2 Theorem above is a generalization for systems of the already
known situation for one single equation [22, Proposition 2.2].

Proof. Hereafter we denote by Bg(c,r) the ball in some space E with center
¢ € E and radius r. Suppose that (Ao, (0,0)) is not a bifurcation point of
(1.1). Since )\ is isolated, there are g > 0 and 79 > 0 such that for every
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A € Bpi(Ao,e0) C RY L if (w,2) € Bpyany((0,0),m0) C (Wy™)? satisfies
(1.1), then (w, z) = (0,0).
Since for any A € Bgra(Ag, €9) the functions
f(a,.,.), g(d,.,.): (L*)* = LP

map bounded sets into bounded sets, the function F : Bga(Ao,€) x (L)?
(L*)? given by

w —_ -1 a b w f((l, w, Z)
Pla(0)) = |(e a)(Y) (S
is completely continuous, consequently deg; (I — F(A,.), B(z~)2((0,0),70),0)
is well defined and independent of A € Bgra(Ayg,€p). For Ay = < ZO Zo )7
0o do
denote by Jy its Jordan canonical form. By hypothesis we can always choose

@ b ), i = 1,2, such that
ci d;

two matrices, A; = <
(a) o(Ai) No(=4y) =10,
(b) A; e M
(C) A; € B]R4(A0,60) and
(d) degLs(I T lAl,u 0) #degLs(I T AQ,Z/{ 0)

Let us now define the homotopies

H, (t( Y )) =1, [Ai < p )”( 5852 )}

Next, we show by contradiction that there exists a real number sufficiently small
again denoted by 7o such that

H; (t( f )) £ ( ";’ ) in @B(a)((0,0),79) C (L*)?

for any ¢t € [0,1]. Assume that for any n € N large enough, there exists a
sequence
=1/n,

(5 ) eoa-ar ()],

W, 1. Wn, f(aa Wn, Zn) :
Tp< Zn >_AZ< Zn >+tn<g(d7wnazn) >’ an’

Wy, = 2, =0, on 0.

and
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Arguing as in the proof of Theorem (3.1), the associated eigenvalue problem has
a non-trivial solution which is positive. Hence, by Proposition (4.2),

A1 E O'(Ai) N U(—Ap)

which contradicts (a). Then H;(t, (w, z)) # (w,2) in 0B(ra)2((0,0),70), there-
fore deg; o(1 — H;(t,.), B(1~)2((0,0),70),0) is well defined and independent of ¢,
consequently

degrs(I = F(Ai;-), B=)2((0,0),70),0)

)
H;(1,.), B(r+y2((0,0),70),0)
H,;

degps(1 —
= degpg(I — Hi(0,.), B(£((0,0),70),0)
= degps(I — T, " Ai, B(1)2((0,0),70),0)

which, jointly with (c) and (d), contradicts the assertion that
degyg(I — F(As,.), Br~2((0,0),70),0) is constant for A € Bra (Ao, €o).

Now, we built the nonnegative the matrices A1, As. jFrom the definition
of the Jordan’s canonical form, there exists an invertible matrix P such that
Ay = P71 JyP. Denote now by v < 0 and 6 the eigenvalues of A. Assume that
0 = A\1. Let us define

_ 0+e O _ 0—e O
o 1 L 1
A =P < 0 7)P, Ay =P ( 0 7>P.

Now, the fact that T, " : : (LP)? — (W,?)? is continuous ensures that (Ao, (0,0))
is a bifurcation pomt of (1.1). The change of the degree and the Theorem of
Alexander and Antman [1] complete the present proof.
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