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Four-parameter bifurcation for a

p-Laplacian system ∗

Jacqueline Fleckinger, Rosa Pardo, & François de Thélin

Abstract

We study a four-parameter bifurcation phenomenum arising in a sys-
tem involving p-Laplacians:

−∆pu = aφp(u) + bφp(v) + f(a, φp(u), φp(v)),

−∆pv = cφp(u) + dφp(v)) + g(d, φp(u), φp(v)),

with u = v = 0 on the boundary of a bounded and sufficiently smooth
domain in RN ; here ∆pu = div(|∇u|

p−2∇u), with p > 1 and p 6= 2, is
the p-Laplacian operator, and φp(s) = |s|

p−2s with p > 1. We assume
that a, b, c, d are real parameters. Thwn we use a bifurcation method
to exhibit some nontrivial solutions. The associated eigenvalue problem,
with f = g ≡ 0, is also studied here.

1 Introduction and Hypotheses

We study some four-parameter bifurcation phenomena arising in the system

−∆pu = aφp(u) + bφp(v) + f(a, φp(u), φp(v)),

−∆pv = cφp(u) + dφp(v) + g(d, φp(u), φp(v)), in Ω (1.1)

u = v = 0 , on ∂Ω .

where ∆pu = div(|∇u|p−2∇u) for p > 1, p 6= 2, is the p-Laplacian operator,
φp : R→ R is given by φp(s) = |s|p−2s, p > 1, Ω ⊂ RN is a sufficiently smooth
bounded domain, and a, b, c, d are real parameters.
The operator −∆p occurs in problems arising in pure mathematics, such

as the theory of quasiregular and quasiconformal mappings (see [24] and the
references therein), and in a variety of applications, such as non-Newtonian flu-
ids, reaction-diffusion problems, flow through porous media, nonlinear elasticity,
glaciology, petroleum extraction, astronomy, etc (see [6, 7, 12, 5]). We also em-
phasize that systems such as (1.1) are not easy generalizations of equations
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2 Four-parameter bifurcation EJDE–2001/06

because the solutions cannot be obtained by variational methods. Here we use
a bifurcation method to exhibit some nontrivial solutions. Another approach for
non variational systems can be found in [8]. Moreover the problem considered
here where p 6= 2 is not a straightforward extension of the case p = 2 due to the
fact that the translations of the p-Laplacian are not always invertible neither
commutative. In this paper we obtain bifurcation results for (1.1). The linear
case (p = 2) is studied in [15]. The case where g ≡ 0 is considered in [14].
We assume through this article that the functions f and g satisfy the fol-

lowing Hypothesis:
A continuous function f : R3 → R satisfies Hypothesis (H) if there exists ρ

such that 1 ≤ ρ < N+p′

N−min(p,p′) for min(p, p
′) < N and 1 ≤ ρ for min(p, p′) ≥ N ,

and such that

(H1) lim
|(r,s)|→0

f(λ, r, s)

|(r, s)|
= 0 uniformly with respect to λ on bounded sets,

(H2) lim
|(r,s)|→∞

f(λ, r, s)

|(r, s)|ρ
= 0 uniformly with respect to λ on bounded sets.

where, as usual, for a given q > 1, q′ is defined by:

1

q
+
1

q′
= 1.

Definitions: By a solution of the system (1.1) we mean a pair (A, (u, v)) ∈

R
4 × (W 1,p0 (Ω))

2, with A :=

(
a b
c d

)
, satisfying (1.1) in the weak sense, i.e.,

for all w, z ∈ W 1,p0 (Ω),∫
Ω

|∇u|p−2∇u.∇w =

∫
Ω

a|u|p−2uw + b|v|p−2vw + f(a, φp(u), φp(v))w∫
Ω

|∇v|p−2∇v.∇z =

∫
Ω

c|u|p−2uz + d|v|p−2vz + g(d, φp(u), φp(v))z (1.2)

The set of solutions will be denoted by S. Obviously (A, (0, 0)) is a solution of
(1.1) for every (a, b, c, d) ∈ R4. The set of these pairs will be called the trivial
solution set, and will be denoted by S0.
We say that (A0, (0, 0)) ∈ S0 is a bifurcation point of (1.1) with respect to

the trivial solution set iff every neighborhood of (A0, (0, 0)) contains solutions
of (1.1) belonging to S \ S0.
We will show that whenever (H) is satisfied, any matrix A0 with a negative

eigenvalue, the other being the principal eigenvalue of the p-Laplacian, is such
that (A0, (0, 0)) ∈ S0 is a bifurcation point to positive solutions for (1.1).
To establish our results, we combine and adapt methods of [15] and [14]. Our

paper is organized as follows: In Section 2, we recalls some results concerning
the p-Laplacian. We recall in particular several lemmas established in [14] con-
cerning spaces that we will use. In Section 3, we show that if (A0, (0, 0)) ∈ S0
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is a bifurcation point, then the homogeneous system: −∆pU = A0U has a non
trivial solution. In Section 4 we obtain conditions on A0 for this to happen.
In Section 5 we compute the Leray-Schauder degree for the eigenvalue problem
and in Section 6 we state and establish our result.

2 Notation and preliminaries

In this section, we recall briefly some notation and results concerning the p-
Laplacian.
The p-Laplacian, −∆p, defined on W

1,p
0 (Ω) has a first eigenvalue λ1(p) := λ1

which is simple and isolated [3]; it is associated to a simple eigenfunction ϕ
(normalized as ‖ϕ‖∞ = 1) which is positive. Moreover, λ1 is characterized by

λ1 = inf
u∈W 1,p

0 ;
∫
Ω
|u|p=1

∫
Ω

| ∇u |p . (2.1)

The following results are known for the equation

−∆pu = k|u|p−2u+ f in Ω (2.2)

u = 0 on ∂Ω . (2.3)

Lemma 2.1 ([25]) If f ∈ L∞(Ω), f ≥ 0, f 6≡ 0, Equation (2.2-2.3) has at
least one solution and satisfies the maximum principle (i.e. any solution u is
non-negative) if and only if k < λ1.

Lemma 2.2 ([13]) For f ∈ L∞, f ≥ 0, f 6≡ 0, and for k = λ1, Equation
(2.2-2.3) has no solution in W 1,p0 (Ω).

The operator Tq. We introduce now some notation and results used in [14].
Let

A(q) =

{
Nq′

N−min(q,q′) if min(q, q′) < N

+∞ if min(q, q′) ≥ N
(2.4)

B(q) =

{ Nq
Nq−N+q if min(q, q′) < N

+1 if min(q, q′) ≥ N.
(2.5)

Then we introduce the operator Tq := −∆q ◦ φq′ with domain

D(Tq) :=
{
z ∈ Lα(q)(Ω) : φq′ (z) ∈W

1,p
0 (Ω) and −∆q(φq′ (z)) ∈ L

β(q)(Ω)
}

Then
φq(W

1,q
0 ) ↪→ L

α ↪→ Lβ ↪→W−1,q
′

,

where α(q), β(q) are real numbers satisfying B(q) < β, α < A(q).
We notice that the operator Tq is homogeneous of degree 1. We also notice

that the equation Tqu = λu has a solution u 6≡ 0, u ∈ W
1,q
0 (Ω) if and only

if −∆qu = λφq(u) has a nontrivial solution. Such a λ is an eigenvalue and
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we denote by σ(−∆p) = σ(Tp) these eigenvalues. If this solution is positive,
then λ = λ1 and u = kϕ, k > 0.
We have the following embeddings.

Lemma 2.3 (Lemma 2.2 in [14]) If α < A(q) the embedding φq(W 1,q) into

Lα is compact. If β > B(q), the embedding Lβ into W−1,q
′
is compact.

Lemma 2.4 ([14]) For α < A(q), β > B(q), and k < 0, the operators

Tq : D(Tq) ⊂ L
α −→ Lβ and (Tq − k)

−1 : Lβ −→ Lα

are well defined and (Tq − k)−1 : Lβ −→ Lα is completely continuous.

Lemma 2.5 For α < A(q), β > B(q), k < λ1 and f ∈ Lβ, f > 0, (Tq − k)−1f
is well defined or equivalently (2.2) has a unique solution.

Remark 2.6 Obviously, ∆q(−u) = −∆qu and φq(−s) = −φq(s), then it fol-
lows that Tq(−u) = −Tq(u) and by the previous Lemma with k < λ1 and
f ∈ Lβ, f < 0, (Tq − k)−1f is also well defined. When f changes sign several
solutions may appear [21, 16].

We also introduce

a(q) =

{ Nq
N−q if q < N

+∞ if q ≥ N.

From their definitions, it is easy to prove that, for any q > 1, we have

(a(q))′ < q′ < A(q) ≤ a(q′),

and that the functions (a(q))′, a(q′) are decreasing in q.

Lemma 2.7 Assume that F : R3 → R is continuous and satisfies (H). Choose
α ∈ R such that

(a(p))′ <
α

ρ
< p′ < α < A(p).

Then for any λ ∈ R and for any (w, z) ∈ Lα × Lα, we have F (λ,w, z) ∈ Lβ,
where β = α

ρ . Moreover, for any sequence {wn, zn} ∈ L
α × Lα, satisfying

(wn, zn) 6= (0, 0) and lim
n→∞

‖(wn, zn)‖Lα×Lα = 0, we have that

lim sup
n→∞

∥∥∥∥ F (λ,wn, zn)

‖(wn, zn)‖Lα×Lα

∥∥∥∥
Lβ
= 0

Proof. By (H) ρ satisfies 1 ≤ ρ < N+q′

N−min(q,q′) , if min(q, q
′) < N and 1 ≤ ρ

if min(q, q′) ≥ N . It follows from Lemma 2.1 in [14] that we can choose α
satisfying

(a(p))′ <
α

ρ
< p′ < α < A(p).
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Moreover, for any δ > 0, there exists a constant C such that

|F (λ, r, s)| ≤ δ + C|(r, s)|ρ, ∀(r, s) ∈ R× R ;

hence the first assertion holds. Now, by Hölder s inequality,∫
Ω

∣∣∣ F (λ,wn, zn)
‖(wn, zn)‖Lα×Lα

∣∣∣β
≤
(∫
Ω

∣∣F (λ,wn, zn)
|(wn, zn)|

∣∣ αρ−1)1/ρ′( ∫
Ω

∣∣ |(wn, zn)|

‖(wn, zn)‖Lα×Lα

∣∣α)1/ρ
≤ C1

( ∫
Ω

∣∣F (λ,wn, zn)
|(wn, zn)|

∣∣α/(ρ−1))1/ρ′ . (2.6)

From (H) we deduce

∣∣∣∣F (λ,wn, zn)|(wn, zn)|

∣∣∣∣
α
ρ−1

≤ δ
α
ρ−1 + C2|(wn, zn)|

α.

Since lim
n→∞

‖(wn, zn)‖Lα×Lα = 0, for every δ > 0,

lim sup
n→∞

∫
Ω

∣∣∣∣F (λ,wn, zn)|(wn, zn)|

∣∣∣∣
α
ρ−1

≤ δ
α
ρ−1 |Ω| .

Taking into account (2.6) the results follows. ♦

3 Preliminary results

In this section we show that if (A0, (0, 0)) is a bifurcation point, then the eigen-
value problem

−∆pu = a0φp(u) + b0φp(v),

−∆pv = c0φp(u) + d0φp(v), in Ω (3.1)

u = v = 0, on ∂Ω .

has a non-trivial solution. This is well-known in the case p = 2, (cf. [10]), but
due to the nonlinearity of Tp, the proof is much more delicate.

Theorem 3.1 Let f, g satisfy (H1), and (A0, (0, 0)) be a bifurcation point of
(1.1) in R4 × (W 1,p0 (Ω))

2 ; then the eigenvalue problem (3.1) has a non-trivial
solution .

Proof. If (A0, (0, 0)) is a bifurcation point, then there exists a sequence
{(An, (un, vn))} of nontrivial solutions of (1.1), with An = (an, bn, cn, dn) ∈ R4

and (un, vn) ∈ (W
1,p
0 (Ω))

2, such that

An → A0 in R4 and (un, vn)→ (0, 0) in (W
1,p
0 (Ω))

2.
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Define wn = φp(un), zn = φp(vn). Due to Lemma 2.2 (cf. [14] ; Lemma 2.2),
wn, zn ∈ Lα whenever α < A(p). Moreover, (An, (wn, zn)) is a nontrivial
solution of the system

Tpwn = anwn + bnzn + f(an, wn, zn), (3.2)

Tpzn = cnwn + dnzn + g(dn, wn, zn) in Ω.

Let sn = max{‖wn‖Lα , ‖zn‖Lα} > 0. By Lemma 2.2 above it is obvious that
sn → 0 as n→∞. We define

Wn =
wn

sn
, Zn =

zn

sn
, n ∈ N

Dividing each equation of System (3.2) by sn we can write

Wn = T
−1
p

(
anWn + bnZn +

1
sn
f(an, wn, zn)

)
,

Zn = T
−1
p

(
cnWn + dnZn +

1
sn
g(dn, wn, zn)

)
, in Ω .

From Lemma 2.7, f(R× Lα × Lα) ⊂ Lβ for β = α
ρ
and

lim sup
n→∞

∥∥∥∥f(an, wn, zn)sn

∥∥∥∥
Lβ
= 0.

Of course an analogous result holds for g. Therefore,

anWn + bnZn +
1

sn
f(an, wn, zn) and cnWn + dnZn +

1

sn
g(dn, wn, zn)

are bounded sequences in Lβ with β < α. It follows from the compactness
T−1p : Lβ → Lα that there exists two convergent subsequences

T−1p

(
anWn + bnZn +

1

sn
f(an, wn, zn)

)
→W ,

T−1p

(
cnWn + dnZn +

1

sn
g(dn, wn, zn)

)
→ Z

in Lα and (W,Z) 6= (0, 0). Moreover (Wn, Zn)→ (W,Z) in Lα and

TpW = a0W + b0Z,

TpZ = c0W + d0Z, in Ω,

or equivalently, (W,Z) is a nontrivial solution of the eigenvalue problem (3.1).

4 An Eigenvalue problem

In this section we consider the eigenvalue problem (3.1) with (a0, b0, c0, d0) =
(a, b, c, d). We establish necessary and sufficient conditions so that System (3.1)
has a nontrivial positive solution.
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Definition. We say that A =

(
a b
c d

)
satisfies the solvability condition, and

we write A ∈ S(Tp), if there exists a nontrivial solution of

Tp

(
w
z

)
= A

(
w
z

)
, (4.1)

where w := φp(u), z = φp(v), w, z ∈ D(Tp) with

D(Tp) := {z ∈ L
α(p)(Ω) : φp′ (z) ∈ W

1,p
0 (Ω), −∆p(φp′(z)) ∈ L

β(p)(Ω)},

and α(p), β(p) satisfy

(B(p))′ < β(p) ≤ α(p) < A(p). (4.2)

We remark that Problem (3.1) is equivalent to the operator equation (4.1).

Definition. Let σ(A) denote the spectrum of the Matrix A. LetM− be the
set of matrices that have a negative eigenvalue.

Remark 4.1 Since A has real coefficients the eigenvalues are complex conju-
gate; and if one is real, both eigenvalues are real. The eigenvalues, denoted by
γ and δ, are the roots of the equation

X2 − (a+ d)X + ad− bc = 0. (4.3)

If the eigenvalues are not real, γ = ξ + iη and δ = ξ − iη; therefore, γδ =
ξ2 + η2 > 0. since γδ = ad− bc, complex values occur only when ad− bc > 0.

When A inM−, we denote by γ the negative eigenvalue.

Proposition 4.2 (a) If σ(Tp) ∩ σ(A) is not empty, then A is in S(Tp). More
precisely, let λ be in σ(Tp) ∩ σ(A), let D ∈ R2 be its corresponding A-
eigenvector, let φ ∈ D(Tp) be its corresponding Tp-eigenfunction, then Dφ
solves (4.1). Consequently, if λ1 ∈ σ(A), and either b(λ1 − a) > 0, (≥
0) or c(λ1 − d) > 0, (≥ 0) the eigenvalue problem (4.1) has a positive
(nonnegative) solution.

(b) Conversely, if A ∈M−∩S(Tp), then σ(Tp)∩σ(A) is not empty. Moreover
if A ∈ M− and if the eigenvalue problem (4.1) has a positive solution,
then σ(Tp) ∩ σ(A) = {λ1}.

This proposition can also be stated as follows:
(a) If one of the eigenvalues of A is in σ(Tp) then there exists a nontrivial solution
of (4.1).
(b) Conversely, if A has a negative eigenvalue, and if there exists a nontrivial
solution of (4.1), then the other eigenvalue of A is in σ(Tp).

Remark 4.3 In part (b) above, if σ(A) := {γ, δ} and if γ < 0, necessarily
δ > 0, and we have γδ = ad− bc < 0.
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Proof of Proposition (4.2) (a) Assume that λ ∈ σ(A)∩σ(Tp). By definition
of λ, there exists an eigenfunction ϕ ∈ D(Tp), ϕ such that Tpϕ = λϕ. Since

λ ∈ σ(A) ⊂ R, there exists an eigenvector D =

(
d1
d2

)
∈ R2 such that AD =

λD. Define (η, ζ) := (d1ϕ, d2ϕ). Since Tp is homogeneous of order 1,

Tp

(
η
ζ

)
= TpDϕ = DTpϕ = λDϕ = ADϕ = A

(
η
ζ

)

i.e. (η, ζ) is a nontrivial solution of (4.1), and (d1φp′(ϕ), d2φp′ (ϕ)) 6= (0, 0) is a
nontrivial solution of (3.1). Moreover, if λ = λ1, we can take ϕ > 0, and either
(w, z) = (|b|, |λ1 − a|)φ or (w, z) = (|c|, |λ1 − d|)φ is a positive (nonnegative)
solution (or b = c = 0, a = d = λ1 and (1, 0)φ, (0, 1)φ are nonnegative solutions).
(b) Let (w, z) 6= (0, 0) be a nontrivial solution of (4.1), i.e. (w, z) is a

nontrivial solution of

Tpw = aw + bz

Tpz = cw + dz (4.4)

w = z = 0 on ∂Ω .

We first consider some obvious cases.
If w = 0, then z 6= 0 satisfies Tpz = dz, therefore d ∈ σ(Tp) and (Tp−aI)w =

bz implies b = 0; consequently d ∈ σ(A) is an eigenvalue of A and of Tp.
Likewise, z = 0 implies that a ∈ σ(A) is an eigenvalue of A. Hence we assume
now that w 6= 0, z 6= 0.
If b = 0, then Tpw = aw with w 6= 0, implies that a ∈ σ(A) ∩ σ(Tp). On

the same way, c = 0 implies that d ∈ σ(A) ∩ σ(Tp). Hence we assume now that
bc 6= 0.
Now bc 6= 0, and assume that γ is a negative eigenvalue of A. Moreover let

us assume that w 6= 0, z 6= 0 are solutions of (4.1).
System (4.1) can also be written as

(Tp − γI)

(
w
z

)
=

(
a− γ b
c d− γ

)(
w
z

)
. (4.5)

Moreover, since γ ∈ σ(A), it satisfies

(a− γ)(d− γ) = bc. (4.6)

From the first equation in (4.4), we obtain (Tp− aI)w = bz with z ∈ D(Tp).
Applying (Tp − γI) on both sides of this equation, and taking into account the
second equation in (4.4) we obtain:

(Tp − γI)(Tp − aI)w = (Tp − γI)bz = bcw + b(d− γ)z.

Taking into account ( 4.6) and (4.5) we derive

(Tp − γI)(Tp − aI)w = (d− γ)[(a− γ)w + bz] = (Tp − γI)(d− γ)w. (4.7)
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We observe that, in order to obtain the previous relations, we use the homo-
geneity of Tp but we cannot commute Tp − γI and Tp − aI because of the non
linearity of Tp.
Since γ < 0, (Tp − γI)−1 is well defined, applying it into (4.7) we obtain:

(Tp − aI)w = (d− γ)w, or equivalently

Tpw = (a+ d− γ)w

so that a+ d− γ is an eigenvalue of Tp. Since the eigenvalues of A are real and
equal to

(a+ d)/2±
√
((a− d)/2)2 + bc, (4.8)

if γ < 0 is an eigenvalue of A, the other is δ = a + d − γ. Moreover, if w > 0,
z > 0, Tpw = δw implies δ = λ1.

5 The Leray-Schauder degree for the eigenvalue

problem

In this section we study the Leray-Schauder degree in terms of the Jordan
canonical form of matrices A ∈ M−. For this purpose we use the following
property: If A ∈ M− and σ(A) ∩ σ(Tp) = ∅ then A /∈ S(Tp). Therefore (4.1)
has only the trivial solution, which comes from Proposition 4.2.(b).
We denote by σ(A) = {γ, δ} the spectrum of Matrix A , and σ(−∆p) =

σ(Tp) the set of eigenvalues of the operator −∆p with Dirichlet boundary
conditions.

Proposition 5.1 Let U ⊂ (Lβ(p)(Ω))2 be open bounded and 0 ∈ U . Let J
be the Jordan canonical form of the matrix A. Assume that A ∈ M− and
σ(A) ∩ σ(−∆p) = ∅. Then

degLS(I − T
−1
p A,U , 0) = degLS(I − T

−1
p J,U , 0).

Moreover, one of the following two conditions is satisfied

1. J =

(
γ 0
0 δ

)
and degLS(I − T

−1
p J,U , 0)

= degLS(I − γT
−1
p ,U ∩ L

β(p)(Ω), 0) degLS(I − δT
−1
p ,U ∩ L

β(p)(Ω), 0)

2. J =

(
γ 0
1 γ

)
and

degLS(I − T
−1
p J,U , 0) = [degLS(I − γT

−1
p ,U ∩ L

β(p)(Ω), 0)]2.

Remark 5.2 This result has been obtained for p = 2 in [15, Proposition 2.1].
In this case, the Leray-Schauder degree for compact linear operators applies
[11, 20]).
For p 6= 2, the question of calculating degLS(I − γT

−1
p ,U ∩ L

β(p)(Ω), 0) has
been answered in the following cases
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• When the spatial dimension N = 1 [19, 21].

• With radial symmetry [4, 22].

• Whenever γ < λ1 or λ1 < γ < λ2 [3, 22]).

The other cases are still open problems. We consider here the case γ < 0 < λ1.

Proof of Proposition 5.1 Let P be the invertible matrix such that A =
P−1JP . Let M2×2(R) be the space of 2 × 2-matrix with real coefficients. Let
us consider a continuous function P : [0, 1] → M2×2(R) such that: 1) P(t)−1

exists for all t ∈ [0, 1], 2) P(0) = I, and 3) P(1) = P .
Let us now define the homotopy h : [0, 1]× (Lβ(p)(Ω))2 → (Lα(p)(Ω))2 by

h

(
t,

(
w
z

))
= T−1p

[
P(t)−1JP(t)

] ( w
z

)
,

so that

h

(
0,

(
w
z

))
= T−1p J

(
w
z

)
, h

(
1,

(
w
z

))
= T−1p A

(
w
z

)

If there exists some nontrivial solution of

h

(
t,

(
w
z

))
=

(
w
z,

)

then
[
P(t)−1JP(t)

]
∈ S(Tp) which is impossible by Proposition 4.2, since

σ
[
P(t)−1JP(t)

]
= σ(J) = σ(A), A ∈ M− and σ(Tp) ∩ σ

[
P(t)−1JP(t)

]
= ∅.

So h
(
t,
( w
z

))
6=
( w
z

)
for any

( w
z

)
6=
( 0
0

)
.

Now the invariance property for homotopies of the Leray-Schauder degree
proves that

degLS(I − T
−1
p A,U , 0) = degLS(I − T

−1
p J,U , 0),

with A = P−1JP.
We consider separately the following two cases:

Case (i): By the product formulae [11, Theorem 8.5], and since γ, δ /∈ σ(−∆p),
we have

degLS(I − T
−1
p J,U , 0) = degLS((I − γT

−1
p , I),U , 0) degLS((I, I − δT

−1
p ),K, 0)

where (I−γT−1p , I)(w, z) = ((I−γT
−1
p )w, z) andK is the connected component

of Lβ(p)(Ω)2 \ (I − T−1p J)(∂U) containing zero. The reduction property states
that

degLS((I − γT
−1
p , I),U , 0) = degLS(I − γT

−1
p ,U ∩ L

β(p)(Ω), 0)
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and Part (i) is proved.

Case (ii): J =

(
γ 0
1 γ

)
. Here σ(A) = {γ, γ < 0} and A is a non-

diagonalizable matrix.
Let us define the homotopy H : [0, 1]× (Lβ(p)(Ω))2 → (Lα(p)(Ω))2 by

H

(
t,

(
w
z

))
= (Tp)

−1

(
γ 0
t γ

)(
w
z

)
.

We have σ

(
γ 0
t γ

)
= σ

(
γ 0
0 γ

)
= σ(A). By Proposition 4.2, and due to

A ∈ M−, if H(t, .) has a non-trivial solution then σ

(
γ 0
t γ

)
∩ σ(−∆p) 6= ∅,

which contradicts the hypothesis σ(A) ∩ σ(−∆p) = ∅. Therefore degLS(I −
H(t, .),U , 0) is well defined and independent of t ∈ [0, 1]. Moreover by using
again the product formulae

degLS(I − (Tp)
−1J,U , 0) = degLS(I −H(1, .),U , 0)

= degLS(I −H(0, .),U , 0)

= [degLS(I − γ(Tp)
−1,U ∩ Lβ(p)(Ω), 0)]2.

6 Existence of Positive Bifurcated Solutions

In this section we study sufficient conditions for the existence of positive solu-

tions bifurcating from (A0, (0, 0)) where A0 =

(
a0 b0
c0 d0

)
. From Theorem 3.1

we will need that the eigenvalue problem has a (nontrivial) non negative so-
lution, and therefore we will require, from Proposition 4.2, that λ1 ∈ σ(A0)
and therefore σ(Tp) ∩ σ(A0) 6= ∅. Another usual requirement is that there is
a changement of topological degree (cf. [23],[11, Theorem 28.1], [1], ...). More
explicitly, we have the following

Theorem 6.1 Assume that f, g satisfy (H), that λ1 ∈ σ(A0) and that A0 ∈M.
Then (A0, (0, 0)) is a bifurcation point to positive solutions of (1.1) in R

4 ×
(W 1,p0 (Ω))

2.
Moreover, there is a connected component of topological dimension ≥ 4 of

the set of nontrivial solutions of (1.1) in R4×(W 1,p0 (Ω))
2 whose closure contains

the point (A0, (0, 0)).

Remark 6.2 Theorem above is a generalization for systems of the already
known situation for one single equation [22, Proposition 2.2].

Proof. Hereafter we denote by BE(c, r) the ball in some space E with center
c ∈ E and radius r. Suppose that (A0, (0, 0)) is not a bifurcation point of
(1.1). Since λ1 is isolated, there are ε0 > 0 and r0 > 0 such that for every
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A ∈ BR4(A0, ε0) ⊂ R
4 , if (w, z) ∈ B(W 1,p

0 )2((0, 0), r0) ⊂ (W
1,p
0 )

2 satisfies

(1.1), then (w, z) = (0, 0).
Since for any A ∈ BR4(A0, ε0) the functions

f(a, ., .), g(d, ., .) : (Lα)2 → Lβ

map bounded sets into bounded sets, the function F : BR4(A0, ε0) × (L
α)2 →

(Lα)2 given by

F

(
A,

(
w
z

))
= T−1p

[(
a b
c d

)(
w
z

)
+

(
f(a, w, z)
g(d, w, z)

)]

is completely continuous, consequently degLS(I − F (A, .), B(Lα)2((0, 0), r0), 0)

is well defined and independent of A ∈ BR4(A0, ε0). For A0 =

(
a0 b0
c0 d0

)
,

denote by J0 its Jordan canonical form. By hypothesis we can always choose

two matrices, Ai =

(
ai bi
ci di

)
, i = 1, 2, such that

(a) σ(Ai) ∩ σ(−∆p) = ∅,

(b) Ai ∈ M

(c) Ai ∈ BR4(A0, ε0) and

(d) degLS(I − T
−1
p A1,U , 0) 6= degLS(I − T

−1
p A2,U , 0).

Let us now define the homotopies

Hi

(
t,

(
w
z

))
= T−1p

[
Ai

(
w
z

)
+ t

(
f(a, w, z)
g(d, w, z)

)]
,

Next, we show by contradiction that there exists a real number sufficiently small
again denoted by r0 such that

Hi

(
t,

(
w
z

))
6=

(
w
z

)
in ∂B(Lα)2((0, 0), r0) ⊂ (L

α)2

for any t ∈ [0, 1]. Assume that for any n ∈ N large enough, there exists a
sequence{(

tn,

(
wn
zn

))}
∈ [0, 1]× (Lβ)2,

∥∥∥∥
(
wn
zn

)∥∥∥∥
(Lβ)2

= 1/n,

and

Tp

(
wn
zn

)
= Ai

(
wn
zn

)
+ tn

(
f(a, wn, zn)
g(d, wn, zn)

)
, in Ω,

wn = zn = 0, on ∂Ω.



EJDE–2001/06 J. Fleckinger, R, Pardo, & F. de Thélin 13

Arguing as in the proof of Theorem (3.1), the associated eigenvalue problem has
a non-trivial solution which is positive. Hence, by Proposition (4.2),

λ1 ∈ σ(Ai) ∩ σ(−∆p)

which contradicts (a). Then Hi(t, (w, z)) 6= (w, z) in ∂B(Lα)2((0, 0), r0), there-
fore degLS(I−Hi(t, .), B(Lα)2((0, 0), r0), 0) is well defined and independent of t,
consequently

degLS(I − F (Ai, .), B(Lα)2((0, 0), r0), 0)

= degLS(I −Hi(1, .), B(Lα)2((0, 0), r0), 0)

= degLS(I −Hi(0, .), B(Lα)((0, 0), r0), 0)

= degLS(I − T
−1
p Ai, B(Lα)2((0, 0), r0), 0)

which, jointly with (c) and (d), contradicts the assertion that
degLS(I − F (Ai, .), B(Lα)2((0, 0), r0), 0) is constant for A ∈ BR4(A0, ε0).
Now, we built the nonnegative the matrices A1, A2. ¿From the definition

of the Jordan’s canonical form, there exists an invertible matrix P such that
A0 = P

−1J0P . Denote now by γ < 0 and δ the eigenvalues of A. Assume that
δ = λ1. Let us define

A1 := P
−1

(
δ + ε 0
0 γ

)
P, A2 := P

−1

(
δ − ε 0
0 γ

)
P.

Now, the fact that T−1p : (Lβ)2 → (W 1,p0 )
2 is continuous ensures that (A0, (0, 0))

is a bifurcation point of (1.1). The change of the degree and the Theorem of
Alexander and Antman [1] complete the present proof.
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[22] M.A. del Pino, R. F. Manásevich, Global Bifurcation from the eigenvalues
of the p-laplacian, J. of Diff. Eq., Vol. 92, 226-251, (1991).

[23] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J.
Funct. Anal. 7 487-513 (1971).

[24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equa-
tions, J. Diff. Equ., 51 (1984), 126-150.

[25] J.L. Vázquez: A strong maximum principle for some quasilinear elliptic
equations, Appl. Math. Optim., 12, 191-202, (1984).

Jacqueline Fleckinger

CEREMATH & UMR MIP, Université Toulouse 1
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