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Multiple solutions to some singular

nonlinear Schrödinger equations ∗

Monica Lazzo

Abstract

We consider the equation −h2∆u + Vε(x)u = |u|p−2u which arises
in the study of standing waves of a nonlinear Schrödinger equation. We
allow the potential Vε to be unbounded below and prove existence and
multiplicity results for positive solutions.

1 Introduction

In recent years, much interest has been paid to the nonlinear Schrödinger equa-
tion

ih
∂ψ

∂t
= −h2∆ψ + U(x)ψ − |ψ|p−2ψ, x ∈ RN , (1.1)

where h is a positive constant, U is a continuous potential and p is greater than
2 and less than 2∗, the critical Sobolev exponent.
When looking for standing waves of (1.1), namely solutions of the form

ψ(t, x) = exp(−iλh−1t)u(x)

with λ ∈ R and u a real function, one is led to solve the following elliptic problem
in RN :

−h2∆u+ V (x)u = |u|p−2u , x ∈ RN (1.2)

lim|x|→∞ u(x) = 0

where V (x) = U(x) + λ.
The existence of solutions to (1.2) corresponding to small values of the pa-

rameter h and their behaviour as h tends to zero are of particular concern in
the so-called semiclassical analysis. The first result on semiclassical solutions
for (1.2) is ascribed to Floer and Weinstein [11], who consider a cubic non-
linearity in the one dimensional case. They assume that the potential V is
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bounded and it has a nondegenerate critical point x0; via a Lyapunov-Schmidt
finite dimensional reduction, they find a solution to (1.2), for small h. Fur-
thermore, they prove that a concentration phenomenon occurs: as h tends to
zero, their solutions tend in a suitable sense to the solution of the limit equation
−u′′ + V (x0)u = u3, rescaled around x0.
Floer and Weinstein’s results were generalized to higher dimensions and arbi-

trary subcritical exponents by Oh [17]. Afterwards, many authors contributed
to solving (1.2) by using various methods which in turn required various as-
sumptions on the potential V ; see, for instance, [1], [2], [10], [18] and references
therein for a partial account on the topic.
Our results are mainly inspired by a paper by Rabinowitz [18]. If

0 < V0 ≡ inf
RN

V < lim inf
|x|→∞

V (x) , (1.3)

then (1.2) has a solution uh, for h sufficiently small (see Theorem 4.33 in [18]).
The approach in [18] is a variational one: solutions to (1.2) are found as critical
points of the energy functional

Ih(u) =
h2

2

∫
|∇u|2 +

1

2

∫
V (x)|u|2 −

1

p

∫
|u|p

in a suitable Hilbert space. The functional Ih exhibits a mountain pass–type
geometry; the lack of compactness, due to the unboundedness of the domain,
is overcome by means of (1.3), and uh is obtained via a mountain pass–type
argument.
Our goal in this paper is to show that a result in the spirit of [18] holds if

the potential in (1.2) is perturbed by adding a negative potential which may be
singular, so that the resulting potential may be unbounded below.
Precisely, we consider the potential

Vε(x) = V (x) − ε(h)W (x) ,

where ε : [0,+∞) −→ [0,+∞) and W : RN −→ [0,+∞) is a measurable
function such that, for some α1 > 0 and α2 ≥ 0, the inequality∫

W (x)|u|2 ≤ α1‖∇u‖
2
2 + α2‖u‖

2
2 (1.4)

holds for any u ∈ H1(RN ).
We are interested in existence and multiplicity of solutions for the problem

−h2∆u+ Vε(x)u = |u|p−2u in RN (1.5)

lim|x|→∞ u(x) = 0 .

Our first result is the following

Theorem 1.1 Assume (1.3) and (1.4). There exists ε∗ > 0 such that, if

lim sup
h→0

ε(h)

h2
< ε∗ , (1.6)

then (1.5) has a positive solution, for h sufficiently small.
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Let us remark that in [18], as well as in the other papers quoted above,
the potential that defines the Schrödinger operator is bounded below. On the
other hand, the potential Vε we consider may be unbounded below, since (1.4)
may well be satisfied by potentials W which are unbounded above. From this
standpoint Theorem 1.1, if very natural and quite simple to prove, seems not
to be known.

In the paper we also obtain a multiplicity result, by relating the number of
solutions of (1.5) with the topology of the set of global minima of V . In order to
state our result we need the following standard notation: if Y is a closed subset
of a topological space X , catX(Y ) is the Ljusternik–Schnirelman category of Y
in X , namely the least number of closed and contractible sets in X which cover
Y . If X = Y , we set catX(X) = cat(Y ).
Let M be the set of global minima of V and, for any positive δ, let Mδ =

{x ∈ RN : dist(x,M) ≤ δ}.

Theorem 1.2 Assume (1.3) and (1.4). For any δ > 0 there exists ε∗∗(δ) > 0
such that, if

lim sup
h→0

ε(h)

h2
< ε∗∗(δ) , (1.7)

then (1.5) has at least catMδ (M) positive solutions, for h sufficiently small.

In several situations, catMδ (M) and cat(M) agree, at least for small δ. This
is the case, for instance, if M is the closure of a bounded open set with smooth
boundary, a smooth and compact submanifold of RN or a finite set; in the last
case, the category of M is nothing but the cardinality of M .

As a motivation for Theorem 1.2, we recall that, as proved by Wang [19],
the family of solutions uh found in [18] concentrates near global minima of
V , as h tends to 0. Therefore, a rather natural question is: is it possible to
relate the multiplicity of solutions for (1.5) with the topological richness of the
set of minimum points of V ? In [6] an affirmative answer was given for the
unperturbed problem (1.2), that is, for ε(h) identically zero. Theorem 1.2 is a
natural generalization of the result in [6]: the number of solutions to (1.5) can
still be related with the topology of the global minima set of the unperturbed
potential, provided the perturbation is small with respect to the coefficient of
the differential term, in the sense of (1.7).

Let us end this section by giving some examples of potentials satisfying (1.4).
Let W be in the so-called Kato–Rellich class, namely W ∈ Lq(RN ) + L∞(RN ),
with q = 2 if N ≤ 3, q > 2 if N = 4 and q ≥ N/2 if N ≥ 5. Then the following
property, that obviously implies (1.4), holds: for any ξ > 0 there exists αξ > 0
such that

∫
W (x)|u|2 ≤ ξ‖∇u‖22 + αξ‖u‖

2
2 for any u ∈ H

1(RN ) (for the proof,
see for instance [21]). Notice that, for example, the Coulomb potential |x|−1 is
in the Kato–Rellich class, for N ≥ 3. Next, let W ∈ LN/2(RN ) ∩ Lβ(RN ), for
some β > N/2, then the eigenvalue problem −∆u = λW (x)u, u ∈ D1,2(RN ),
has the same properties as an eigenvalue problem for −∆ in a bounded domain
(see [9]). In particular, the first eigenvalue λ1(−∆,RN ,W ) is strictly positive
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and, as a consequence, (1.4) is fulfilled with α1 = λ1(−∆,RN ,W ) and α2 = 0.
Finally, let W (x) = |x|−2 (such a potential is in none of the previous classes).
In this case, Hardy inequality gives (1.4), with α1 = 4/(N − 2)2 and α2 = 0.

Acknowledgements. Part of this work was done while the author was vis-
iting the University of Wisconsin, Madison. This visit was supported by Con-
siglio Nazionale delle Ricerche (Short–term mobility program 2000). The author
thanks the Department of Mathematics for its hospitality.

2 Preliminaries

Let H1(RN ) be the standard Sobolev space endowed with the standard norm
‖ · ‖H1 and H =

{
u ∈ H1(RN ) :

∫
V (x)|u|2 < +∞

}
; unless otherwise stated,

the integration set RN will be understood.
In H we define the functionals

Jh,ε(u) =

∫
h2|∇u|2 + Vε(x)|u|

2 , Jh,0(u) =

∫
h2|∇u|2 + V (x)|u|2 .

Clearly, Jh,ε(u) ≤ Jh,0(u) for any u . Conversely, if (1.4) holds and 0 < h2 ≤
V0 α1 α

−1
2 (no restrictions on h if α2 = 0), then for any u ∈ H we have(

1− α1
ε(h)

h2

)
Jh,0(u) ≤ Jh,ε(u) . (2.1)

Indeed, ∫
W (x)|u|2 ≤ α1

∫
|∇u|2 +

α2

V0

∫
V (x)|u|2 ≤

α1

h2
Jh,0(u) .

As a consequence,

Jh,0(u) = Jh,ε(u) + ε(h)

∫
W (x)|u|2 ≤ Jh,ε(u) + α1

ε(h)

h2
Jh,0(u)

whence (2.1) follows. From (2.1), if lim suph→0 ε(h)h
−2 < α−11 there exist

α0, h
∗
0 > 0 such that

Jh,ε(u) ≥ min
{
h2, V0

}
α0 ‖u‖

2
H1 (2.2)

for any u ∈ H, for any 0 < h < h∗0. As a result, the set H, endowed with the
norm ‖u‖2h = Jh,ε(u), is a Hilbert space and it is continuously embedded in
H1(RN ).

Let us define the manifold Σ =
{
u ∈ H :

∫
|u|p = 1

}
. Plainly, Jh,ε is

well defined and smooth on Σ; moreover, for any critical point u of Jh,ε on Σ,(
Jh,ε(u)

) 1
p−2u is a weak solution for (1.5).

We are interested in positive solutions for (1.5). As it is easily guessed, low
energy solutions do not change sign; this is the content of the next proposition.
First we need some notations.
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We recall that, for any positive h and λ, the equation with constant coeffi-
cients

−h2∆u+ λu = |u|p−2u in RN

has a unique positive solution ω̃(h;λ) ∈ H1(RN ) ∩ C2(RN ), which is radially
symmetric around the origin and decays exponentially at infinity (see for in-
stance [4], [8], [12], [13]). The infimum

m(h;λ) = inf

{
h2‖∇u‖22 + λ‖u‖

2
2

‖u‖2p
: u ∈ H1(RN ) , u 6= 0

}

is achieved in ω(h;λ) = ω̃(h;λ)/‖ω̃(h;λ)‖p. A straighforward computation gives

m(h;λ) = hθm(1;λ) with θ = N(p−2)
p
. For convenience, we set

m0 = m(1;V0) .

We are ready to state our result on the sign of solutions to (1.5).

Proposition 2.1 Assume (1.3), (1.4) and

lim sup
h→0

ε(h)

h2
<
1

α1

(
1− 2

2−p
p

)
. (2.3)

Then there exist k∗1 , h
∗
1 > 0 such that, for any 0 < h < h∗1, every critical point

u of Jh,ε on Σ satisfying

Jh,ε(u) ≤ (m0 + k
∗
1)h

θ (2.4)

does not change sign.

Proof. Let ε0 be the left-hand side in (2.3). Fix η0 > 0 such that 0 < α1(ε0+

η0) < 1 − 2
2−p
p and let h∗1 ∈

(
0, h∗0
)
be such that ε(h) < (ε0 + η0)h

2 for any
0 < h < h∗1. Finally, choose

0 < k∗1 <
(
2
p−2
p
(
1− α1(ε0 + η0)

)
− 1
)
m0 . (2.5)

Now, let 0 < h < h∗1 and let u = u+ + u− be a critical point of Jh,ε on Σ such
that u+, u− 6≡ 0. If we multiply

−h2∆u+ Vε(x)u = Jh,ε(u)|u|
p−2u

by u+ and integrate on RN , we get Jh,ε(u)‖u+‖pp = Jh,ε(u
+) ≥ ch‖u+‖2p, thus

‖u+‖pp ≥ (ch/Jh,ε(u))
p
p−2 . Obviously the same inequality holds for u−, thus

1 = ‖u+‖pp + ‖u
−‖pp ≥ 2 (ch/Jh,ε(u))

p
p−2 , whence Jh,ε(u) ≥ 2

p−2
p ch. Then (2.4),

(2.1) and the definition of m0 give(
m0 + k

∗
1

)
hθ ≥ Jh,ε(u) ≥ 2

p−2
p

(
1− α1 (ε0 + η0)

)
m0 h

θ ;

if we divide by hθ we contradict (2.5). ♦
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3 Palais–Smale condition

Before looking for critical points of Jh,ε on Σ, we deal with the compactness
issue. It is well known that (1.5) is affected by a lack of compactness, due to the
noncompact Sobolev embedding H1(RN ) ⊂ Lp(RN ). As a result, Jh,ε may not
satisfy Palais–Smale condition globally on Σ; nevertheless, we can show that
Palais–Smale condition holds below some level, related to lim inf |x|→∞ V (x). In
order to state this result, we need some more notations.

By (1.3), we can choose V∞ ∈ R such that

V0 < V∞ ≤ lim inf
|x|→∞

V (x) . (3.1)

Let us denote
m∞ = m(1;V∞) ;

the map λ 7→ m(1;λ) being strictly increasing, (3.1) implies

m0 < m∞ . (3.2)

Proposition 3.1 Assume (1.3), (1.4) and

lim sup
h→0

ε(h)

h2
<
1

α1

(
1−

m0

m∞

)
. (3.3)

Then there exist k∗2 ∈ (0,m∞ −m0) and h
∗
2 > 0 such that Jh,ε satisfies Palais–

Smale condition in the sublevel
{
u ∈ Σ : Jh,ε(u) < (m0 + k∗2)h

θ
}
, for any

0 < h < h∗2.

Proof. Let ε0 be the left-hand side in (3.3), let C̃ ∈
(
m0, (1−α1ε0)m∞

)
and

fix η0 > 0 such that

C̃ + α1 η0m∞ < (1− α1ε0)m∞ ; (3.4)

obviously, for h small we have

ε(h)h−2 ≤ ε0 + η0 . (3.5)

Next, let C < C̃ and let {un} ⊂ Σ be a Palais–Smale sequence for Jh,ε on Σ at
the level Ch ≡ C hθ, namely

Jh,ε(un) = Ch + o(1) (3.6)

−h2∆un + Vε(x)un − λn|un|p−2un = o(1) in H−1 (3.7)

as n→∞; it is easily seen that λn = Ch+o(1). Trivially {un} is bounded in H,
therefore it has a weak limit u ∈ H. In order to prove that {un} converges to
u strongly in H we apply Lions’ Concentration–Compactness Lemma (see [15],
[16]) to the sequence of measures ρn = h2|∇un|2 + Vε(x)|un|2. By definition,∫
ρn → Ch as n → ∞, and Ch > 0 because of (2.2). Vanishing is easily ruled
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out since un ∈ Σ. If dichotomy occurs, there exist δ1, δ2 > 0, with δ1 + δ2 = Ch
such that for any ξ > 0 there are yn ∈ RN , R > 0, Rn →∞ such that∫

|x−yn|<R
ρn ≥ δ1 − ξ ,

∫
|x−yn|>2Rn

ρn ≥ δ2 − ξ . (3.8)

As a consequence, ∫
2R<|x−yn|<Rn

ρn ≤ 2ξ . (3.9)

Let ζ : [0,+∞)→ [0, 1] be a smooth, non increasing function, such that ζ(t) = 1
if 0 ≤ t ≤ 1, ζ(t) = 0 if t ≥ 2. If we define

u1n(x) = un(x) ζ
(x− yn

R

)
, u2n(x) = un(x)− un(x) ζ

(x− yn
Rn

)
, (3.10)

then (3.8) yields ∫
h2|∇uin|

2 + Vε(x)|u
i
n|
2 ≥ δi − ξ , i = 1, 2 .

From the definition of uin and (3.9) we get∫
∇un · ∇u

i
n =

∫
|∇uin|

2 +O(ξ) ,

∫
Vε(x)unu

i
n =

∫
Vε(x)|u

i
n|
2 +O(ξ) ,∫

|un|
p−2unu

i
n =

∫
|uin|

p +O(ξ)

whence, by taking (3.7) into account,

Jh,ε(u
i
n) =

∫
h2|∇uin|

2 + Vε(x)|u
i
n|
2 = Ch

∫
|uin|

p + o(1) +O(ξ) . (3.11)

Now, if the sequence {yn} is unbounded in RN , for large n we have V (x) ≥ V∞−ξ
for any x ∈ BR(yn). Thus from (2.1), (3.5), the definition ofm(h;V∞) and (3.11)
we get

Jh,ε(u
1
n) ≥

(
1− α1

ε(h)

h2

)∫
h2|∇u1n|

2 + V (x)|u1n|
2

≥ O(ξ) +
(
1− α1(ε0 + η0)

) ∫
h2|∇u1n|

2 + V∞|u
1
n|
2

≥ O(ξ) +
(
1− α1(ε0 + η0)

)
m(h;V∞)‖u

1
n‖
2
p

= O(ξ) + o(1) +
(
1− α1(ε0 + η0)

)
m(h;V∞)

(
Jh,ε(u

1
n)

Ch

)2/p

whence

Jh,ε(u
1
n) ≥ O(ξ) + o(1) +

(
1− α1(ε0 + η0)

) p
p−2 m(h;V∞)

p
p−2 C

2
2−p

h . (3.12)
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From (3.6) and (3.12)

Ch + o(1) ≥ Jh,ε(u
1
n) +O(ξ)

≥ O(ξ) + o(1) +
(
1− α1(ε0 + η0)

) p
p−2 m(h;V∞)

p
p−2C

2
2−p

h ;

letting ξ → 0, n→∞ and dividing by hθ yields

C ≥
(
1− α1(ε0 + η0)

)
m∞

and, from (3.4), C > C̃, a contradiction. If the sequence {yn} is bounded in RN ,
for large n we have V (x) ≥ V∞− ξ for any x such that |x− yn| > Rn, and again
we get a contradiction by taking u2n into account. Dicotomy is therefore ruled
out in any case. As a result, the sequence {ρn} is tight: there exists {yn} ⊂ RN

such that for any ξ > 0∫
|x−yn|<R

h2|∇un|
2 + Vε(x)|un|

2 ≥ Ch − ξ

for a suitable R > 0. If the sequence {yn} were unbounded in RN , we could
define u1n as in (3.10) and, noticing that∫

h2|∇u1n|
2 + Vε(x)|u

1
n|
2 ≥ Ch − ξ ,

we could get a contradiction exactly as before. So {yn} is bounded in RN , and
for some R > 0 we have∫

|x|>R
h2|∇un|

2 + Vε(x)|un|
2 < ξ + o(1) .

At this point, the compactness of the embedding H1 ⊂ Lp on bounded domains
implies that un → u strongly in Lp(RN ), so that∫

h2|∇un|
2 + Vε(x)|un|

2 = Ch

∫
|un|

p + o(1) = Ch

∫
|u|p + o(1)

=

∫
h2|∇u|2 + Vε(x)|u|

2 + o(1) +O(ξ) .

In other words, ‖un‖2h → ‖u‖
2
h, thus un → u strongly in H. ♦

Remark 3.2 Proposition 3.1 and the choice of V∞ imply that, when V is co-
ercive, Jh,ε satisfies Palais–Smale condition on Σ at any level. With no loss of
generality, we shall henceforth assume V∞ = lim inf

|x|→∞
V (x) < +∞.

4 Proof of Theorem 1.1

In order to find a solution to (1.5), it suffices to prove that the minimization
problem

ch = inf
u∈Σ

Jh,ε(u)
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is solvable. As it is well known, ch is attained if, for instance, Jh,ε satisfies
Palais–Smale condition below ch + α, for some positive α. Thus, in view of
Proposition 3.1, it is enough to prove that ch is less than

(
m0 + k

∗
2

)
hθ.

Let us remark that, in the spirit of Lieb’s Lemma (see [5], Lemma 1.2), we
can prove that ch is attained provided it less than (m0+K2)h

θ, without referring
to Palais–Smale condition. Although less straightforward, we have chosen this
approach because it is useful in Section 5, where we need more compactness in
order to get a multiplicity result.

Proposition 4.1 Under the same assumptions as in Proposition 3.1, there ex-
ists h∗ > 0 such that ch is attained for any 0 < h < h∗.

Proof. Due to our previous remarks, we only have to prove that ch < (m0 +
k∗2)h

θ for small h. To this aim, it is enough to find a test function whose energy
is less than (m0 + k

∗
2)h

θ.
Let δ > 0 be fixed and let η : [0,+∞)→ [0, 1] be a smooth, non increasing

function, such that η(t) = 1 if 0 ≤ t ≤ δ/2 and η(t) = 0 if t ≥ δ.
Let ω = ω(1;V0) (cf. Section 2, where the functions ω(h;λ) were defined),

fix any x0 such that V (x0) = V0 and set

ϕh,x0(x) = νh ω
(x− x0

h

)
η(|x− x0|) ; (4.1)

the constant νh is chosen in such a way that ‖ϕh,x0‖p = 1. Then, by its very
definition, ϕh,x0 ∈ Σ. It is easy to see that

Jh,ε(ϕh,x0) ≤ Jh,0(ϕh,x0) =

∫
h2|∇ϕh,x0 |

2 + V (x)|ϕh,x0 |
2

=
hN
∫
|∇(ω(x)η(h|x|))|2 + V (hx+ x0)|ω(x)η(h|x|)|2(

hN
∫
|ω(x)η(h|x|)|p

)2/p
=

∫
|∇ω(x)|2 + V (x0)|ω(x)|2 + o(1)(∫

|ω(x)|p + o(1)
)2/p hθ

=
(
m0 + o(1)

)
hθ. (4.2)

Clearly (4.2) yields ch < (m0 + k
∗
2)h

θ, provided h is small enough. ♦

Proof of Theorem 1.1 Let

ε∗ = min

{
1

α1

(
1− 2

2−p
p

)
,
1

α1

(
1−

m0

m∞

)}

and assume (1.6). If 0 < h < h∗, Proposition 4.1 implies that there exists u ∈ Σ
such that Jh,ε(u) = ch. From (4.2) we deduce Jh,ε(u) ≤

(
m0+ o(1)

)
hθ so that,

for h small, (2.4) holds, Proposition 2.1 applies and u does not change sign.

We can therefore assume u to be positive and, as a result,
(
Jh,ε(u)

) 1
p−2u is a

positive solution to (1.5). ♦
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5 Proof of Theorem 1.2

Let us roughly describe the argument we use in proving Theorem 1.2. We
know that Jh,ε is bounded below on Σ; moreover, if lim suph→0 ε(h)h

−2 is small
enough, then Jh,ε satisfies Palais–Smale condition in the sublevel J

a
h,ε = {u ∈

Σ : Jh,ε(u) ≤ a} for any a < (m0 + k∗2)h
θ (cf. Prop. 3.1). A classical result

in Ljusternik–Schnirelman Theory implies that the number of critical points of
Jh,ε on Σ is bounded below by cat (J

a
h,ε). Thus, in order to relate the number

of solutions of (1.5) with the topology ofM , it is enough to find a suitable level
a such that the category of the corresponding sublevel is bounded below by the
category of M . To this aim, the following proposition is very useful. For the
proof, based on the very definition of category and homotopical equivalence, we
refer for instance to [3].

Proposition 5.1 Let a > 0 and let J∗ be a closed subset of Jah,ε. Let Φh :
M −→ J∗ and β : Jah,ε −→Mδ be continuous maps such that β◦Φh is homotopi-
cally equivalent to the embedding j :M −→Mδ. Then catJa

h,ε
(J∗) ≥ catMδ (M).

In our setting, the construction of the map Φh is very simple, and we already
have all the ingredients we need. Indeed, for any x0 ∈M and for any h we define
Φh(x0) = ϕh,x0 (cf. (4.1), where ϕh,x0 was first defined).

Next we define a barycenter map β : Σ → RN by β(u) =
∫
χ(x)|u(x)|p;

here χ(x) = x if |x| ≤ ρ, χ(x) = ρ x/|x| if |x| ≥ ρ and ρ > 0 is such that
Mδ ⊂

{
x ∈ RN : |x| ≤ ρ

}
. A simple computation gives

β
(
Φh(x0)

)
−→ x0 (5.1)

as h→ 0, uniformly for x0 ∈M .
The content of the next proposition is that barycenters of low energy func-

tions are close to M .

Proposition 5.2 Assume (1.3) and (1.4). For any δ > 0 there exists ε∗∗1 (δ) > 0
such that, if

lim sup
h→0

ε(h)

h2
< ε∗∗1 (δ) , (5.2)

then there exist k∗3 , h
∗
3 > 0 such that 0 < h < h∗3, u ∈ Σ and Jh,ε(u) ≤ (m0 +

k∗3)h
θ imply β(u) ∈Mδ.

Proof. By contradiction, let us assume that for some δ > 0 we can find εm ≥ 0
such that εm → 0 as m → ∞, lim suph→0 ε(h)h

−2 = εm and the claim in
Proposition 5.2 does not hold.
For h small we have ε(h)h−2 < εm +

1
m
and, by (2.1),

(
1− α1

(
εm +

1

m

))
Jh,0(u) ≤ Jh,ε(u) . (5.3)
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Let hn, kn → 0+ as n→∞ and un ∈ Σ be such that Jhn,ε(un) ≤ (m0 + kn)h
θ
n

and β(un) 6∈Mδ. Let vn(x) = h
N/p
n un(hnx); from (5.3) we get∫

|∇vn|
2 + V (hnx)|vn|

2 ≤
m0 + kn

1− α1
(
εm +

1
m

) . (5.4)

We apply Lions’ Lemma to the sequence of probability measures σn = |vn|p.
Vanishing is easily ruled out. If dichotomy occurs, there exist δ1, δ2 > 0, with
δ1 + δ2 = 1 such that for any ξ > 0 there are yn ∈ RN , R > 0, Rn → ∞ such
that ∫

|x−yn|<R
σn ≥ δ1 − ξ ,

∫
|x−yn|>2Rn

σn ≥ δ2 − ξ . (5.5)

Let us consider ζ as in the proof of Proposition 3.1 and define v1n, v
2
n accordingly

as in (3.10). Inequalities (5.5) give∫
|vin|

p ≥ δi − ξ , i = 1, 2 . (5.6)

From (5.4) and (5.6) we get

m0 + kn

1− α1
(
εm +

1
m

) ≥

∫
|∇v1n|

2 + V0|v
1
n|
2 +

∫
|∇v2n|

2 + V0|v
2
n|
2 +O(ξ)

≥ m0

(
|v1n|

2
p + |v

2
n|
2
p

)
+O(ξ)

≥ m0
(
(δ1 − ξ)

2
p + (δ2 − ξ)

2
p
)
.

As n,m→∞ and ξ → 0 we deduce 1 ≥ δ2/p1 + δ
2/p
2 , a contradiction. Thus {σn}

is tight: there exists {yn} ⊂ RN such that for any ξ > 0∫
|x−yn|<R

|vn(x)|
p ≥ 1− ξ (5.7)

for a suitable R > 0. The sequence v̂n = vn(·+ yn) converges to some v̂ weakly
in H1(RN ) and, due to the compactness property (5.7), strongly in Lp(RN ). If
the sequence xn ≡ hnyn goes to infinity, then (5.4) gives

m0 ≥

∫
|∇v̂|2 + lim inf

n→∞

∫
V (hnx+ xn)|v̂n|

2 ≥

∫
|∇v̂|2 +

∫
V∞|v̂|

2 ≥ m∞ ,

which contradicts (3.2). Thus we can assume xn → x̂, and arguing as before we
obtain

m0 ≥

∫
|∇v̂|2 + Vε(x̂)|v̂|

2 ≥ m(1;V (x̂)) ≥ m0 .

From this we get V (x̂) = V0 and
∫
|∇v̂|2 + V0|v̂|2 = m0, whence v̂ = ω (ω

was introduced in the proof of Proposition 4.1). Furthermore, since
∫
|∇v̂n|2 +

V0|v̂n|2 ≥ m0, from (5.4) we get
∫
|∇v̂n|2 + V0|v̂n|2 → m0 =

∫
|∇ω|2 + V0|ω|2
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as n → ∞, so that v̂n converges to ω strongly in H1(RN ). Finally, a simple
computation gives

∣∣β(un)− β(Φhn(xn))∣∣ ≤ ρ
∫ ∣∣|v̂n(x)|p − |ω(x)|p∣∣ = o(1) ;

(5.1) thus implies |β(un)− xn| = o(1), which contradicts β(un) 6∈ Mδ. This
concludes the proof. ♦

Proof of Theorem 1.2 Let δ > 0 be fixed and ε∗1(δ) be as in Proposition
5.2. Let

ε∗∗(δ) = min

{
1

α1

(
1− 2

2−p
p

)
,
1

α1

(
1−

m0

m∞

)
, ε∗1(δ)

}
and assume (1.7). Let 0 < h∗ ≤ min{h∗i : i = 1, 2, 3} and k

∗ = min{k∗i :
i = 1, 2, 3}, the constants h∗i , k

∗
i being defined in Propositions 2.1, 3.1 and 5.2.

Let 0 < h < h∗; we can assume that a(h) ≡ (m0 + k∗)hθ is not a critical
value for Jh,ε on Σ. For convenience, we set Σh = {u ∈ Σ : Jh,ε(u) ≤ a(h)},
Σ+h = {u ∈ Σh : u ≥ 0} and Σ

−
h = {u ∈ Σh : u ≤ 0}.

If h∗ is small enough, (4.2) gives Jh,ε
(
Φh(x0)

)
≤ (m0 + k∗)hθ for any x0 ∈M .

In other words, Φh(x0) ∈ Σ
+
h for any x0 ∈ M . Furthermore, Proposition 5.2

implies β(u) ∈ Mδ for any u ∈ Σh. Finally, as a consequence of (5.1) it is easy
to see that β ◦ Φh is homotopically equivalent to the embedding j : M → Mδ.
Thus Proposition 5.1 gives catΣh(Σ

+
h ) ≥ catMδ (M). If we use the map −Φh we

also get catΣh(Σ
−
h ) ≥ catMδ (M), whence cat(Σh) ≥ 2catMδ (M), for h small.

Proposition 3.1 guarantees that Palais–Smale condition holds in a sublevel
containing Σh. Thus Ljusternik–Schnirelman Theory applies and we deduce
that Jh,ε has at least 2 catMδ (M) critical points on Σ, satisfying Jh,ε(u) ≤
a(h) < (m0+ k

∗
1)h

θ. Therefore, by Proposition 2.1 they do not change sign and
we can assume that at least catMδ (M) critical points are positive. ♦

As a final comment, let us point out that, in proving Theorem 1.2, we
adapted the arguments used in [6] to deal with the unperturbed problem. The
same kind of approach was used in [7] to study the equation −h2∆u+V (x)u =
K(x)|u|p−2u + Q(x)|u|q−2u, where V,K,Q are competing potentials. In [7]
the number of solutions is related with the global minima set of the so-called
ground energy function (cf. [20] and also [14], where a more general subcritical
nonlinearity is allowed).
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