
Electronic Journal of Differential Equations, Vol. 2001(2001), No. 11, pp. 1–12.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)
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C. O. Alves & O. H. Miyagaki

Dedicated to Professor J. V. Goncalves

Abstract

We study the existence of positive solutions to the semilinear elliptic
problem

−ε2∆u+ V (z)u = f(u)

in RN (N ≥ 2), where the function f has superlinear growth at infinity
without any restriction from aboveon its growth.

1 Introduction

We are concerned with the existence of positive solutions to the semilinear
elliptic problem

−ε2∆u+ V (z)u = f(u), in RN (N ≥ 2), (1.1)

where ε is a positive parameter, V : RN → [0,+∞) and f : [0,+∞)→ [0,+∞)
are non-negative continuous functions. We study here the superlinear problem,
that is, when the nonlinearity f satisfies the conditions

F1: limt→∞
f(t)
t = +∞.

F2: The Ambrosetti-Rabinowitz growth condition: There exists θ > 2 such
that

0 ≤ θF (t) = θ

∫ t

0

f(s) ds ≤ tf(t), t ∈ R.

There are many papers that study (1.1) under several assumptions on the po-
tential V and on the growth of f . It is well known that solvability of (1.1)
depends on the rate of growth of f at infinity and that the cases N ≥ 3 and
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N = 2 are strikingly different. We can divide these studies in three cases as
defined below, where we use the convention

2∗ :=
2N

N − 2
.

Subcritical growth: lim
t→+∞

|f(t)|

|t|2∗
= 0, if N ≥ 3; and lim

t→+∞

|f(t)|

exp(αt2)
= 0,

for all α, if N = 2.

Critical growth: lim
t→+∞

|f(t)|

|t|2∗
= L with L > 0, if N ≥ 3; and for N = 2,

there exists α0 > 0 such that

lim
t→+∞

|f(t)|

exp(αt2)
= 0 ∀α > α0, lim

t→+∞

|f(t)|

exp(αt2)
= +∞ ∀α < α0 .

Supercritical growth: lim
t→+∞

|f(t)|

|t|2∗
= +∞, if N ≥ 3; and lim

t→+∞

|f(t)|

exp(αt2)
=

+∞ for all α, if N = 2.

We begin by recalling some results for subcritical growth case. For (N ≥ 3),
Rabinowitz [14] has found a solution with minimal energy for all small ε, when

lim inf
|z|→∞

V (z) > inf
z∈RN

V (z) ≡ V0 > 0 .

In the case N = 1 and p = 3, Floer and Weinstein [10], still imposing a global
condition on V , have shown that the solution concentrates around of the critical
point of V , as ε → 0. This result was extended by Oh [12, 13] and by Wang
[17] for higher dimensions N ≥ 3. In the case N ≥ 3, Ambrosetti-Badiale
and Cingolani [6], basead on the Lyapunov-Schmidt reduction, showed a similar
result with the concentration involving a local maximun of V . Del Pino and
Felmer [8] assume only that V has a local minima in a bounded set Λ ⊂ RN

with
inf
V̄
V < inf

∂Λ
V

and some additional hypotheses on f . They use local variational techniques
without any global restriction involving the minimun of V to concluded that
the solutions of (1.1) with N ≥ 3 concentrate around local minima of V . Ren
and Wei [15] also studied the behavior of solutions to (1.1) on R2 with ε = 1
and f(u) = uτ , as τ →∞.
For the critical case the first author and Souto [2] have considered (1.1)

with N ≥ 3 and V having same global property given in [14] but with f(u) :=
λuq+u2

∗−1 where λ > 0 and 1 < q < 2∗−1, and they proved that the solutions
also concentrate in the global minima of V . Later, the first author together with
do Ó and Souto [1] using the same arguments explored in [8] showed that similar
fenomena holds for local minima of V when f has the growth found in [2]. For
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the case involving critical growth in N = 2, we cite the paper by do Ó and
Souto [9] that worked with local minima of V studying also the concentration of
solutions. Imposing among others assumption on f and V , for instance that V
is a nonconstant function having a finite limit at infinity, Cao [7] proved some
existence result for (1.1).

For the situation involving supercritical growth when N ≥ 3, we cite the
work of the first author [3], where he studied problem (1.1) assuming that
f(u) = up(p > 1) without any hypothesis on p besides supposing that V is
radial and satisfies the following condition:

There exist positive constants R1 < r1 < r2 < R2 such that

V1: V (z) = 0 in the set Ω = {z ∈ RN : r1 < |z| < r2}

V2: V (z) ≥ V0 > 0 in Λc = BcR2 ∪BR1 .

In [3], the author does not study the concentration phenomena, there the
result obtained involves only the existence of positive solutions to (1.1) for ε
sufficiently small. Here we shall study problem (1.1) with N ≥ 2 and show the
existence of positive solutions imposing assumptions on the function f . We will
explore the geometric conditions V1 and V2 in order to conclude that growth of
f can be made in some sense “free”. We will show that in dimension N ≥ 3, if
such conditions on V hold the function f can have an exponential growth. The
main fact is that the geometry of V implies that we do not need any additional
restrictions from above on growth of f . Similarly, for N = 2 the function f
can have the behavior like exp(βus) with β > 0 and s ≥ 2, which is known in
the literature as supercritical growth in R2. Thus, the growth above implies
that (1.1) can not be solved directly by applying the usual variational methods,
because in this case the energy functional related to problem (1.1) is not well
defined on the suitable Sobolev spaces H1(RN ) or H1rad(R

N ).

To show the main result, we use similar arguments to those used in [8] and [3].
The strategy consists of exploring the special deformation on the nonlinearity
f and some properties on the radial functions.

Before to write our main result, we fix the hypotheses on f . In our work we
assume that the function f is continuous and verifies the following conditions

F3:
f(t)

t
is non-decreasing with respect to t, for t > 0

F4: lim
t→0

f(t)

t
= 0.

Theorem 1.1 Assume Conditions F1-F4, V1, V2. Then, there exists εo > 0
such that for all ε ∈ (0, εo), problem (1.1) has a classical solution uε ∈ H1(RN )
with

uε(z)→ 0, as |z| → ∞ .
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Remark: Theorem 1.1 improves and complements the results showed in [3]
and [7] respectively, because in our work we study the behavior on other non-
linearities and our approach treats at same time the cases N ≥ 3 and N = 2.

Hereafter,
∫
U
f represents

∫
U
f(z)dz and

H1rad = H
1
rad(R

N ) = {u ∈ H1(RN ) : u is radially symmetric} .

2 Preliminaries

In this section, we prove some auxiliary results for the proof of Theorem 1.1.
Since we are concerned with positive solutions, we can assume in the sequel that
f(t) = 0 for t ≤ 0.

Lemma 2.1 Let g : RN × R → R be a continuous and radially symmetric
function, that is, g(z, u) = g(|z|, u), for all z ∈ RN and ∈ R. Given positive
constants a and b, let

A = {z ∈ RN : a < |z| < b} and G(z, t) :=

∫ t

0

g(z, s) ds .

If un ⇀ u weakly in H1rad, then∫
A

g(z, un)un →

∫
A

g(z, u)u and

∫
A

G(z, un)→

∫
A

G(z, u), as→∞ .

Proof. Since un ⇀ u weakly in H1rad, there exists a positive constant C, such
that ‖un‖ ≤ C. Using Straus’s inequality (see [11] or [16]),

|un(z)| ≤
2π‖un‖

|z |1/2
, ∀z ∈ RN \ {0} (2.1)

we obtain

|u(z)| ≤
2πC

a1/2
≡ ā ∈ L1(A), ∀z ∈ RN \ {0}.

From this, we have

|g(z, un)un| ≤ max
(z,t)∈A×[−ā,ā]

g(z, t)ā ≡ c̄ ∈ L1(A), ∀z ∈ RN \ {0}.

Similarly,
|G(z, un)| ≤ ĉ ∈ L

1(A), ∀z ∈ RN \ {0}.

Then from the Lebesgue dominated convergence theorem, we conclude the
present proof. ♦

Let
g(z, t) = χΛ(z)f(t) + (1− χΛ)(z)f̄(t),



EJDE–2001/11 C. O. Alves & O. H. Miyagaki 5

where χΛ denotes the characteristic function on Λ,

f̄(t) =

{
f(t) t ≤ a ,
V0t
k

t > a,

and a is a positive constant so that f(a)
a
= V0

k
with k > max{ θ

θ−2 , 2}.
It is easy to see that g satisfies not only the condition F2, with f replaced

by g, but also the following conditions

G2: 0 ≤ θG(z, t) ≤ g(z, t)t for all z ∈ Λ, t ∈ R.

G3: 0 ≤ 2G(z, t) ≤ g(z, t)t ≤ V (z)t2

k
for z ∈ Λc, t ∈ R.

In the sequel, we denote by G1, the condition F2 with f replaced by g. Now
we shall state the crucial auxiliary result.

Theorem 2.2 Assume Conditions V1, V2, and G1–G3. Then the problem

−∆u+ V (z)u = g(z, u), in RN (2.2)

admits a positive solution.

To prove this theorem, we first fix notation and prove some technical results.
We work in the Hilbert space

E = {u ∈ H1rad(R
N ) :

∫
RN

V u2 < ∞}

endowed by the norm

‖u‖ =

(∫
RN

(|∇u |2 +V u2)

)1/2
.

We shall find critical points on E of the C1 functional

I(u) =

∫
RN

1

2
(| ∇u |2 +V u2)−

∫
RN

G(z, u)

whose Fréchet derivative is

〈I ′(u), v〉 =

∫
RN

(∇u · ∇v + V uv − g(z, u)v), u, v ∈ E .

Next, we shall prove some lemmas related to this functional.

Lemma 2.3 I satisfies the following conditions

(i) There exist ρ, β > 0 such that I(u) ≥ β for ‖u‖ = ρ

(ii) There exists e ∈ E with ‖e‖ > ρ such that I(e) < 0.
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Proof. Part (i): From F4, given ε > 0, there exists δ > 0 such that

F (t) ≤
εt2

2
, |t| ≤ δ.

Thus ∫
Λ

F (u) ≤
ε

2

∫
Λ

u2, as ||u|| ≤ ρ, ρ small enough (2.3)

Now, using condition G3 and (2.3), we have

I(u) = (

∫
Λ

+

∫
Λc
)(
1

2
(|∇u |2 +V (z)u2)−G(z, u))dz

≥
1

2

∫
RN

(|∇u |2 +V u2)−

∫
Λ

F (u)−
1

2k

∫
Λc
V u2

≥
1

2

∫
RN

|∇u |2 +
1

2
(1 −

1

k
)

∫
RN

V u2 −

∫
Λ

F (u)

≥
1

2

∫
RN

(|∇u |2 +(1−
1

k
)V u2)−

ε

2

∫
Λ

u2

≥ C1‖u‖
2 −

ε

2

∫
Λ

u2 . (2.4)

Recalling that ∫
Λ

u2 ≤ C

∫
RN

(|∇u|2 + V u2),

from (2.4) we have
I(u) ≥ C2‖u‖

2, for ||u|| = ρ.

The proof of part (i) is complete.

Verification of part (ii): Choose ψ ∈ C∞0 (Λ), so that ψ > ψ0 > 0 for all
x ∈ K ⊂ suppψ. Then, by condition F2 there exists a positive constant C1,
such that

F (tψ) ≥ C(tψ)θ, t ≥ t0, ∀z ∈ K, t0 > 0.

Using this inequality, we get

I(tψ) =
t2

2
‖ψ‖2 −

∫
Λ

G(z, tψ)

≤
t2

2
‖ψ‖2 −

∫
K

F (tψ)

≤
t2

2
‖ψ‖2 − C1t

θ, for t ≥ t0. (2.5)

This proves (ii) and it completes the proof of Lemma 2.3. ♦

Now, by using Ambrosetti and Rabinowitz Mountain Pass Theorem [5], there
exists a (PS)c sequence {un}; that is,

I(un)→ c and I ′(un)→ 0,



EJDE–2001/11 C. O. Alves & O. H. Miyagaki 7

where c = infh∈Γmaxt∈[0,1] I(h(t)) and

Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = e}.

Lemma 2.4 The functional I satisfies the (PS)c condition for all c ∈ R.

Proof: Firstly, from Conditions G2 and G3, we have

‖un‖+M

≥ I(un)−
1

θ
I ′(un)un

= (
1

2
−
1

θ
)

∫
RN

(|∇un |
2 +V u2n) + (

∫
Λ

+

∫
Λc
)(
g(z, un)un

θ
−G(z, un))

≥ (
1

2
−
1

θ
)

∫
RN

(|∇un |
2 +V u2n) +

∫
Λc
(
g(z, un)un

θ
−G(z, un))

≥ (
1

2
−
1

θ
)(

∫
RN

(|∇un |
2 +V u2n)−

∫
Λc
g(z, un)un)

≥ (
1

2
−
1

θ
)(

∫
RN

|∇un |
2 +(1−

1

k
)

∫
RN

V u2n) .

By this inequality, there exists a constant C > 0 such that ‖un‖+M ≥ C‖un‖2,
which implies that {un} is bounded in E. Therefore, up to subsequence, there
exists u ∈ E such that

un ⇀ u weakly in E, and un → u, a.e. in RN .

Now we state the following
Claim 1 Given ε > 0, there exists a R > 4R2 such that

lim sup
n→∞

∫
|z|>R

(|∇un|
2 + V u2n) < ε.

Proof of claim 1: Arguing as in [3] and [8], from Conditions G2 and G3, and
taking a cut-off function ηR ∈ C∞0 (R

N ) satisfying

ηR = 0 in BR/2, ηR = 1, in B
c
R and |∇ηR| ≤

C

R
,

we obtain

I ′(un)(unηR)

=

∫
Bc
R/2

(|∇un |
2 +V u2n)ηR +

∫
BR\BR/2

un|∇un|∇ηR −

∫
Bc
R/2

g(z, un)unηR

≥

∫
Bc
R/2

(|∇un |
2 +V u2n)ηR − |un|2|∇un|2

C

R
−
1

k

∫
Bc
R/2

V u2nηR + r(n) .
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where r(n) is an o(1)-function as n approaches +∞. Since I ′(un)(unηR) = o(1),
we have

(1−
1

k
)

∫
BcR

(|∇un |
2 +V u2n)ηR ≤ (1−

1

k
)

∫
Bc
R/2

(|∇un |
2 +V u2n)ηR

≤
C

R
(| un|2|∇un|2) + o(1),

≤
C1

R
+ o(1).

So that the proof of Claim 1 follows by choosing R > C1/ε.

Claim 2:

(i)
∫
RN

g(z, un)un →
∫
RN

g(z, u)u,

(ii) u is a critical point of I, that is, I ′(u)v = 0 for all v ∈ E.

Assuming Claim 2, from I ′(un)un = o(1), it follows that

‖un‖
2 =

∫
RN

g(z, un)un + o(1)

=

∫
RN

g(z, u)u+ o(1)

= ‖u‖2 + o(1) .

Therefore, un → u strongly in E.

Proof of Claim 2 Part i): Note that∫
R2

(g(z, un)un − g(z, u)u) = (

∫
BR1

+

∫
BR\BR1

+

∫
BcR

)(g(z, un)un − g(z, u)u)

= I1 + I2 + I3.

We shall prove that each of these terms approaches zero as n → ∞. From the
boundedness of BR1 ⊂ Λ

c, we have un → u, in L2(BR1). By Condition G3
it follows that I1 → 0. From Lemma 2.1, we conclude that I2 → 0. Finally,
combining Claim 1 and condition G3, we get I3 → 0. Then (i) holds.

Proof of Claim 2 Part (ii): Since I ′(un)v = o(1), it suffices to prove the following∫
RN

g(z, un)v →

∫
RN

g(z, u)v, as →∞.

Arguing as before, splitting the integral in two,we obtain∫
RN

(g(z, un)− g(z, u))v = (

∫
Λ

+

∫
Λc
)(g(z, un)− g(z, u))v

= J1 + J2.
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From the behaviour of un, that is by (2.1), we have

|un(x)| ≤
C

R
1/2
1

≡ a (2.6)

and since g is a bounded function on Λ, applying Lebesgue’s Dominated Conver-
gence Theorem follows that J1 → 0, as n→∞. Now, from (2.6) and Conditions
G3, we get∫
Λc
(g(z, un)− g(z, u))

2 ≤

∫
Λc
(
V0(|un|+ |u |)

k
)2 ≤

∫
Λc
C(|un |

2 +|u |2) ≤ C1,

for some positive constant C1. Now, using a Lemma from Brezis and Lieb [11],
it follows that J2 → 0. This completes the proof of Lemma 2.4. ♦

Proof of Theorem 2.2 From Lemmas 2.3 and 2.4, problem (2.2) has at least
one positive weak solution u ∈ E. Similarly, for each ε > 0, there exists uε ∈ E
weak positive solution of (2.2), satisfying

I ′ε(uε)v = 0, ∀v ∈ E,

where

Iε(u) =

∫
RN

1

2
(ε2|∇u |2 +V u2)−

∫
RN

G(z, u).

3 Proof of Theorem 1.1

Let {uε} be the sequence of positive weak solutions of (2.2) obtained in the
previous section. The crucial result for this section is the following.

Lemma 3.1 ‖uε‖H1 → 0 as ε→ 0.

Proof. Note that uε satisfies

Iε(uε) = cε and I ′ε(uε)v = 0, ∀v ∈ Eε,

where cε = inf
ψ∈Eε

max
t≥0

Iε(tψ) and

Eε = {u ∈ H
1
rad :

∫
R2

1

2
(εN |∇u |2 +V u2) <∞}.

Taking ψ ∈ C∞o,rad(Ω), a nonnegative function with suppψ ⊂ Ω, there is an

unique tε ∈ R+ such that

Iε(tεψ) = max
t≤0

Iε(tψ),

so

0 ≤ cε ≤ Iε(tεψ) ≤
t2ε
2

∫
Ω

ε2|∇ψ|2 −

∫
Ω

F (tεψ).
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On the other hand, we know that

ε2
∫
Ω

|∇ψ|2 =

∫
Ω

f(tεψ)

tε
ψ, (3.1)

choosing Ω1 ⊂ Ω such that ψ(z) ≥ ψ0 > 0 ∀z ∈ Ω1, it follows

ε2
∫
Ω

|∇ψ|2 ≥

∫
Ω1

f(tεψ)

tε
ψ ≥ ψ20

∫
Ω1

f(tεψ)

tεψ
, (3.2)

thus from (3.2) and Conditions F1–F3 that tε → 0 as ε → 0. Now, remarking
that

cε ≤ Iε(tεψ) = (t
2
ε/2)||ψ||

2 −

∫
RN

F (tεψ) ≤ (t
2
ε/2)||ψ||

2 (3.3)

and arguing as in the proof of Lemma 2.4, we obtain

Iε(uε) = Iε(uε)−
1

θ
I ′ε(uε)uε

≥ (
1

2
−
1

θ
)(

∫
RN

(ε2|∇uε |
2 +(1−

1

k
)V u2ε)

≥ Cε2
∫
RN

(|∇uε |
2 +V u2ε).

Hence, combining this last inequality with (3.3), we have

Cε2
∫
RN

|∇uε |
2 +V u2ε ≤ Iε(uε) ≤

t2εε
2

2

∫
Ω

|∇ψ |2,

that is,

‖uε‖
2
H1 ≤ C‖uε‖

2 ≤
t2ε
2

∫
Ω

|∇ψ |2 .

Therefore, the proof of Lemma 3.1 is complete. ♦

Next, using an argument similar to those used in [8], we will prove that uε
is a solution of (1.1). For each ε > 0, from (2.1) we have

m1ε = max
∂BR1

uε(z)→ 0, as ε→ 0, (3.4)

and
m2ε = max

∂BR2

uε(z) → 0, as ε→ 0. (3.5)

Combining (3.4) and (3.5), there exists εo > 0 such that

mi
ε < a, ∀ε ∈ (0, εo), i = 1, 2.

Now, since (uε − a)+ ∈ Eε, we have∫
RN\Λ̄

ε2 | ∇(uε − a)+ |
2 +V uε(uε − a)+ =

∫
RN\Λ̄

(g(z, uε)uε(uε − a)+. (3.6)
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On the other hand, from G3, we obtain

V uε(uε − a)+ − g(z, uε)uε(uε − a)+ ≥ 0, ∀z ∈ Λc,

which together with (3.6), we have∫
RN\Λ̄

ε2|∇(uε − a)+ |
2= 0.

Therefore, uε(z) ≤ a for all z ∈ RN \ Λ̄. Using this, we conclude that

g(z, uε(z)) = f(uε(z)), ∀z ∈ RN \ Λ̄ .

So, for all ε ∈ (0, εo), uε satisfies∫
RN

(ε2∇uε∇η + V uεη) =

∫
RN

f(uε)η, ∀η ∈ Eε.

Thus, we infer that f(uε) ∈ L1loc(R
N ).

On the other hand, using a result by Alves, de Moraes Filho and Souto (see
[4, Lemma1]), we can conclude that uε satisfies (1.1) in D

′(RN ) and by the
elliptic regularity (see e.g. [4]), we have that uε ∈ C2(RN ). This completes the
proof of Theorem 1.1.
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[9] do Ó, J. M. B., Souto,M. A.: On a class of nonlinear Schrödinger equations
in R2 involving critical growth, preprint.

[10] Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic
Shrödinger equations with a bounded potential, J. Funct. Anal. 69, 397-
408(1986)
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Departamento de Matemática
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