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MULTIPLE POSITIVE SOLUTIONS FOR A

NONLOCAL BOUNDARY-VALUE PROBLEM

WITH RESPONSE FUNCTION QUIET AT ZERO

G. L. Karakostas & P. Ch. Tsamatos

Abstract. The existence of positive solutions of a nonlocal boundary value prob-

lem for a second order differential equation is investigated. By assuming that the
response function is quiet at zero, in a sense introduced here, and it satisfies some

easy conditions, existence results for a countable set of positive solutions are given.

1. Introduction

In a recent paper the authors gave sufficient conditions for the existence of a
positive solution of the nonlocal boundary value problem

(p(t)x′)′ + q(t)f(x) = 0, a.a. t ∈ [0, 1] (1.1)

x(0) = 0, (1.2)

x′(1) =
∫ 1

η

x′(s)dg(s) (1.3)

where η ∈ (0, 1), see [25]. Among these conditions, the monotonicity of the re-
sponse function f seemed to be crucial in the proof. In this paper we weaken the
monotonicity condition on f by assuming that this function is quiet at zero in the
following sense: Given any pair of sequences (xn), (yn) with 0 ≤ xn ≤ yn converg-
ing to zero it holds f(xn) = O(f(yn)), (where O stands for the big-O symbol). This
definition, which is introduced here, refers to functions f which do not vanish at
least on (0,+∞). It is not difficult to see that if f(0) > 0, or, if f is increasing in
a right neighborhood of zero, then f is quiet at zero.

Moreover we extend the results of [25] and show that our boundary value problem
can admit a countable family of positive solutions.

Here we have to mention that boundary value problems of the form (1.1), (1.2),
(1.3) are mainly motivated by the works of Bitsadze [8], Bitsadze and Samarskii
[9] and Il’in and Moiseev [23] and includes as special cases multipoint boundary
value problems considered in [19] and [20]. Moreover, the authors in [25-28] proved
recently existence results for some relative nonlocal boundary value problems. On
the other hand the problem of the existence of multiple solutions (at least two) for
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various types of boundary value problems is recently the subject of many papers.
Among others we refer to [1-4, 6, 7, 10-12, 14-17, 21, 22, 24, 29, 32]. The technique
in these papers is based on fixed point results in cones. Most of them are based on
the following well known fixed point theorem due to Krasnoselskii [30].

Theorem 1.1. Let B a Banach space and let K be a cone in B. Assume Ω1, Ω2

are open subsets of E, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A:K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

In this norm form and in its degree form (see [18]), Theorem 1.1 is applied in [1,
2, 3, 11, 14-17, 22, 24, 29, 32]. Some interesting versions of the theorem (see, e.g.,
[5, 13, 31]) are also applied in [4, 6, 7, 12, 21]. Finally, we mention that by using
a different fixed point theorem due to Ricceri [33] a multiplicity existence result is
obtained in [10].

Here we apply Theorem 1.1 to obtain existence results for a countable set of
positive solutions of the boundary value problem (1.1), (1.2), (1.3), where the main
hypothesis is that the function f is a quiet at zero function. This meaning is given
in the following section.

2. Quietness at zero

We introduce the following definition:
Definition. A continuous function f : [0,+∞)→ R, with f(x) > 0 when x > 0,

is said to be quiet at zero, if for any pair of sequences (xn), (yn) with 0 ≤ xn ≤ yn,
n = 1, 2, ..., which converge to zero, it holds

f(xn) = O(f(yn)).

This means that there is a K > 0 such that f(xn) ≤ Kf(yn) for all n. An
equivalent form of this definition, which will be used in our proofs, is given by the
following lemma:

Lemma 2.1. A continuous function f : [0,+∞) → R, with f(x) > 0 when x > 0
is quiet at zero, if and only if for each T > 0 there is a µ ≥ 1 such that for all
τ ∈ (0, T ) it holds

sup{f(x) : x ∈ [0, τ ]} ≤ µ inf{f(x) : x ∈ [τ, T ]}. (2.1)

Proof. Assume that f is quiet at zero and there is a T > 0 such that for each
positive integer µ there is a point τµ ∈ (0, T ), with

sup{f(x) : x ∈ [0, τ ]} > µ inf{f(x) : x ∈ [τ, T ]}.
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This implies that there are sequences (xµ), (yµ), with 0 < xµ ≤ τµ ≤ yµ and
f(xµ) > µf(yµ) for all µ. Since f is bounded on [0, T ], taking limits as µ → +∞,
we get f(yµ)→ 0, thus yµ → 0 and, so, also xµ → 0. These facts contradict to our
assumption.

For the ”if” part of the proof, we assume that there are sequences (xn), (yn),
with 0 ≤ xn < yn and xn → 0, yn → 0 and, moreover,

lim
n→∞

f(xn)
f(yn)

= +∞. (2.2)

Set T := max{yn}. Then, by assumption, there is a µ ≥ 1 such that for all
τ ∈ (0, T ) it holds (2.1). From (2.2) there is an index n0 such that f(xn0

) ≥
(µ+ 1)f(yn0

). Set τ := xn0
and observe that

sup{f(x) : x ∈ [0, τ ]} ≥ f(xn0
) ≥ (µ+ 1)f(yn0

)

≥ (µ+ 1) inf{f(x) : x ∈ [τ, T ]},

contradicting to 2.1. The proof is complete. �

Remark. We observe that if f(0) > 0, then f is quiet at zero. Indeed, for each
T > 0 the real number

µ :=
sup{f(x) : x ∈ [0, T ]}
inf{f(x) : x ∈ [0, T ]}

works in (2.1) for all τ ∈ (0, T ).
Also, if f is a nondecreasing in a right neihborhood of zero, then it is quiet

at zero. To see this we assume that f is nondecreasing on an interval [0, δ] and
consider two sequences (xn), (yn), with 0 ≤ xn < yn for all n and xn → 0, yn → 0.
These sequences belong eventually in the interval (0, δ], hence, by the monotonicity
of f , f(xn) ≤ f(yn) for all large n. This proves that the function f is quiet at zero.

Example. We give a simple example of a function, which is not quiet at zero.
Consider sequences (xn), (yn) such that xn → 0, yn → 0, with 0 < xn < yn <

xn−1 < yn−1 < ... < x1 < y1 and lim f(xn)
f(yn) = +∞. Then, define a new sequence

(zn) with z2n = xn and z2n+1 = yn. Consider the continuous function f , defined
on the interval [0,+∞), whose the graph passes from the points ( 1

n , zn), it is linear
in between and vanishes at zero. It is not hard to see that f is not quiet at zero.

This example may justify why the function f is named ”quiet”. If we discuss
in details the behavior of f which is not quiet at zero, then we can observe rapid
oscillations close to zero. We mean that as the argument approaches to zero from
the right, the rate of successive maximum and minimum of f is not bounded, though
the limit might be zero. So, f has a kind of a singular motion to the zero.

3. The assumptions and some lemmas

In the sequel we shall denote by R the real line, by R+ the interval [0,+∞) and
by I the interval [0, 1]. Then C(I) will denote the space of all continuous functions
x : I → R. Let C1

0 (I) be the space of all functions x : I → R, whose the first
derivative x′ is absolutely continuous on I and x(0) = 0. This is a Banach space
when it is furnished with the norm ‖ ‖ defined by

‖x‖ := sup{|x′(t)| : t ∈ I}, x ∈ C1
0 (I).
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Also we denote by L+
1 (I) the space of all functions x : I → R

+ which are Lebesgue
integrable on I, endowed with its usual norm ‖ · ‖1.

Now consider the problem (1.1), (1.2), (1.3). By a solution of this problem
we mean a function x ∈ C1

0 (I) satisfying equation (1.1) for almost all t ∈ I and
condition (1.3).

As the functions appeared in this problem we assume the following:

(H1) f :R→ R is a continuous function, with f(x) > 0, when x > 0 and quiet at
zero.

(H2) The functions p, q belong to C(I) and they are such that p > 0, q ≥ 0 and
sup{q(s) : η ≤ s ≤ 1} > 0. It is clear that without loss of generality we can
assume that p(1) = 1.

(H3) The function g: I → R is increasing and such that

g(η) = 0 < g(η+) =: b0.

(H4) It holds:
∫ 1

η
1
p(s)dg(s) < 1.

Last assumption implies that the quantity

α :=
(

1−
∫ 1

η

1
p(s)

dg(s)
)−1

is a real number.
As we indicated in [25], the problem (1.1), (1.2), (1.3) is equivalent to the oper-

ator equation x = Ax, x ∈ C1
0 (I), where A is the operator defined by

Ax(t) := αP (t)
∫ 1

η

Φ(f(x))(s)dg(s) +
∫ t

0

Φ(f(x))(s)ds. (2.2)

Here the functions P and Φ are defined by

P (t) :=
∫ t

0

1
p(s)

ds, t ∈ I

and

(Φy)(t) :=
1
p(t)

∫ 1

t

q(s)y(s)ds, t ∈ I, y ∈ C(I)

and the constants H, θ are given by

H :=
∫ 1

η

Φ(1)(s)dg(s) and θ :=
p(0)

αH + ‖q‖1
.

It is clear that A is a completely continuous operator.
In the sequel we shall do use of the function

fs(w) := sup{f(x) : x ∈ [0, w]},

for which we assume the following:
(H5) There exists a point v > 0 such that fs(v) ≤ θv.
Now we set

X :=
{
x ∈ C1

0 (I) : x ≥ 0, x′ ≥ 0, x is concave and ‖x‖ ≤ v.
}

and we give the following auxiliary results:
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Lemma 3.1. It holds AX ⊂ X.

Proof. Let x ∈ X. Then Ax(t) ≥ 0, (Ax)′(t) ≥ 0, and (Ax)′′(t) = −q(t)f(x(t)) ≤ 0
for all t ∈ I. Also, x ∈ X implies that 0 ≤ x(t) ≤ v for all t ∈ I. Then

‖Ax‖ = (Ax)′(0) =
α

p(0)

∫ 1

η

Φ(f(x))(s)dg(s) +
1
p(0)

∫ 1

0

q(s)f(x(s))ds

≤ fs(v)
[
αH

p(0)
+

1
p(0)

∫ 1

0

q(s)ds
]

≤ θv
[
αH + ‖q‖1

p(0)

]
= v.

�

Lemma 3.2. There exists a λv > 0 such that for all x ∈ X it holds∫ 1

η

Φ(f(x))(s)dg(s) ≥ b0
λv

∫ 1

0

q(s)f(x(s))ds.

Proof. From the assumption (H3) we have

g(s) ≥ b0, s ∈ (η, 1]. (3.1)

Let x ∈ X. Then x is nondecreasing and ‖x‖ ≤ v. Since f is quiet at zero, for the
number Tv := v, there is a µv ≥ 1 such that (2.1) holds for all τ ∈ (0, Tv). Hence
(2.1) also holds for the real number τ := x(η) < ‖x‖ ≤ v. Therefore we have

∫ 1

0

q(s)f(x(s))ds =
∫ η

0

q(s)f(x(s))ds+
∫ 1

η

q(s)f(x(s))ds

≤ sup
w∈[0,τ ]

f(w)
∫ η

0

q(s)ds+
∫ 1

η

q(s)f(x(s))ds

≤
∫ η

0
q(s)ds∫ 1

η
q(s)ds

supw∈[0,τ ] f(w)
infw∈[τ,Tv ] f(w)

∫ 1

η

q(s)f(x(s))ds

+
∫ 1

η

q(s)f(x(s))ds

≤

(∫ η
0
q(s)ds∫ 1

η
q(s)ds

µv + 1

)∫ 1

η

q(s)f(x(s))ds

= ξ

∫ 1

η

q(s)f(x(s))ds,

where

ξ :=

∫ η
0
q(s)ds∫ 1

η
q(s)ds

µv + 1.
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Next we use (3.1) and get∫ 1

0

q(s)f(x(s))ds ≤ ξ
∫ 1

η

q(s)f(x(s))ds

≤ ξ

b0

∫ 1

η

q(s)f(x(s))g(s)ds

= − ξ

b0

∫ 1

η

d

(∫ 1

s

q(r)f(x(r))dr
)
g(s)

=
ξ

b0

∫ 1

η

∫ 1

s

q(r)f(x(r))drdg(s)

≤ λv
b0

∫ 1

η

1
p(s)

∫ 1

s

q(s)f(x(s))drdg(s),

where

λv :=

(∫ η
0
q(s)ds∫ 1

η
q(s)ds

µv + 1

)
sup
s∈I

p(s).

The proof of the lemma is complete. �

Now we set

D :=
∫ 1

η

Φ(P )(s)dg(s),

b := min

{
b0,

λvH

α|Dηp(0)−H|

}
and

σv :=
αbDp(0)
αb+ λv

.

Lemma 3.3. It holds
σvη ≤ H.

Proof. If Dηp(0)−H > 0, then we have b ≤ λvH
α(Dηp(0)−H) . Solving with respect to

H we obtain the result. Also, if Dηp(0)−H < 0, then

σvη =
αbp(0)η
αb+ λv

D <
αbH

αb+ λv
≤ H.

4. Main results

In this section we present our main results. Let us first define the function

fi(w) := inf
{
f(z) :

ησv
H

w ≤ z ≤ w
}
,

the cone

K :=
{
x ∈ C1

0 (I) : x ≥ 0, x′ ≥ 0, x is concave and
∫ 1

η

Φ(x)(s)dg(s) ≥ σv‖x‖
}

and let
ρ :=

1
αH

.
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Theorem 4.1. Consider the functions f, p, q and g satisfying the assumptions
(H1)− (H5) and the following one:

(H6) There exists u > 0 such that u < v and fi(u) ≥ ρu.

Then the boundary value problem (1.1), (1.2), (1.3) admits a solution x such that
u ≤ ‖x‖ ≤ v.

Proof. Let Bv be the open ball {x ∈ C1
0 (I) : ‖x‖ < v}. We claim that

A : K ∩Bv → K.

Indeed, let x ∈ K ∩ Bv. Then x ∈ K and x ∈ X. First observe that Ax ≥ 0,
(Ax)′ ≥ 0 and (Ax)′′ ≤ 0. Moreover,

∫ 1

η

Φ(Ax)(s)dg(s) ≥ α
∫ 1

η

Φ(P )(s)dg(s)
∫ 1

η

Φ(f(x))(s)dg(s)

= αD

∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

=
σv(αb0 + λv)

b0p(0)

∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

=
σv
p(0)

(
α+

λv
b0

)∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

= σv
α

p(0)

∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

+ σv
1
p(0)

λv
b0

∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s).

Hence, taking into account Lemma 3.2 we get

∫ 1

η

Φ(Ax)(s)dg(s) ≥ σv
α

p(0)

∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

+ σv
1
p(0)

∫ 1

0

q(θ)f(x(θ))dθ

= σv(Ax)′(0)

= σv‖(Ax)‖,

which proves our claim.
Now consider a function x ∈ K, with ‖x‖ = u. The fact that x is concave implies

that

ηx(1) ≤ x(η) ≤ x(r) ≤ x(1) ≤ ‖x‖, for every r ∈ [η, 1].
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So,

σv‖x‖ ≤
∫ 1

η

Φ(x)(s)dg(s)

=
∫ 1

η

1
p(s)

∫ 1

s

q(θ)x(θ)dθdg(s)

≤ x(1)
∫ 1

η

1
p(s)

∫ 1

s

q(θ)dθdg(s)

= x(1)
∫ 1

η

Φ(1)(s)dg(s)

= x(1)H.

Thus we have

x(1) ≥ σv‖x‖
H

,

which implies that
x(r) ≥ ησv

H
‖x‖, r ∈ [η, 1].

Therefore, for every r ∈ [η, 1] we have
ησv
H
‖x‖ ≤ x(r) ≤ ‖x‖,

where, notice that it also holds ησv
H ≤ 1, see Lemma 3.3. Then, by assumption

(H6), we obtain

(Ax)′(1) ≥ α
∫ 1

η

1
p(s)

∫ 1

s

q(θ)f(x(θ))dθdg(s)

≥ αfi(u)H
≥ αHρu = u.

This means that, if ‖x‖ = u, then ‖Ax‖ ≥ ‖x‖. Moreover in Lemma 3.1 we have
proved that if ‖x‖ = v, then ‖Ax‖ ≤ ‖x‖.

To complete the proof we set Ω1 := {x ∈ C1
0 (I) : ‖x‖ < u}, Ω2 := Bv and apply

Theorem 1.1.
�

An immediate consequence of this theorem is the following:

Corollary 4.2. Consider the functions f, q, g satisfying the assumptions (H1) −
(H4). Moreover assume that

(H7) There exist two two-sided sequences (u
k
), (v

k
), k ∈ Z such that

0 < u
k
< v

k
< u

k+1 ,

fi(uk) ≥ ρu
k

and fs(vk) ≥ θv
k

for every k ∈ Z.
Then there exists a sequence x

k
, k ∈ Z of solutions of the boundary value problem

(1.1), (1.2), (1.3), such that

u
k
< ‖x

k
‖ < v

k
, k ∈ Z.
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