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L1 stability of conservation laws

for a traffic flow model ∗

Tong Li

Abstract

We establish the L1 well-posedness theory for a system of nonlinear
hyperbolic conservation laws with relaxation arising in traffic flows. In
particular, we obtain the continuous dependence of the solution on its
initial data in L1 topology. We construct a functional for two solutions
which is equivalent to the L1 distance between the solutions. We prove
that the functional decreases in time which yields the L1 well-posedness
of the Cauchy problem. We thus obtain the L1-convergence to and the
uniqueness of the zero relaxation limit.

We then study the large-time behavior of the entropy solutions. We
show that the equilibrium shock waves are nonlinearly stable in L1 norm.
That is, the entropy solution with initial data as certain L1-bounded per-
turbations of an equilibrium shock wave exists globally and tends to a
shifted equilibrium shock wave in L1 norm as t→∞. We also show that
if the initial data ρ0 is bounded and of compact support, the entropy
solution converges in L1 to an equilibrium N -wave as t→ +∞.

1 Introduction

We establish the L1 well-posedness theory for a system of nonlinear hyperbolic
conservation laws with relaxation arising in traffic flows. In particular, we obtain
the continuous dependence of the solution on its initial data in L1 topology, the
L1-convergence to and the uniqueness of the zero relaxation limit. We then
show that the equilibrium shock waves are nonlinearly stable in L1 norm. The
L1 topology is natural from point view of the conservation laws. The well-
posedness problem in the L1 topology for nonlinear conservation laws has been
studied, see Bressan, Liu and Yang [2], Liu and Yang [13]. L1-stability of shock
waves in scalar conservation laws has been studied, see Freistühler and Serre
[4], Mascia and Natalini [14], Natalini [15].

The system of nonlinear hyperbolic conservation laws with relaxation we
study was derived as a nonequilibrium continuum model of traffic flows by Zhang
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[22], also see Li and Zhang [10]. The main purpose of the model is to address
the anisotropic feature of traffic flows. The resulting hyperbolic system with
relaxation is marginally stable.

The model is the following

ρt + (ρv)x = 0 (1.1)

vt + (
1
2
v2 + g(ρ))x =

ve(ρ)− v
τ

(1.2)

with initial data

(ρ(x, 0), v(x, 0)) = (ρ0(x), v0(x)). (1.3)

It is assumed that

ρ0(x) ≥ δ0 > 0 (1.4)

for some δ0 > 0. g is the anticipation factor satisfying

g′(ρ) = ρ(v′e(ρ))2. (1.5)

τ > 0 is the relaxation time. Equation (1.1) is a conservation law for ρ. (1.2)
is a rate equation for v, which is not a conservation of momentum as in fluid
flow equations. The anticipation factor g in (1.2) compare to pressure in the
momentum equation. It describes drivers’ car-following behavior. The right
hand side of (1.2) is the relaxation term. Let

h(ρ, v) =
ve(ρ)− v

τ
. (1.6)

When the state is in equilibrium, the system of equations (1.1) (1.2) is
reduced to the equilibrium equation

ρt + (ρve(ρ))x = 0 (1.7)

with initial data

ρ(x, 0) = ρ0(x) > 0. (1.8)

It is assumed that the equilibrium velocity ve(ρ) is a decreasing function of ρ,
v′e(ρ) < 0. It is also assumed that ve(0) = vf and ve(ρj) = 0 where vf is the free
flow speed and ρj is the jam concentration. The equilibrium flux q(ρ) = ρve(ρ)
is assumed to be a concave function of ρ

q′′(ρ) = ρv′′e (ρ) + 2v′e(ρ) < 0. (1.9)

The equilibrium characteristic speed is

λ∗(ρ) = q′(ρ) = ve(ρ) + ρv′e(ρ). (1.10)
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For the traffic flow model (1.1) (1.2), the characteristic speeds are

λ1(ρ, v) = ρv′e(ρ) + v < −ρv′e(ρ) + v = λ2(ρ, v) (1.11)

and the right eigenvectors of the Jacobian of the flux are

ri(ρ, v) = (1, (−1)i−1v′e(ρ))T , i = 1, 2.

The system is strictly hyperbolic provided ρ > 0. Furthermore, each character-
istic field is genuinely nonlinear

∇λi(ρ, v) · ri(ρ, v) = (−1)i−1q′′(ρ) 6= 0, i = 1, 2

where the concavity of q is assumed, see (1.9).
On the equilibrium curve v = ve(ρ), a marginal stability condition

λ1 = λ∗ < λ2 (1.12)

is satisfied. Thus there is no diffusion in the process of relaxation for the traffic
flow model (1.1) (1.2). (1.12) is a direct consequence of the anisotropic feature
of traffic flows.

In Li [9], using a generalized Glimm scheme, we obtained global existence
of solution of (1.1) (1.2) (1.3) for initial data of bounded total variation, of
bounded oscillations and of small distance to the equilibrium curve. We also
showed that a sequence of the solutions obtained for the relaxed system converge
to a solution of the equilibrium equation (1.7) as the relaxation parameter goes
to zero.

In the current paper, we study the continuous dependence of the solution
on its initial data in L1 topology. The uniqueness of solutions is a corollary of
the continuous dependence of the solution on its initial data. We construct a
functional for two solutions such that it is equivalent to the L1 distance between
the two solutions and it is time-decreasing. The construction makes use of the
L1 contraction semigroup property for the scalar conservation laws, Keyfitz [5],
Kruzkov [6], Lax [8] and the exponential decay property of the source term.
We show an L1-contractive property of the entropy solution operator in the
Riemann invariant coordinate. For general systems of conservation laws, there
is no such a property, see [20].

We show the L1 stability of the equilibrium shock waves. That is, the entropy
solution with initial data as certain L1-bounded perturbations of an equilibrium
shock wave exists globally and tends to a shifted equilibrium shock wave in L1

norm as t→∞.
We then show that if the initial data ρ0 is bounded and of compact support,

the entropy solution converges in L1 to an equilibrium N -wave as t→ +∞.
Uniqueness issues do not seem to have been systematically studied in con-

junction with higher order models. In general, the zero relaxation limit is
highly singular because of shock and initial layers. In [15], Natalini obtained
the uniqueness of the zero relaxation for semilinear systems of equations with
relaxation. The uniqueness problem for the quasilinear case remains open. For
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the quasilinear system of equations (1.1) (1.2), we obtain the L1-convergence
to and the uniqueness of the zero relaxation limit. We prove the uniqueness
of the zero relaxation by using the property that the solution depends on its
data continuously, the fact that the signed distance −ve(ρ) + v of (ρ, v) to
the equilibrium curve is one of the Riemann invariants and that it decays in τ
exponentially. The relaxation limit models dynamic limit from the continuum
nonequilibrium processes to the equilibrium processes. Typical examples for the
limit include gas flow near thermal-equilibrium and phase transition with small
transition time. There has been a large literature on the mathematical theory
of relaxation, see Chen, Levermore and Liu [3], Liu [12], Natalini [15].

The plan of the paper is the following: In Section 2, we give the preliminaries
including a brief derivation of the traffic flow model. In Section 3, we establish
the L1-contractivity property for solutions of (1.1) (1.2). Asymptotic behavior
of solutions is studied in Section 4. In Section 5, we obtain the L1-convergence
to and the uniqueness of the zero relaxation limit. In Section 6, we give the
conclusions.

2 Preliminaries

Zhang’s traffic flow model (1.1) (1.2) was derived based on the physical assump-
tion that the time needed for a following vehicle to assume a certain speed is
determined by leading vehicles, see [10] [22]. For τ > 0 and ∆x > 0,

dx

dt
(t+ τ) = ve(ρ(x+ ∆x, t)).

To leading order

v + τ
dv

dt
= ve(ρ(x, t)) + ∆xρxv′e(ρ(x, t)).

That is
dv

dt
=
ve(ρ(x, t))− v

τ
+

∆x
τ
ρxv
′
e(ρ(x, t)). (2.1)

Letting
∆x
τ

= −(λ∗(ρ)− ve(ρ)) = −ρv′e(ρ),

the relative wave propagating speed to the car speed at the equilibrium, we
obtain the anticipation factor which expresses the effect of drivers reacting to
conditions downstream. The minus sign on the right hand side comes from the
fact that the behavior of the driver is determined by leading vehicles.

We assume that the equilibrium velocity ve(ρ) is a linear function of ρ

ve(ρ) = −aρ+ b, a, b > 0 (2.2)

as in [9]. Under assumption (2.2),

g(ρ) =
a2

2
ρ2 (2.3)
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and

q(ρ) = ρve(ρ) = −aρ2 + bρ (2.4)

where the flux q is a quadratic function which corresponds to the flux of the
classical PW(Payne-Whitham) model. Therefore the case that the equilibrium
velocity is linear is an important nontrivial case in traffic flow. The assumption
has also been used by other authors, see, for example, Lattanzio and Marcati
[7]. The right eigenvectors of the Jacobian of the flux of (1.1) (1.2) are constant
vectors

ri(ρ, v) = (1, (−1)ia)T , i = 1, 2.

Thus both the rarefaction curves and shock curves are straight lines. Fur-
thermore, the shock wave curves coincide with the rarefaction wave curves,
Si(u0) = Ri(u0), i = 1, 2.

Multiplying (1.1) (1.2) on the left with the jth left eigenvector, lj(ρ, v) =
((−1)j−1v′e(ρ), 1)T , j = 1, 2, of the Jacobian of the flux, we have that

(−ve(ρ)− v)t + λ1(−ve(ρ)− v)x = −h(ρ, v) (2.5)
(−ve(ρ) + v)t + λ2(−ve(ρ) + v)x = h(ρ, v) (2.6)

where h is defined in (1.6). The Riemann invariants r and s are

r(ρ, v) = −ve(ρ)− v (2.7)
s(ρ, v) = −ve(ρ) + v. (2.8)

From (2.6) we see that one of the Riemann invariants is the signed distance
−ve(ρ) + v of (ρ, v) to the equilibrium curve. Noting (1.6), (1.11) and (2.2), we
have

rt −
(

1
2
r2 + br

)
x

=
s

τ
(2.9)

st +
(

1
2
s2 + bs

)
x

= − s
τ
. (2.10)

The initial data is obtained from (1.3)

r(x, 0) = r0(x) (2.11)
s(x, 0) = s0(x). (2.12)

3 The Cauchy problem

For a scalar balance law

ut + f(x, t, u)x = g(x, t, u) (3.1)

with initial data

u(x, 0) = u0(x), (3.2)
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Kruzkov [6] defined generalized solutions of problem (3.1) (3.2).
Let ΠT = R× [0, T ]. Let u0(x) be a bounded measurable function such that

|u0(x)| ≤M0 on R.

Definition A bounded measurable function u(x, t) is called a generalized so-
lution of problem (3.1) (3.2) in ΠT if:

i) for any constant k and any smooth function φ(x, t) ≥ 0 which is finite in
ΠT (the support of φ is strictly in ΠT ), if the following inequality holds,∫ ∫

ΠT

{|u(x, t)− k|φt + sign(u(x, t)− k)[f(x, t, u(x, t))− f(x, t, k)]φx−

− sign(u(x, t)− k)[fx(x, t, u(x, t))− g(x, t, u(x, t))]}dxdt ≥ 0; (3.3)

ii) there exists a set E of zero measure on [0, T ], such that for t ∈ [0, T ]\E,
the function u(x, t) is defined almost everywhere in R, and for any ball Kr =
{|x| ≤ r}

lim
t→0

∫
Kr

|u(x, t)− u0(x)|dx = 0.

Inequality (3.3) is equivalent to condition E in [17], if (u−, u+) is a discon-
tinuity of u and v is any number between u− and u+, then

f(x, t, u+)− f(x, t, u−)
u+ − u−

≤ f(x, t, v)− f(x, t, u−)
v − u−

. (3.4)

Remark In the case that f is strictly convex (or concave) in u and u− 6= u+,
the strict inequality in (3.4) holds.

The following results on the existence and uniqueness of the generalized
solution of problem (3.1) (3.2) are due to Kruzkov [6].

Uniqueness follows from the following result on the stability of the solutions
relative to changes in the initial data in the norm of L1.

For any R > 0 and M > 0, we set

NM (R) = max
KR×[0,T ]×[−M,M ]

|fu(x, t, u)|

and let κ be the cone {(x, t) : |x| ≤ R−Nt, 0 ≤ t ≤ T0 = min{T,RN−1}}. Let
Sτ designate the cross-section of the cone κ by the plane t = τ , τ ∈ [0, T0].

Theorem 3.1 (Kruzkov) Assume that: i) f(x, t, u) and g(x, t, u) are continu-
ously differentiable in the region {(x, t) ∈ ΠT ,−∞ < u < +∞}; ii) fx(x, t, u)
and ft(x, t, u) satisfy Lipschitz condition in u. Let u(x, t) and v(x, t) be gen-
eralized solutions of problem (3.1) (3.2) with bounded measurable initial data
u0(x) and v0(x), respectively, where |u(x, t)| ≤ M and |v(x, t)| ≤ M almost
everywhere in KR × [0, T ]. Let γ = max gu(x, t, u) in the region (x, t) ∈ κ and
|u| ≤M . Then for almost all t ∈ [0, T0]∫

St

|u(x, t)− v(x, t)|dx ≤ eγt
∫
S0

|u0(x)− v0(x)|dx. (3.5)
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Theorem 3.2 (Kruzkov) Assume that: i) f(x, t, u) is three times continuously
differentiable; ii) fu(x, t, u) is uniformly bounded for (x, t, u) ∈ DM = ΠT ×
[−M,M ]; iii) fx(x, t, u)− g(x, t, u) is twice continuously differentiable and uni-
formly bounded for (x, t, u) ∈ DM , where

sup
(x,t)∈ΠT

|fx(x, t, 0)− g(x, t, 0)| ≤ c0, ;

sup
(x,t)∈ΠT ,−∞<u<∞

[−fxu(x, t, u) + gu(x, t, u)] ≤ c1;

iv) u0(x) is an arbitrary bounded measurable function in R. Then a generalized
solution of problem (3.1) (3.2) exists.

For the initial value problem (2.10) (2.12), our goal is to obtain a priori global
bounds of the solutions and thus obtain the global existence and uniqueness of
the solutions.

First, we have the following result on the global stability of the solutions
relative to changes in the initial data in the norm of L1 which implies the
uniqueness of the solutions.

Theorem 3.3 If s1(x, t) and s2(x, t) are generalized solutions of problem (2.10)
(2.12) with bounded measurable initial data s10(x) and s20(x) such that s10 −
s20 ∈ L1. Then for almost all t > 0∫

St

|s1(x, t)− s2(x, t)|dx ≤ e− t
τ

∫
S0

|s10(x)− s20(x)|dx. (3.6)

Proof Applying Theorem 3.1 to two solutions, s1 and s2, of equation (2.10)
and noting that γ = − 1

τ < 0, we obtain (3.6). ♦
We obtain a global bound for the generalized solutions of (2.10) for bounded

measurable data (2.12).

Theorem 3.4 Generalized solutions to the initial value problem (2.10) (2.12)
are bounded almost everywhere and the bounds depend only on their initial data.

Proof Let s be a generalized solution of equation (2.10). Applying Theorem
3.3 to two solutions, s and 0, of equation (2.10), we conclude that the generalized
solutions are bounded almost everywhere or all t > 0. ♦

It can be checked that all conditions in Theorem 3.2 are satisfied by equation
(2.10). Therefore we have the following global existence result.

Theorem 3.5 A unique generalized solution of problem (2.10) (2.12) exists
globally.

Now we turn to solve the initial value problem (2.9) with bounded measur-
able data (2.11).
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Theorem 3.6 If r1(x, t) and r2(x, t) are generalized solutions of problem (2.9)
(2.11) with bounded measurable initial data r10(x) and r20(x) such that r10 −
r20 ∈ L1. Then for almost all t > 0∫

St

|r1(x, t)− r2(x, t)|dx ≤
∫
S0

|r10(x)− r20(x)|dx+ (3.7)

+(1− e− t
τ )
∫
S0

|s10(x)− s20(x)|dx.

Proof Applying the proof of Theorem 3.1 in [6] to problem (2.9) (2.11) and
using (3.6), we obtain (3.7). ♦

Similarly, we obtain a global bound for the generalized solutions of (2.9).

Theorem 3.7 Generalized solutions to the initial value problem (2.9) (2.11)
are bounded almost everywhere and the bounds depend only on their initial data.

Proof Let ρe be the bounded solution to the equilibrium equation (1.7) with
initial data (1.8), re = −2ve(ρe) and se = 0. Then re is a bounded solution to
(2.9) with initial data −2ve(ρe(x, 0)) and se is a solution to (2.10) with initial
data zero.

Applying Theorem 3.6 to two solutions r and re of (2.9), we obtain the global
boundedness of the generalized solution r. ♦

Finally, we have the following.

Theorem 3.8 A unique generalized solution of problem (2.9) (2.11) exists glob-
ally.

We show an L1-contractive property of the generalized solutions of (2.9)
(2.10) in terms of the Riemann invariants.

Theorem 3.9 If (r1(x, t), s1(x, t)) and (r2(x, t), s2(x, t)) are generalized solu-
tions of (2.9) (2.10) for all x and t > 0, with initial data (r10(x), s10(x)),
(r20(x), s20(x)) which are bounded measurable and r10−r20, s10−s20 ∈ L1, then

‖r1(·, t)− r2(·, t)‖L1 + ‖s1(·, t)− s2(·, t)‖L1

≤ ‖r10(·)− r20(·)‖L1 + ‖s10(·)− s20(·)‖L1 . (3.8)

Proof Combining the results of Theorem 3.3 and Theorem 3.6, we arrive at
our conclusion. ♦

Remark It is interesting to note that there is no contractive property for r,
see (3.7). However, there is the contractive property for r and s, see (3.8). This
property allows us to investigate the large-time behavior of solutions in next
section.

From (2.7) (2.8), it is evident that ‖r1(·, t)−r2(·, t)‖L1 +‖s1(·, t)−s2(·, t)‖L1

is equivalent to the L1 distance of the two solutions. Thus the L1 well-posedness
theory for the Cauchy problem (1.1) (1.2) (1.3) is established.
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Theorem 3.10 If (ρ1(x, t), v1(x, t)) and (ρ2(x, t), v2(x, t)) are generalized so-
lutions of (1.1) (1.2) for all x and t > 0, with bounded measurable initial data
(ρ10(x), v10(x)), (ρ20(x), v20(x)) such that ρ10 − ρ20, v10 − v20 ∈ L1, then

‖ρ1(·, t)− ρ2(·, t)‖L1 + ‖v1(·, t)− v2(·, t)‖L1

≤ C(‖ρ10(·)− ρ20(·)‖L1 + ‖v10(·)− v20(·)‖L1) (3.9)

where C is a constant independent of t and the initial data.

4 Asymptotic Behavior

We study the large-time behavior of the entropy solutions of (1.1) (1.2). We show
that the entropy solutions with initial data as certain L1 bounded perturbations
of an equilibrium shock wave exist and tend to a shifted equilibrium shock wave
in L1 norm as t→∞.

Recall that a steady-state solution is either a constant state on the equilib-
rium curve, i.e., (ρ, v) = (ρ0, ve(ρ0)) or an equilibrium shock wave

(ρsh, vsh)(x) =
{

(ρ−, ve(ρ−)) x ≤ x0

(ρ+, ve(ρ+)) x > x0
(4.1)

satisfying the entropy condition ρ− ≤ ρ+. Denote the Riemann invariants of
the equilibrium shock wave by R(x) and S(x), see (2.7) (2.8).

We show that the equilibrium shock waves are nonlinearly stable in L1 norm.
The main tools used in the proof are the L1 contractivity, a result of Kruzkov
[6] and the exponentially decay property of the source term, see Theorem 3.3.

Without loss of generality, we set

(ρ0(−∞), v0(−∞)) = (ρ−, ve(ρ−)), (ρ0(+∞), v0(+∞)) = (ρ+, ve(ρ+)). (4.2)

Theorem 4.1 Let the initial data (1.3) be a bounded perturbation of an equi-
librium shock wave, satisfy

(ρ0 − ρsh, v0 − vsh) ∈ (L∞)2 ∩ (L1)2, (4.3)

be of small distance to the equilibrium curve and satisfy further that

R(−∞) ≤ r(x, 0) ≤ R(+∞). (4.4)

Then the global bounded entropy solution of (1.1) (1.2) (1.3) exists and tends
to a shifted equilibrium shock wave in L1 norm as t→∞,

lim
t→+∞

(‖ρ(·, t)− ρsh(·+ k)‖L1 + ‖v(·, t)− vsh(·+ k)‖L1) = 0 (4.5)

where the shift k is given by

k =
1

ρsh(+∞)− ρsh(−∞)

∫
R

(ρ(x, 0)− ρsh(x))dx. (4.6)



10 L1 stability of conservation laws EJDE–2001/14

We state a result of Kruzkov [6] before we prove Theorem 4.1.
Consider the initial value problem

ut + (f(u))x = g (4.7)
u(x, 0) = u0. (4.8)

Let ΣT = R × (0, T ), [a]+ =
1
2

(|a|+ a) and H = H(a) =
1
2

(sgn a+ 1), is the
Heavyside function.

Theorem 4.2 Let u(v) be an entropy subsolution(supersolution) of (4.7) (4.8)
in ΣT for the right-hand side g(h) and the initial data u0(v0). Fix a, b such
that u, v ∈ [a, b] in ΣT . Then for each interval (α, β), we have∫ β−tK

α+tK

[u(x, t)− v(x, t)]+dx

≤
∫ β

α

[u0(x)− v0(x)]+dx+ (4.9)

+
∫ t

0

ds

∫ β−tK

α+tK

H(u(x, s)− v(x, s))(g(x, s)− h(x, s))dx

where K ≥ L = ‖f ′(u)‖L∞(a,b), 0 < t < min{τ, T} and τ =
β − α

2L
.

Notice that (2.9) (2.10) is a weakly coupled system of quasilinear hyperbolic
equations in the sense that it is in diagonal form and the equations are coupled
by means of the source term that does not depend on the derivatives of the
unknowns, see [16].

Furthermore, we have the quasimonotonicity of the source termG = (g1, g2)T

of (2.9) (2.10) in the sense that g1 is nondecreasing in s and g2 nondecreasing
in r, see [15].

Lemma 4.3 The source term G = (g1, g2)T of (2.9) (2.10) is quasimonotone.

Proof From (2.9) (2.10) we have that g1(r, s) = s
τ and g2(r, s) = − s

τ . Conse-
quently, ∂g1

∂s = 1
τ > 0 and ∂g2

∂r = 0. The conclusion is proved. ♦
Therefore, solutions of (2.9) (2.10) satisfy a comparison principle, see [15].

Theorem 4.4 Let U1 and U2 be two weak solutions of (2.9) (2.10) in R×(0, T )
with initial data U1

0 and U2
0 respectively. If U1

0 ≤ U2
0 for almost every x ∈ R,

then U1 ≤ U2 for almost every (x, t) ∈ R× (0, T ).

Now we prove Theorem 4.1.
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Proof Boundedness of the solution follows directly from the quasimonotone
property of the source terms of (2.9) (2.10) and the comparison principle.

Step 1. We first prove the conclusion for initial data (2.11) (2.12) satisfying
some additional ordering properties besides (4.3) (4.4). Let

R(x) = r(ρsh, vsh) = −2ve(ρsh)

and
S(x) = s(ρsh, vsh) = 0

be stationary solutions of (2.9) and (2.10) respectively. Let r(x, 0) satisfy

R(x+ γ) ≤ r(x, 0) ≤ R(x+ β), for all x (4.10)

for some γ and β.
Let

r(x, 0) = R(x) + ψ0(x)

and
r(x, t) = R(x) + ψ(x, t).

Applying Theorem 4.2 to solutions of (2.9) and noting (4.10), we have that

R(x+ γ) ≤ r(x, t) ≤ R(x+ β)

for all x and for all t > 0 or

R(x+ γ)−R(x) ≤ ψ(x, t) ≤ R(x+ β)−R(x) (4.11)

for all x and for all t > 0. (4.11) follows from (4.9), that the initial data
is of small distance (relative to the equilibrium shock wave strength) to the
equilibrium curve and that (2.9) has a source term that decays exponentially in
t, see (3.6).

Therefore {ψ(x, t)}t>0 is uniformly bounded by functions in L1.
We claim that {ψ(x, t)}t>0 is L1-equicontinuous. In fact,

‖ψ(·+ h, t)− ψ(·, t)‖L1

≤ ‖r(·+ h, t)− r(·, t)‖L1 + ‖R(·+ h)−R(·)‖L1

≤ ‖r(·+ h, 0)− r(·, 0)‖L1 + (1− e− t
τ )‖s(·+ h, 0)− s(·, 0)‖L1 +

+‖R(·+ h)−R(·)‖L1 → 0

as h → 0, uniformly with respect to t > 0, where we have used the continuous
dependence on data property (3.7) and the condition on the initial data (4.3).

Hence {ψ(x, t)}t>0 is relatively compact in L1.
Let Bs be the set of accumulation points of {ψ(x, t)}t>s for s > 0, then Bs

is not empty by compactness. Hence

A = R(x) + ∩s≥0Bs 6= ∅
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represents the set of all the possible L1-limit of r(x, t) as t→ +∞.
It is enough to prove that A = {R(x+ k)} for some k.
Let a0(x) ∈ A. Then there exist tn > 0 such that tn → +∞ as n → +∞

and

lim
n→+∞

‖r(·, tn)− a0(·)‖L1 = 0. (4.12)

¿From Theorem 3.6, we know that ‖r1(·, t)− r2(·, t)‖L1 + e−
t
τ ‖s10(·)− s20(·)‖L1

decreases in t for any two solutions and hence it admits limit as t → +∞.
Therefore for any h,

lim
t→+∞

‖r(·, t)−R(·+ h)‖L1 = ch (4.13)

for some ch ≥ 0.
Letting tn → +∞ in the above limit, we have

‖a0(·)−R(·+ h)‖L1 = ch.

Let a(x, t) be the solution of (2.9) with initial data a0(x). Then a(x, t) ∈ A (A
is invariant under the flow defined by (2.9)). Therefore for the same reason

‖a(·, t)−R(·+ h)‖L1 = ch

for any h and any t > 0.
Applying the contractive property (3.8) to two solutions (a(x, t), 0) and

(R(x+ h), 0) of (2.9) (2.10), we have that

0 = ‖a(·, t)−R(·+ h)‖L1 − ‖a0(·)−R(·+ h)‖L1

≤ 0

for any h and any t > 0. From the proof of Theorem 3.3 and Theorem 3.6 we
know that the above equality holds if and only if a(x, t)−R(x+h) has no shock
at the point of sign change for any h and any t > 0, see the remark follows
(3.4). This shows that there exists some k, satisfying (4.6) due to conservation
law (1.1), such that for any t > 0

a(x, t) = R(x+ k).

Thus there exists tn → +∞ as n→ +∞ such that

lim
n→+∞

‖r(·, tn)−R(·+ k)‖L1 = 0.

By (4.13), ‖r(·, t) − R(· + k)‖L1 admits a limit as t → +∞, we conclude that
r(x, t)−R(x+k) converges to 0 in L1 as t→ +∞. By (3.6), ‖s(·, t)−S(·+k)‖L1

decays to zero exponentially in t. Thus ‖r(·, t)−R(·+k)‖L1 +‖s(·, t)−S(·+k)‖L1

converges to zero. On the other hand, ‖r(·, t)−R(·+k)‖L1 +‖s(·, t)−S(·+k)‖L1

is equivalent to the L1 distance of the two solutions, we arrive at the conclusion
(4.5).
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Step 2. For general initial data satisfying (4.3) (4.4), we have

R(−∞) ≤ r(x, 0) = R(x) + ψ0(x) ≤ R(+∞),

where ψ0 ∈ L1(R). Let ψn0 ∈ L1(R) be a sequence of functions satisfying the
ordering properties (4.10) defined in Step 1 and

lim
n→∞

‖ψ0 − ψn0 ‖L1 = 0.

Let rn(x, t) and sn(x, t) be the solutions of the initial value problem (2.9) (2.10)
with rn(x, 0) = R(x) +ψn0 (x) and sn(x, 0) = s(x, 0) respectively. Then, by Step
1, there exist kn such that

lim
t→∞

‖rn(·, t)−R(·+ kn)‖L1 = 0

for each n.
By the contractive property (3.8) and that rn(·, 0) and sn(·, 0) are Cauchy

sequences in L1, we deduce that rn(·, t) and sn(·, t) are Cauchy sequences for
any t > 0. Therefore, by letting t → ∞, we obtain that R(· + kn) is a Cauchy
sequence too. So∫

R

|R(x+ kn)−R(x+ km)|dx = (R(+∞)−R(−∞))|kn − km|.

Thus, for any ε > 0, there is an N , such that if m,n > N , then

|kn − km| < ε.

Therefore
lim
n→∞

kn = k

lim
n→∞

‖R(·+ kn)−R(·+ k)‖L1 = 0

for some k.
Finally,

‖r(·, t)−R(·+ k)‖L1 ≤ ‖r(·, t)− rn(·, t)‖L1+

+‖rn(·, t)−R(·+ kn)‖L1 + ‖R(·+ kn)−R(·+ k)‖L1 .

Therefore, we conclude that r(x, t) converges to R(x+ k) in L1 as t→ +∞. By
(3.6), ‖s(·, t)−S(·+k)‖L1 decays to zero exponentially in t. Thus ‖r(·, t)−R(·+
k)‖L1 + ‖s(·, t) − S(· + k)‖L1 converges to zero. Since ‖r(·, t) − R(· + k)‖L1 +
‖s(·, t) − S(· + k)‖L1 is equivalent to the L1 distance of the two solutions, we
arrive at the conclusion that the entropy solution of (1.1) (1.2) (1.3) exists
globally and tends to a shifted equilibrium shock wave in L1 norm as t → ∞,
where the shift k satisfies (4.6) due to conservation law (1.1). ♦

Now we consider bounded compact support initial data ρ0 in (1.3). We show
that the entropy solution converges in L1 to an equilibrium N -wave as t→ +∞.
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An N -wave of a scalar conservation law (3.1) is

N(x, t) =
{

1
k

(
x
t − c

)
−(pkt)

1
2 < x− ct < (qkt)

1
2

0 otherwise,
(4.14)

where p, q, c and k are constants. Let u0(x) be the initial data with compact
support, then c = f ′(0), k = f ′′(0)

p = −2 min
x

∫ x

−∞
u0(y)dy , q = 2 max

x

∫ ∞
x

u0(y)dy. (4.15)

The entropy solution of (3.1) decays in L1 to an N -wave uniformly at a rate
t−

1
2 .

Theorem 4.5 Let (ρ0, v0) ∈ (L∞)2 ∩ (L1)2 and ρ0 have compact support. Let
(ρ, v) be the bounded unique entropy solution of (1.1) (1.2) (1.3). Then ρ(x, t)
decays in L1 norm to the N -wave N(x, t) determined by initial data ρ0 and

‖ρ(·, t)−N(·, t)‖L1 ≤ Ct− 1
2 (4.16)

for t large and some constant C > 0. v → ve(ρ) in L1 norm as t→ +∞.

Proof Consider two entropy solutions, (ρ, v) and (ρe, ve(ρe)), of (1.1) (1.2),
where ρe is the unique entropy solution of the equilibrium equation (1.7) with
initial data ρ0. Applying Theorem 3.3 to these two solutions, we have

‖s1(·, t)− s2(·, t)‖L1 ≤ e− t
τ ‖s10(·)− s20(·)‖L1 → 0 (4.17)

as t→ +∞, where s1 = −ve(ρ) + v and s2 = 0.
We claim that {ρ(x, t)− ρe(x, t)}t>0 is L1-equicontinuous. In fact,

‖ρ(·+ h, t)− ρe(·+ h, t)− ρ(·, t) + ρe(·, t)‖L1

≤ ‖ρ(·+ h, t)− ρ(·, t)‖L1 + ‖ρe(·+ h, t)− ρe(·, t)‖L1

≤ C(‖r(·+ h, t)− r(·, t)‖L1 + ‖s(·+ h, t)− s(·, t)‖L1) +
+‖ρe(·+ h, t)− ρe(·, t)‖L1

≤ C(‖r(·+ h, 0)− r(·, 0)‖L1 + ‖s(·+ h, 0)− s(·, 0)‖L1) +
+‖ρ0(·+ h)− ρ0(·)‖L1 → 0

uniformly with respect to t > 0 as h → 0, where we have used the continuous
dependence on data property (3.8). Hence {ρ(x, t) − ρe(x, t)}t>0 is relatively
compact in L1. Let A be the set of accumulation points of {ρ(x, t)−ρe(x, t)}t>0,
then A ⊂ L∞ ∩ L1 is not empty by compactness. Let φ(x) ∈ A, then φ(x) is of
compact support and there exists a sequence tn such that tn → +∞ as n→ +∞
and

‖ρ(·, tn)− ρe(·, tn)− φ(·)‖L1 → 0.

Letting tn → +∞ in (1.1) and noting (4.17) and the uniform boundedness of
(ρ, v), we have that ρ(x, tn) solves (1.7) asymptotically. Noticing that ρe is
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the unique entropy solution of (1.7) with data ρ0 and that φ(x) is of compact
support, we deduce that φ(x) = 0 a.e.. That is A = {0}. Since every convergent
sequence of ρ(x, t)− ρe(x, t) converges to a same limit 0, therefore, we have

‖ρ(·, t)− ρe(·, t)‖L1 → 0 as t→ +∞ .

On the other hand, ρe(x, t) decays in L1 to the N -wave N(x, t) determined by
the initial data at a rate t−

1
2 as t→ +∞. Furthermore, ρ decays to the N -wave

also at a rate t−
1
2 as t→ +∞.

5 Unique Zero Relaxation Limit

Uniqueness issues do not seem to have been systematically studied in conjunc-
tion with higher order models.

In general, the zero relaxation limit is highly singular because of shock and
initial layers. In [15], Natalini obtained the uniqueness of the zero relaxation
for semilinear systems of equations with relaxation. The uniqueness problem
for the quasilinear case remains open. For the quasilinear system of equations
(1.1) (1.2), we show that the entropy solutions of (1.1) (1.2) (1.3) converge in
L1 norm to the unique entropy solution of the equilibrium equation (1.7) (1.8)
as the relaxation parameter τ goes to zero. The limit models dynamic limit
from the continuum nonequilibrium processes to the equilibrium processes. We
proved the uniqueness of the zero relaxation limit by using the property that
the solution depends on its data continuously, the fact that the signed distance
−ve(ρ) + v of (ρ, v) to the equilibrium curve is one of the Riemann invariants
and that it decays in τ exponentially.

We denote the solutions to (1.1) (1.2) (1.3) as (ρτ , vτ ) for each τ > 0 and ρ
the unique entropy solution of the equilibrium equation (1.7) (1.8).

Theorem 5.1 Let (ρτ , vτ ) be the global bounded entropy solution of (1.1) (1.2)
(1.3) with (ρ0, v0) ∈ (L∞)2 and v0 − ve(ρ0) ∈ L1. Then (ρτ , vτ ) converges in
(L1)2 to (ρ, ve(ρ)) as τ → 0 for any t > 0. Moreover, ρ is the unique entropy
solution of the equilibrium equation (1.7) (1.8).

Proof Let (ρτ , vτ ) be the unique entropy solution of (1.1) (1.2) (1.3). Let ρ
be the unique entropy solution of the equilibrium equation (1.7) (1.8).

Applying (3.6) to the two solutions (ρτ , vτ ) and (ρ, ve(ρ)), we have that

‖sτ1(·, t)− s2(·, t)‖L1 ≤ e− t
τ ‖s10(·)− s20(·)‖L1 → 0 (5.1)

as τ → 0 for t > 0, where sτ1 = −ve(ρτ ) + vτ and s2 = 0. Therefore

‖ − ve(ρτ ) + vτ‖L1 → 0 (5.2)

as τ → 0 for t > 0.
Applying Theorem 3.9 to two solutions, (rτ1 , s

τ
1) and (r2, s2), of (2.9) (2.10),

where rτ1 (ρτ , vτ ) = −ve(ρτ ) − vτ and r2(ρ, ve(ρ)) = −2ve(ρ), we have that the
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(L1)2 distance between these two solutions is uniformly bounded with respect
to the relaxation parameter τ .

We claim that {rτ1 (x, t)− r2(x, t)}τ>0 is L1-equicontinuous in x and locally
L1 Lipschitz continuous in t. The L1-equicontinuity in x is obtained by using
the continuous dependence on data property (3.8), see the proof of Theorem
4.5. The locally L1 Lipschitz continuous in t for t > tτ = τ ln 1

τ is a direct
consequence of finite speed of propagation of the elementary waves and the
exponential decay in τ of the source terms of (2.9) (2.10), see [6] [15]. Therefore,
there is a sequence τn such that τn → 0 as n→ +∞ and that rτn1 (x, t)− r2(x, t)
converges to a function for each t > 0. Combining with (5.1), we have that as
n→ +∞, ρτn(x, t)− ρ(x, t) converges to a function denoted as φ(x, t) for t > 0.
It can be checked that φ(x, t) ∈ L∞ ∩ L1 for all t > 0. Noticing that ρτn and ρ
have the same initial data (1.3) (1.8), we have that φ(x, 0) = 0.

Letting τn → 0 in (1.7) and noting the uniform boundedness of (ρτn , vτn)
and (5.1), we derive that the limit φ(x, t) = 0 a.e.. Therefore

‖ρτn(·, t)− ρ(·, t)‖L1 → 0

as n → +∞. Since every convergent sequence of ρτ (x, t) − ρ(x, t) converges to
a same limit 0, we conclude that ρτ − ρ converges to 0 in L1 as τ → 0. This
and (5.2) prove the theorem.

6 Conclusions

For a nonequilibrium continuum traffic flow model, which was derived based
on the assumption that drivers respond with a delay to changes of traffic con-
ditions in front of them, we established the L1 well-posedness theory for the
Cauchy problem. We obtained the continuous dependence of the solution on its
initial data in L1 topology. We constructed a functional for two solutions which
is equivalent to the L1 distance between the solutions. We proved that the
functional decreases in time which yields the L1 well-posedness of the Cauchy
problem.

We also showed that the equilibrium shock waves are nonlinearly stable in
L1 norm. That is, the entropy solution with initial data as certain L1 bounded
perturbations of an equilibrium shock wave exists globally and tends to a shifted
equilibrium shock wave in L1 norm as t→∞. We then showed that if the initial
data ρ0 is bounded and of compact support, the entropy solution converges in
L1 to an equilibrium N -wave as t→ +∞. We finally showed that the solutions
for the relaxed system converge in the L1 norm to the unique entropy solution
of the equilibrium equation as the relaxation time goes to zero.
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