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Asymptotic behavior of regularizable minimizers

of a Ginzburg-Landau functional in higher

dimensions ∗

Yutian Lei

Abstract

We study the asymptotic behavior of the regularizable minimizers of
a Ginzburg-Landau type functional. We also dicuss the location of the
zeroes of the minimizers.

1 Introduction

Let G ⊂ Rn (n ≥ 2) be a bounded and simply connected domain with smooth
boundary ∂G. Let g be a smooth map from ∂G into Sn−1 satisfying d =
deg(g, ∂G) 6= 0. Consider the Ginzburg-Landau-type functional

Eε(u,G) =
1
p

∫
G

|∇u|p +
1

4εp

∫
G

(1− |u|2)2, (p > 1)

with a small parameter ε > 0. It is known that this functional achieves its
minimum on

Wp = {v ∈W 1,p(G,Rn) : v|∂G = g}
at a function uε. We are concerned with the asymptotic behavior of uε and the
location of the zeroes of uε as ε→ 0.

The functional Eε(u,G) was introduced in the study of the Ginzburg-Landau
vortices by F. Bethue, H. Brezis and F. Helein [1] in the case p = n = 2. Similar
models are also used in many other theories of phase transition. The minimizer
uε of Eε(u,G) represents a complex order parameter. The zeroes of uε and the
module |uε| both have physics senses, for example, in superconductivity |uε|2
is proportional to the density of supercoducting electrons, and the zeroes of uε
are the vortices, which were introduced in the type-II superconductors.

In the case 1 < p < n, it is easily seen that W 1,p
g (G,Sn−1) 6= ∅. It is not

difficult to prove that the existence of solution up for the minimization problem

min{
∫
G

|∇u|p : u ∈W 1,p
g (G,Sn−1)}
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by taking the minimizing sequence. This solution is called a map of the least
p-energy with boundary value g. Using the variational methods, we can proved
that the solution up is also p-harmonic map on G with the boundary data g,
namely, it is a weak solution of the following equation

−div(|∇u|p−2∇u) = u|∇u|p.

As ε→ 0, there exists a subsequence uεk of uε, the minimizer of Eε(u,G), such
that

uεk → up, in W 1,p(G,Rn).

In the case p > n, W 1,p
g (G,Sn−1) = ∅. Thus there is no map of least

p-energy on G with the boundary value g. It seems to be very difficult to
study the convergence for minimizers of Eε(u,G) in Wp. Some results on the
asymptotic behavior of the radial minimizers of Eε(u,G) were presented in [7].

When p = n, this problem was introduced in [1] (the open problem 17). M.
C. Hong studied the asymptotic behavior for the regularizable minimizers of
Eε(u,G) in Wn [6]. He proved that there exist {a1, a2, . . . , aJ} ⊂ G, J ∈ N and
a subsequence uεk of the regularizable minimizers uε such that

uεk
w→ un, in W 1,n

loc (G \ {a1, a2, . . . , aJ},Rn) (1.1)

as εk → 0, where un is an n-harmonic map.
In this paper we shall discuss the asymptotic behavior for the regularizable

minimizers of Eε(u,G) on Wn in the case p = n. Without loss of generality,
we may assume d > 0. Recalling a minimizer of Eε(u,G) on Wn be called the
regularizable minimizer, if it is the limit of the minimizer of the regularized
functional

Eτε (u,G) =
1
p

∫
G

(|∇u|2 + τ)p/2 +
1

4εp

∫
G

(1− |u|2)2, (τ ∈ (0, 1))

on Wn in W 1,p. It is not difficult to prove that the regularizable minimizer is
also a minimizer of Eε(u,G). In order to find the zeroes of the minimizers, we
should first locate the singularities of the n-harmonic map un.

Theorem 1.1 If aj ∈ G, j = 1, 2, . . . , J are the singularities of n-harmonic
map un, then J = d, the degree deg(un, aj) = 1, and {aj}dj=1 ⊂ G. Moreover,
for every j, there exists at least one zero of the regularizable minimizer uε near
to aj.

Because the module of the minimizer has the physics sense, we have also
studied its asymptotic behavior.

Theorem 1.2 Let uε be a regularizable minimizer of Eε(u,G), ρ = |uε|, then
there exists a constant C independent of ε such that∫

G

|∇ρ|n ≤ C, and
1
εn

∫
G

(1− ρ2) ≤ C(1 + | ln ε|).
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For any given η > 0, denote Gη = G \ ∪dj=1B(aj , η), then as ε→ 0,

1
εn

∫
Gη

(1− ρ2)2 → 0,

ρ→ 1, in Cloc(Gη, R).

At last, we develop the conclusion of (1.1) into following

Theorem 1.3 There exists a subsequence uεk of uε such that as ε→ 0,

uεk → un, in W 1,n
loc (G \ ∪dj=1{aj},Rn).

We shall prove Theorems 1.2 and 1.3 in §5 and §7 respectively, and the proof
of Theorem 1.1 will be given in §6.

2 Basic properties of the regularizable minimiz-
ers

First we recall the minimizer of the regularized functional

Eτε (u,G) =
1
n

∫
G

(|∇u|2 + τ)n/2 +
1

4εn

∫
G

(1− |u|2)2, τ ∈ (0, 1)

on Wn, denoted by uτε . As τ → 0, there exists a subsequence uτkε of uτε such
that

lim
τk→0

uτkε = uε, in W 1,n(G,Rn), (2.1)

and the limit uε is one minimizer of Eε(u,G) on Wn, which is named the regu-
larizable minimizer. It is not difficult to prove that uτε solves the problem

−div[(|∇u|2 + τ)(n−2)/2∇u] =
1
εn
u(1− |u|2), on G, (2.2)

u|∂G = g

and satisfies the maximum principle: |uτε | ≤ 1 on G. Moreover

Proposition 2.1 (Theorem 2.2 in [6]) For any δ > 0, there exists a con-
stant C independent of ε such that

limτ→0|∇uτε | ≤ Cε−1, on Gδε, (2.3)

where Gδε = {x ∈ G : dist(x, ∂G) ≥ δε}.

In this section we shall present some basic properties of the regularizable
minimizer uε. Clearly it is a weak solution of the equation

−div(|∇u|n−2∇u) =
1
εn
u(1− |u|2), on G, (2.4)

and it is known that |uε| ≤ 1 a.e. on G [6]. We also have

Proposition 2.2 For any δ > 0, there exists a constant C independent of ε
such that

‖∇uε‖L∞(B(x,δε/8,Rn) ≤ Cε−1, if x ∈ Gδε.
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Proof. Let y = xε−1 in (2.4) and denote v(y) = u(x), Gε = {y = xε−1 : x ∈
G}, Gδ = {y ∈ Gε : dist(y, ∂Gε) > δ}. Since that u is a weak solution of
(2.4), we have∫

Gε

|∇v|n−2∇v∇φ =
∫
Gε

v(1− |v|2)φ, φ ∈W 1,n
0 (Gε,Rn).

Taking φ = vζn, ζ ∈ C∞0 (Gε, R), we obtain∫
Gε

|∇v|nζn ≤ n
∫
Gε

|∇v|n−1ζn−1|∇ζ||v|+
∫
Gε

|v|2(1− |v|2)ζn.

Setting y ∈ Gδ, B(y, δ/2) ⊂ Gε, and ζ = 1 in B(y, δ/4), ζ = 0 in Gε \
B(y, δ/2), |∇ζ| ≤ C(δ), we have∫

B(y,δ/2)

|∇v|nζn ≤ C(δ)
∫
B(y,δ/2)

|∇v|n−1ζn−1 + C(δ).

Using Holder inequality we can derive
∫
B(y,δ/4)

|∇v|n ≤ C(δ). Combining this
with the theorem of [9] yields

‖∇v‖nL∞(B(y,δ/8)) ≤ C(δ)
∫
B(y,δ/4)

(1 + |∇v|)n ≤ C(δ)

which implies

‖∇u‖L∞(B(x,εδ/8)) ≤ C(δ)ε−1.

Proposition 2.3 (Lemma 2.1 in [6]) There exists a constant C independent
of ε such that for ε ∈ (0, 1),

Eε(uε, G) ≤ d (n− 1)n/2

n
|Sn−1|| ln ε|+ C. (2.5)

Proposition 2.4 There exists a constant C independent of ε such that

1
εn

∫
G

(1− |ue|2)2 ≤ C. (2.6)

Proof. By (3.6) in [6],∫
G

|∇uε|n ≥ d(n− 1)n/2|Sn−1|| ln ε| − C.

Applying Proposition 2.3 we may obtain (2.6).
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3 A class of bad balls

Fix ρ > 0. For the regularizable minimizer uε, from Theorem 2.2 in [6] we know

|uε| ≥
1
2
, on G \Gρε, (3.1)

where Gρε = {x ∈ G : dist(x, ∂G) ≥ ρε}. Thus there exists no zero of uε on
G \Gρε.

Proposition 3.1 Let uε be a regularizable minimizer of Eε(u,G), There exist
positive constants λ, µ which are independent of ε ∈ (0, 1) such that if

1
εn

∫
Gρε∩B2lε

(1− |uε|2)2 ≤ µ, (3.2)

where B2lε is some ball of radius 2lε with l ≥ λ, then

|uε| ≥
1
2
, ∀x ∈ Gρε ∩Blε. (3.3)

Proof. First it is known that there exists a constant β > 0 such that for any
x ∈ Gρε and 0 < r ≤ 1,

|Gρε ∩B(x, r)| ≥ βrn.

Next we take
λ = min(

1
4C

,
1
8
ρ), µ =

βλn

16
where C is the constant in Proposition 2.2.

Suppose that there is a point x0 ∈ Gρε ∩Blε such that |uε(x0)| < 1/2, then
applying Proposition 2.2 we have

|uε(x)− uε(x0)| ≤ Cε−1|x− x0| =
1
4
, x ∈ B(x0, λε) ∩Gρε.

Hence
(1− |uε(x)|2)2 >

1
16
, ∀x ∈ B(x0, λε) ∩Gρε,∫

B(x0,λε)∩Gρε
(1− |uε|2)2 >

1
16
|Gρε ∩B(x0, λε)| ≥ β

1
16

(λε)n = µεn. (3.4)

Since x0 ∈ Blε ∩ Gρε, we have (B(x0, λε) ∩ Gρε) ⊂ (B2lε ∩ Gρε), thus (3.4)
implies ∫

B2lε∩Gρε
(1− |uε|2)2 > µεn

which contradicts (3.2) and thus the proposition is proved.
To find the zeroes of the regularizable minimizer uε based on Proposition

3.1, we may take (3.2) as the ruler to distinguish the ball of radius λε which
contain the zeroes.
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Let λ, µ be constants in Proposition 3.1. If

1
εn

∫
Gρε∩B(xε,2λε)

(1− |uε|2)2 ≤ µ,

then B(xε, λε) is called good ball. Otherwise B(xε, λε) is called bad ball. From
Proposition 3.1 we are led to

|uε| ≥
1
2
, on Gρε \ ∪xε∈ΛB(xε, λε), (3.5)

where Λ is the set of the centres of all bad balls. (3.5) and (3.1) imply that the
zeroes of uε are contained in these bad balls.

Now suppose that {B(xεi , λε), i ∈ I} is a family of balls satisfying

(i) xεi ∈ Gρε, i ∈ I

(ii) Gρε ⊂ ∪i∈IB(xεi , λε)

(iii)
B(xεi , λε/4) ∩B(xεj , λε/4) = ∅, i 6= j . (3.6)

Let Jε = {i ∈ I : B(xεi , λε) is a bad ball}.

Proposition 3.2 There exists a positive integer N which is independent of ε
such that the number of bad balls card Jε ≤ N .

Proof. Since (3.6) implies that every point in Gρε can be covered by finite,
say m (independent of ε) balls, from (2.6) and the definition of bad balls,we
have

µεn card Jε ≤
∑
i∈Jε

∫
B(xεi ,2λε)∩Gρε

(1− |uε|2)2

≤ m

∫
∪i∈JεB(xεi ,2λε)∩Gρε

(1− |uε|2)2

≤ m

∫
G

(1− |uε|2)2 ≤ mCεn

and hence card Jε ≤ mC
µ ≤ N .

Similar to the argument of Theorem IV.1 in [1], we have

Proposition 3.3 There exist a subset J ⊂ Jε and a constant h ≥ λ such that

∪i∈JεB(xεi , λε) ⊂ ∪i∈JB(xεj , hε),
|xεi − xεj | > 8hε, i, j ∈ J, i 6= j. (3.7)
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Proof. If there are two points x1, x2 such that (3.7) is not true with h = λ,
we take h1 = 9λ and J1 = Jε \ {1}. In this case, if (3.7) holds we are done.
Otherwise we continue to choose a pair points x3, x4 which does not satisfy (3.7)
and take h2 = 9h1 and J2 = Jε \{1, 3}. After at most N steps we may conclude
this proposition.

Applying Proposition 3.3 we may modify the family of bad balls such that
the new one, denoted by {B(xεi , hε) : i ∈ J}, satisfies

∪i∈JεB(xεi , λε) ⊂ ∪i∈JB(xεi , hε),
λ ≤ h; card J ≤ card Jε, (3.8)
|xεi − xεj | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two balls in the new family do not intersect.
As ε→ 0, there exist a subsequence xεki of xεi and ai ∈ G such that

xεki → ai, i = 1, 2, . . . , N1 = cardJ.

Perhaps there may be at least two subsequences converge to the same point, we
denote by

a1, a2, . . . , aN2 , N2 ≤ N1

the collection of distinct points in {ai}N1
1 .

To prove aj∈∂G, it is convenient to enlarge a little G. Assume G′ ⊂ Rn is a
bounded, simply connected domain with smooth boundary such that G ⊂ G′,
and take a smooth map ḡ : (G′ \ G) → Sn−1 such that ḡ = g on ∂G. We
extend the definition domain of every element in {u : G → R

n : u|∂G = g} to
G′ such that u = g on G′ \G. In particular, the regularizable minimizer uε can
be defined on G′.

Fix a small constant σ > 0 such that

B(aj , σ) ⊂ G′, j = 1, 2, . . . , N2;
4σ < |aj − ai|, i 6= j; 4σ < dist(G, ∂G′).

Writing Λj = {i ∈ J : xεki → aj}, j = 1, 2, . . . , N2, we have

∪i∈ΛjB(xεki , hεk) ⊂ B(aj , σ), j = 1, 2, . . . , N2

∪j∈JB(xεkj , hεk) ⊂ ∪N2
j=1B(aj , σ/4)

B(xεki , hεk) ∩B(xεkj , hεk) = ∅, i, j ∈ J, i 6= j

as long as εk is small enough. Let uε is the regularizable minimizer of Eε(u,G)
and denote dki = deg(uεk , ∂B(xεki , hεk)), lkj = deg(uεk , ∂B(aj , σ)), thus

lkj =
∑
i∈Λj

dki , d =
N2∑
j=1

lkj . (3.9)

To prove that the degrees dki and lkj are independent of εk, we recall a
proposition stated in [6] (Lemma 3.3) or [2] (Theorem 8.2).
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Proposition 3.4 Let φ : Sn−1 → Sn−1 be a C0-map with deg φ = d. Then∫
Sn−1

|∇τφ|n−1dx ≥ |d|(n− 1)(n−1)/2|Sn−1|.

Proposition 3.5 There exists a constant C which is independent of εk such
that

|dki | ≤ C, i ∈ J ; |lkj | ≤ C, j = 1, 2, . . . , N2.

Proof. Since u = uε is a weak solution of (2.4), applying the theory of the local
regularity in [9], we know u ∈ C(∂B(xεki , hεk)). Since (3.5) implies |u| ≥ 1/2
on ∂B(xεki , hεk), thus φ = u

|u| ∈ C(∂B(xεki , hεk), Sn−1). From Proposition 3.4,
we have

|dki | ≤ |Sn−1|−1(n− 1)(1−n)/2

∫
∂B(x

εk
i ,hεk)

|( u
|u|

)τ |n−1.

Since |u| ≥ 1
2 on G′ \Gρε, there is no zero of uε in it. Thus

deg(uεk , ∂B(xεki , hεk)) = deg(uεk , ∂(B(xεki , hεk) ∩Gρεk))

and

|dki | ≤ |Sn−1|−1(n− 1)(1−n)/2

∫
∂[B(x

εk
i ,hεk)∩Gρε]

|( u
|u|

)τ |n−1. (3.10)

Substituting (2.3) and the fact |uεk | ≥ 1
2 on ∂[B(xεki , hεk)∩Gρε] into (3.10), we

obtain
|dki | ≤ Cε1−n

k |Sn−1|−1(n− 1)(1−n)/2(hεk)n−1 ≤ C,
where C is a constant which is independent of εk. Combining this with (3.9)
we can complete the proof of the proposition.

Proposition 3.5 implies that there exist a number kj which is independent
of εk and a subsequence of lkj denoted itself such that

lkj → kj , as k →∞.

Since lkj , kj ∈ N, {lkj } must be constant sequence for any fixed j, namely lkj =
kj . The same reason shows dki can be writen as di which is also a number
independent of εk later.

4 An estimate for the lower bound

Write Ω′ = G′ \ ∪N2
j=1B(aj , σ). Fixing j ∈ {1, 2, . . . , N2} and taking i0 ∈ Λj , we

have xi0 → aj as ε→ 0. Thus

∪i∈ΛjB(xεi , hε) ⊂ B(xi0 , σ/4) ⊂ B(aj , σ) (4.1)

holds with ε small enough.
Denote Ωj = B(aj , σ) \ ∪i∈ΛjB(xεi , hε),Ωjσ = B(xi0 , σ/4) \ ∪i∈ΛjB(xεi , hε).

To estimate the lower bound of ‖∇uε‖Ln(Ωj), the following proposition is nec-
essary that was given by Theorem 3.9 in [6].
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Proposition 4.1 Let As,t(xi) = (B(xi, s) \ B(xi, t)) ∩ G with ε ≤ t < s ≤ R.
Assume that u ∈W 1,n

g (G,Rn) and 1
2 ≤ |u| ≤ 1 on As,t(xi). If there is a constant

C such that
1
εn

∫
As,t(xi)

(1− |u|2)2 ≤ C.

Then for ε < ε0 there holds∫
As,t(xi)

|∇u|n ≥ |di|n/(n−1)(n− 1)n/2|Sn−1| ln s
t
− C,

where C is a constant which is independent of ε and di is the degree of u on
each ∂(B(xi, r) ∩G), t ≤ r ≤ s.

Proposition 4.2 Assume CardΛj = N . Then∫
Ωj

|∇uε|n ≥
∫

Ωj,σ

|∇uε|n ≥ (n− 1)n/2|Sn−1||kj | ln
σ

ε
− C (4.2)

where C is a constant which is independent of ε.

Proof. We give the proof following that in [6] (see Theorem 3.10), and the idea
comes from [8]. Suppose x1, x2, . . . , xN converge to aj , and di,R(i = 1, 2, . . . , N)
is the degree of uε around ∂B(xi, R). Let Rσε denote the set of all numbers
R ∈ [ε, σ] such that ∂B(xi, R) ∩ B(xj , ε) = ∅ for all i 6= j and such that for
some collection JR ⊂ {1, 2, . . . , N}, satisfying JR ⊂ JR′ if R′ ≤ R, the family
{B(xi, R)}i∈JR is disjoint and

∪Ni=1B(xi, ε) ⊂ ∪i∈JR′B(xi, R′) ⊂ ∪i∈JRB(xi, R), R′ ≤ R.

Note that Rσε is the union of closed intervals [Rl0,R
l], 1 ≤ l ≤ L, whose right

endpoints correspond to a number R = R
l such that ∂B(xi, R) ∩ B(xj , R) 6= ∅

for some pair i 6= j ∈ JR and whose left endpoints correspond to a number Rl0
such that B(xi,Rl−1)\∪j∈J0B(xj , Rl0) 6= ∅ for i∈JRl0 . JR = J l is a constant for
R ∈ [Rl0,R

l] and J l+1 ⊂ J l, J l+1 6= J l. Thus L ≤ N . Moreover, there exists a
constant M = M(h) > 0 such that

Rl0 ≤Mε, R
L ≥ σ/M, Rl+1

0 ≤MRl (4.3)

for all l = 1, 2, . . . , L− 1. Finally, observe that for all R ∈ Rσε and J ∈ JR,

|kj | = |
∑
i∈JR

di,R| ≤
∑
i∈JR

|di,R|n/(n−1). (4.4)

Applying (4.3)(4.4) and proposition 4.1 we have∫
Ωj,σ

|∇uε|n ≥
L∑
l=1

∑
i∈Jl
|
∫
A
Rl,Rl0

(xi)

∇uε|n
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≥
L∑
l=1

∑
i∈Jl
|Sn−1|(n− 1)n/2|di,Rl | ln(Rl/Rl0)− C

≥ |Sn−1|(n− 1)n/2|kj |
∑
l

(lnRl − lnRl0)− C

≥ (n− 1)n/2|Sn−1||kj | ln
σ

ε
− C.

This and (4.1) imply that (4.2) holds.

Remark In fact the following results∫
Ωj

|∇ uε
|uε|
|n ≥ (n− 1)n/2|Sn−1||kj |n/(n−1) ln

σ

ε
,

and ∫
Ωj

(1− |uε|n)|∇ uε
|uε|
|n ≤ C

had been presented in the proof of Theorem 3.9 in [6], where C which is inde-
pendent of ε. Noticing∫

Ωj

|uε|n|∇
uε
|uε|
|n =

∫
Ωj

|∇ uε
|uε|
|n −

∫
Ωj

(1− |uε|n)|∇ uε
|uε|
|n,

we have ∫
Ωj

|uε|n|∇
uε
|uε|
|n ≥ (n− 1)n/2|kj |n/(n−1)|Sn−1| ln σ

ε
− C.

Theorem 4.3 There exists a constant C which is independent of ε, σ ∈ (0, 1)
such that ∫

∪N2
j=1Ωj

|∇uε|n ≥ (n− 1)n/2|Sn−1|d ln
σ

ε
− C, (4.5)

1
n

∫
Gσ

|∇uε|n +
1

4εn

∫
G

(1− |uε|2)2 ≤ 1
n

(n− 1)n/2|Sn−1|d ln
1
σ

+ C (4.6)

where Gσ = G \ ∪N2
j=1B(aj , σ).

Proof. From (4.2) and Proposition 2.3 we have

(n− 1)n/2|Sn−1|(
N2∑
j=1

|kj |) ln
σ

ε
≤ (n− 1)n/2|Sn−1|d ln

1
ε

+ C

or (
∑N2
j=1 |kj | − d) ln 1

ε ≤ C. It is seen as ε small enough

N2∑
j=1

|kj | ≤ d =
N2∑
j=1

kj
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which implies
kj ≥ 0. (4.7)

This and (3.9) imply
N2∑
j=1

|kj | =
N2∑
j=1

kj = d. (4.8)

Substituting (4.8) into (4.2) yields (4.5), and (4.6) may be concluded from (4.5)
and Proposition 2.3.

From (4.6) and the fact |uε| ≤ 1 a.e. on G, we may conclude that there
exists a subsequence uεk of uε such that

uεk
w→ u∗, W 1,n(Gσ,Rn) (4.9)

as εk → 0. Compare (4.9) with (1.1) we known u∗ = un on Gσ, and

{aj}N2
j=1 = {aj}Jj=1. (4.10)

These points were called the singularities of un.
To show these singularities aj∈∂G, the following conclussion is necessary.

Proposition 4.4 Assume a ∈ ∂G and σ ∈ (0, R) with a small constant R. If

u ∈W 1,n(AR,σ(a), Sn−1) ∩ C0, u = g

on (G′ \G) ∩B(a,R) and deg(u, ∂B(a,R)) = 1, then there exists a constant C
which is independent of σ such that∫

AR,σ(a)

|∇u|n ≥ 2
1
n (n− 1)n/2|Sn−1| ln 1

σ
− C . (4.11)

Proof. Similar to the proof of Lemma VI.1 in [1], we may write G as the half
space

{(x1, x2, . . . , xn) : xn > 0}

locally and a as 0 by a conformal change.
Denote St = ∂B(0, t), t ∈ (σ,R). Noticing that g is smooth on G′ \ G, we

have
sup
G′\G

|gτ | ≤ C1.

Taking t sufficiently small such that

t ≤ (n− 1)1/2 (2n−1 − 1)1/(n−1)

2C1
,

then∫
S−t

|ḡτ |n−1 ≤ |S−t |Cn−1
1 ≤ |Sn−1|tn−1Cn−1

1 ≤ (n− 1)(n−1)/2|Sn−1|(1− 21−n)

(4.12)



12 Asymptotic behavior of regularizable minimizers EJDE–2001/15

with R < 1 small enough, where S−t = St ∩ {xn < 0}. On the other hand we
can be led to

(n− 1)(n−1)/2|Sn−1| ≤
∫
St

|uτ |n−1 =
∫
S+
t

|uτ |n−1 +
∫
S−t

|ḡτ |n−1

from Proposition 3.4. Here S+
t = St \ S−t . Combining this with (4.12) yields∫

S+
t

|uτ |n ≥ |S+
t |−1/(n−1)(

∫
S+
t

|uτ |n−1)n/(n−1) (4.1)

≥ 2
1
n |Sn−1|(n− 1)n/2t−1. (4.2)

Integrating this over (σ,R), we obtain∫
AR,σ

|∇u|n ≥ 2
1
n |Sn−1|(n− 1)n/2 ln

R

σ

which implies (4.11). To prove kj = 1 for any j, we suppose R > 2σ is a small
constant such that

B(aj , R) ⊂ G′; B(aj , R) ∩B(ai, R) = ∅, i 6= j. (4.13)

Denote Π = {v ∈ W 1,n(Ω′, Sn−1) ∩ C0 : deg(v, ∂B(aj , r)) = kj , r ∈ (σ,R), j =
1, 2, . . . , N2}.

Proposition 4.5 For any v ∈ Π, if kj ≥ 0, j = 1, 2, . . . , N2, then there exists a
constant C = C(R) which is independent of σ such that∫

Ω′
|∇v|n ≥ (n− 1)n/2|Sn−1|(

N2∑
j=1

k
n
n−1
j ) ln

1
σ
− C. (4.14)

Proof. Write AR,σ(aj) = B(aj , R) \B(aj , σ), thus ∪N2
j=1AR,σ(aj) ⊂ Ω′. From

Proposition 3.4 we have

kj = |kj | ≤ (n− 1)(1−n)/2|Sn−1|−1

∫
Sn−1

|vτ |n−1

≤ (n− 1)(1−n)/2|Sn−1|(n−1)/n(
∫
Sn−1

|vτ |n)(n−1)/n

namely ∫
Sn−1

|vτ |n ≥ (n− 1)n/2|Sn−1|kn/(n−1)
j .

On the other hand, we may obtain∫
Ω′
|∇v|n ≥

N2∑
j=1

∫
AR,σ(aj)

|∇v|n
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≥
N2∑
j=1

∫ R

σ

∫
Sn−1

r−n|∇τv|nrn−1dζdr

≥ (n− 1)n/2|Sn−1|
N2∑
j=1

k
n/(n−1)
j

∫ R

σ

r−1dr

= (n− 1)n/2|Sn−1|(
N2∑
j=1

k
n/(n−1)
j ) ln

R

σ

which implies (4.14).

5 The proof of Theorem 1.2

Let uεbe a regularizable minimizer of Eε(u,G). Proposition 2.4 has given one
estimate of convergence rate of |uε|. Moreover, we also have

Theorem 5.1 There exists a constant C which is independent of ε ∈ (0, 1) such
that

1
εn

∫
G

(1− |uε|2) ≤ C(1 + ln
1
ε

). (5.1)

Proof. The minimizer u = uτε of the regularized functional Eτε (u,G) solves
(2.2). Taking the inner product of the both sides of (2.2) with u and integrating
over G we have

1
εn

∫
G

|u|2(1− |u|2) = −
∫
G

div(v(n−2)/2∇u)u

=
∫
G

v(n−2)/2|∇u|2 −
∫
∂G

v(n−2)/2uun (5.2)

≤
∫
G

v(n−2)/2|∇u|2 + C

∫
∂G

vn/2 + C

where n denotes the unit outward normal to ∂G and un the derivative with
respect to n.

To estimate
∫
∂G

vn/2, we choose a smooth vector field ν such that ν|∂G = n.
Multiplying (2.2) by (ν · ∇u) and integrating over G, we obtain

1
εn

∫
G

u(1− |u|2)(ν · ∇u) = −
∫
G

div(v(n−2)/2∇u)(ν · ∇u)

=
∫
G

v(n−2)/2∇u · (ν · ∇u)−
∫
∂G

v(n−2)/2|un|2.

Combining this with

1
εn

∫
G

u(1− |u|2)(ν · ∇u) =
1

2εn

∫
G

(1− |u|2)(ν · ∇(|u|2))

= − 1
4εn

∫
G

(1− |u|2)2 div ν
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and ∫
G

v(n−2)/2∇u · ∇(ν · ∇u)

=
∫
G

v(n−2)/2|∇u|2 div ν +
1
n

∫
G

ν · ∇(vn/2)

=
∫
G

v(n−2)/2|∇u|2 div ν +
1
n

∫
∂G

vn/2 − 1
n

∫
G

vn/2 div ν

we obtain∫
∂G

v(n−2)/2|un|2 ≤
C

4εn

∫
G

(1− |u|2)2 + C

∫
G

vn/2 +
1
n

∫
∂G

vn/2.

Thus ∫
∂G

vn/2 =
∫
∂G

v(n−2)/2(|un|2 + |gt|2 + τ)

≤ C

∫
∂G

v(n−2)/2 +
1
n

∫
∂G

vn/2 + CEτε (uτε , G).

Substituting this into (5.2) yields

1
εn

∫
G

|u|2(1− |u|2) ≤ CEτε (uτε , G).

Let τ → 0, applying (2.1) and Proposition 2.3 we have

1
εn

∫
G

|uε|2(1− |uε|2) ≤ CEε(uε, G) ≤ C(1 + | ln ε|)

which and (2.6) imply (5.1).

Theorem 5.2 Denote ρ = |uε|. There exists a constant C which is independent
of ε ∈ (0, 1) such that

‖∇ρ‖Ln(G) ≤ C. (5.3)

Proof. Denote u = uε. From the Remark in §4 we know∫
Ωj

|u|n|∇ u

|u|
|ndx ≥ (n− 1)n/2|kj |

n
n−1 |Sn−1| ln σ

ε
− C.

Thus we may modify (4.5) as∫
∪N2
j=1Ωj

ρn|∇ u

|u|
|n ≥ (n− 1)n/2|Sn−1|d ln

σ

ε
− C.

Combining this with∫
∪N2
j=1Ωj

|∇u|n ≥
∫
∪N2
j=1Ωj

ρn|∇ u

|u|
|n +

∫
∪N2
j=1Ωj

|∇ρ|n − C
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and Proposition 2.3, we derive∫
∪N2
j=1Ωj

|∇ρ|n ≤ C. (5.4)

On the other hand, from (2.1) and Proposition 2.1 we are led to∫
Gρε∩B(xi,hε)

|∇uε|n = lim
τk→0

∫
Gρε∩B(xi,hε)

|∇uετk |n ≤ C(λε)n(C/ε)n ≤ C,

for i ∈ Λj . Summarizing for i and using (5.4) we can obtain (5.3).

Theorem 5.3 For the σ > 0 in Theorem 4.4, then as ε→ 0,

1
εn

∫
G3σ

(1− ρ2)2 → 0, (5.5)

where G3σ = G \ ∪N2
j=1B(aj , 3σ).

Proof. The regularizable minimizer uε satisfies∫
Gσ

|∇u|n−2∇u∇φ =
1
εn

∫
Gσ

uφ(1− |u|2), (5.6)

where φ ∈ W 1,n
0 (Gσ,Rn) since uε is a weak solution of (2.4). Denoting u =

uτε = ρw, ρ = |u|, w = u
|u| in Gσ and taking φ = ρwζ, ζ ∈ W 1,n

0 (Gσ,Rn), we
have∫
Gσ

|∇u|n−2(w∇ρ+ρ∇w)(ρζ∇w+ρw∇ζ+wζ∇ρ) =
1
εn

∫
Gσ

ρ2ζ(1−ρ2). (5.7)

Substituting 2w∇w = ∇(|w|2) = 0 into (5.7), we obtain∫
Gσ

|∇u|n−2(ρ∇ρ∇ζ + |∇u|2ζ) =
1
εn

∫
Gσ

ρ2ζ(1− ρ2). (5.8)

Set S = {x ∈ Gσ : ρ(x) > 1−εβ} for some fixed β ∈ (0, n/2) and ρ = max(ρ, 1−
εβ), thus ρ = ρ on S. In (5.8) taking ζ = (1−ρ)ψ, where ψ ∈ C∞(Gσ, R), ψ = 0
on Gσ \G2σ, 0 < ψ < 1 on G2σ \G3σ, ψ = 1 on G3σ, we have∫

Gσ

|∇u|n−2ρ∇ρ · ∇ρ̄ψ +
1
εn

∫
Gσ

l2(1− ρ2)(1− ρ̄)ψ (5.9)

=
∫
Gσ

|∇u|n−2ρ∇ρ∇ψ(1− ρ̄) +
∫
Gσ

|∇u|nψ(1− ρ)

Noticing 1/2 ≤ l ≤ 1 in Gσ and applying (4.6) we obtain

1
εn

∫
G3σ

(1− ρ)(1− ρ2) +
∫
S∩G3σ

|∇u|n−2|∇ρ|2 ≤ Cεβ . (5.10)
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On the other hand, (2.6) implies

ε2β |Gσ \ S| ≤
∫
Gσ\S

(1− l2)2 ≤ Cεn,

namely |Gσ \S| ≤ Cεn−2β . Then there exists a small constant ε0 > 0 such that

G3σ ⊂ S ∪ E

as ε ∈ (0, ε0) where E is a set, the measure of which converges to zero. Thus

lim
ε→0

∫
G3σ

(1− ρ2)(1− ρ) = lim
ε→0

∫
G3σ

(1 + ρ)(1− ρ)2.

By (5.10),

lim
ε→0

1
εn

∫
G3σ

(1 + ρ)2(1− ρ)2

≤ lim
ε→0

2
εn

∫
G3σ

(1− ρ)(1− ρ2) = 0

This is our conclusion.

Theorem 5.4 Assume B(x, 2σ) ⊂ Gσ satisfies

1
εn

∫
B(x,σ)

(1− |uε|2)2 → 0, as ε→ 0, (5.11)

then |uε| → 1 in C(B(x, σ), R).

Proof. SinceB(x, 2σ) ⊂ Gσ, there exists ε0 sufficiently small so thatB(x, σ) ⊂
G2δε0 . We always assume ε < ε0. For x0 ∈ B(x, σ), set α = |uε(x0)|. Proposi-
tion 2.2 implies

|uε(x)− uε(x0)| < Cε−1τε, if x ∈ B(x0, τε),

where τ = (1−α)(NC)−1, C is the constant in Proposition 2.2 and N is a large
number such that τ < δ. Thus B(x0, τε) ⊂ B(x, σ) and

|uε(x)| ≤ α+ Cτ, if x ∈ B(x0, τε),∫
B(x0,τε)

(1− |uε(x)|2)2 ≥ (1− 1/N)2(1− α)n+2πεn(NC)−n.

Combining this with (5.11) we obtain (1 − α)n+2 = o(1) as ε → 0. Thus it is
not difficult to complete the proof of Theorem.
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6 The proof of Theorem 1.1

It is known that the singularities of un are in G from the discussion in §3. Since
deg(g, ∂G) > 0, we can see that the zeroes of uε are also in G . Moreover,
the zeroes are contained in finite bad balls, i.e. B(xεi , hε), i ∈ J . As ε →
0, B(xεi , hε)→ aj , i ∈ Λj . This implies that the zeroes of uε distribute near these
singularities of un as ε→ 0. Thus it is necessary to describe these singularities
{aj}, j = 1, 2, . . . , N2.

Proposition 6.1 kj = deg(un, aj).

Proof. Denote Ω′ = G′ \ ∪N2
j=1B(aj , σ). Combining (4.6) and∫

G′\G
|∇uε|n =

∫
G′\G

|∇ḡ|n ≤ C,

we have ∫
Ω′
|∇uε|n ≤ C + (n− 1)n/2|Sn−1|d| lnσ|, (6.1)

where C is a constant which is independent of ε. For R in (4.13), from (6.1) we
have ∫

AR,σ(aj)

|∇uε|n ≤ C.

Then we know that there exists a constant r ∈ (σ,R) such that∫
∂B(aj ,r)

|∇uε|n ≤ C(r)

by using integral mean value theorem. Thus there exists a subsequence uεk of
uε such that

uεk → un, in C(∂B(aj , r))

as εk → 0, which implies

kj = deg(uε, ∂B(aj , σ)) = deg(un, aj).

Proposition 6.2 kj = 0 or kj = 1.

Proof. From the regularity results on n-harmonic maps (see [3][5] or [9]), we
know un ∈ C0(Gσ,Rn). Set

w =
{
ḡ on G′ \G,
un on Gσ,

then w ∈ Π. Using Proposition 4.5 and (4.7) we have∫
Ω′
|∇w|n ≥ (n− 1)n/2|Sn−1|(

N2∑
j=1

k
n
n−1
j ) ln

1
σ
− C(R). (6.2)
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On the other hand, (6.1) and (4.9) imply

uεk
w→ w, in W 1,n(Ω′,Rn).

Noting this and the weak lower semicontinuity of
∫

Ω′
|∇u|n, applying (6.1) we

have ∫
Ω′
|∇w|n ≤ limεk→0

∫
Ω′
|∇uεk |n ≤ (n− 1)n/2|Sn−1|d ln

1
σ

+ C. (6.3)

Combining this with (6.2), we obtain

(
N2∑
j=1

k
n
n−1
j − d) ln

1
σ
≤ C or

N2∑
j=1

k
n
n−1
j ≤ d =

N2∑
j=1

kj

for σ small enough. Thus (k1/(n−1)
j −1)kj ≤ 0 which implies that the Proposition

holds.

Proposition 6.3 kj > 0, j = 1, 2, . . . , N2.

Proof. Suppose k1 = 0 and k2, k3, . . . , kN2 > 0. Similar to the proof of Theo-
rem 4.3 we have ∫

∪N2
j=2Ωj

|∇uε|n ≥ (n− 1)n/2|Sn−1|d ln
σ

ε
− C.

By this we can rewrite (4.6) as∫
G\∪N2

j=2B(aj ,σ)

|∇uε|n +
1

4εn

∫
G

(1− |uε|2)2 ≤ C(σ).

Thus similar to the proof of Theorem 5.3 we may modify (5.5) as

1
εn

∫
G\∪N2

j=2B(aj ,3σ)

(1− |uε|2)2 → 0 (6.4)

as ε→ 0. Noticing

G ∩B(a1, σ) ⊂ G ∩B(a1, R) ⊂ G \ ∪N2
j=2B(aj , R) ⊂ G \ ∪N2

j=2B(aj , 3σ)

we have
1
εn

∫
G∩B(a1,σ)

(1− |uε|2)2 → 0. (6.5)

On the other hand, the definition of a1 implies that there exists at least one bad
ball B(xε0, hε) such that

G ∩B(xε0, hε) ⊂ G ∩B(a1, σ).

Applying the definition of bad ball we obtain

1
εn

∫
G∩B(a1,σ)

(1− |uε|2)2 ≥ 1
εn

∫
G∩B(xε0,hε)

(1− |uε|2)2 ≥ µ > 0

which is contrary to (6.5). This contradiction shows k1 > 0.
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Remark We may conclude kj = 1, j = 1, 2, . . . , N2 from Proposition 6.2 and
Proposition 6.3. Noticing d =

∑N2
j=1 kj , we obtain

N2 = d, 1 = kj =
∑
i∈Λj

di.

Thus on one hand, although the number of the singularities of n− harmonic
maps is indefinite (see Theorem A and Theorem C in [3]), we can say that for
this n− harmonic map un, the limit of the regularizable minimizer uεk in W 1,n

as k →∞, the number of its singularities is just the degree d by applying (4.10).
On the other hand, there exists at least one i0 ∈ Λj such that di0 6= 0. Then we
know that there exists at least one zero of uε in B(xεi0 , hε) by using Kronecker’s
theorem.

Theorem 6.4 aj ∈ G, j = 1, 2, . . . , d.

Proof. Suppose a1 ∈ ∂G, a2, a3, . . . , ad ∈ G. Set

Ωσ = (G′ \B(a1, R))− ∪dj=2B(aj , σ), w =
{
un on Gσ,
ḡ on G′ \G.

Using Proposition 4.5 on Ωσ we have∫
Ωσ

|∇w|n ≥ (n− 1)n/2|Sn−1|(d− 1) ln
1
σ
− C(R). (6.6)

Taking u = w, a = a1 in Proposition 4.4 we have∫
AR,σ(a1)

|∇w|n ≥ 2
1
n (n− 1)n/2|Sn−1| ln 1

σ
− C.

Combining this with (6.6) yields∫
Ω′
|∇w|n ≥ (d+ 2

1
n − 1)(n− 1)n/2|Sn−1| ln 1

σ
− C.

Compare this to (6.3) we obtain

(d+ 2
1
n − 1− d) ln

1
σ
≤ C

where C is a constant which is independent of σ. It is impossible as σ small
enough, so a1 ∈ G.

7 The proof of Theorem 1.3

Theorem 7.1 Let uε be the regularizable minimizer of Eε(u,G). Then there
exists a subsequence uεk of uε such that

uεk → un, in W 1,n
loc (G \ ∪dj=1{aj},Rn).
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Proof. Step 1: Suppose the ball B(x0, 2σ) ⊂ G\∪dj=1{aj}, where the constant
σ may be sufficiently small but independent of ε. Since (4.6) implies

Eε(uε, B(x0, 2σ) \B(x0, σ)) ≤ C,

we know there is a constant r ∈ (σ, 2σ) such that∫
∂B(x0,r)

|∇uε|n +
1
εn

∫
∂B(x0,r)

(1− |uε|2)2 ≤ C(r), (7.1)

by applying the integral mean value theorem. Thus, there exists a subsequence
uεk of uε such that

uεk → un, in C(∂B(x0, r),Rn),

which leads to
uεk
|uεk |

→ un, in C(∂B(x0, r),Rn). (7.2)

Step 2: Denote ρ = |uε| on B = B(x0, r). It is not difficult to prove that the
minimizer w of the problem

min{
∫
B

|∇u|n : u ∈W 1,n
uε
|uε|

(B,Sn−1)} (7.3)

exists. Noting uε be a minimizer of Eε(u,G), we have

Eε(uε, B) ≤ 1
n

∫
B

|∇(ρw)|n +
1

4εn

∫
B

(1− ρ2)2.

Obviously (4.6) and |uε| ≥ 1/2 on B imply

1
2n

∫
B

|∇ uε
|uε|
|n ≤

∫
B

|∇uε|n ≤ C,

thus ∫
B

|∇w|n ≤
∫
B

|∇ uε
|uε|
|n ≤ C. (7.4)

Applying this we may claim that∫
B

|∇uε|n ≤ Cελ +
∫
B

|∇w|n, (7.5)

for some λ > 0. Its proof can be seen in §8.
Step 3: Let wτ is a solution of

min{
∫
B

(|∇w|2 + τ)n/2 : w ∈W 1,n
uε
|uε|

(B,Sn−1)}, τ ∈ (0, 1). (7.6)

It is easy to see that wτ solves

−div(v(n−2)/2
ε ∇w) = w|∇w|2v(n−2)/2

ε , vε = |∇w|2 + τ. (7.7)
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as τ → 0. Noticing uε
|uε| ∈W

1,n
uε
|uε|

(B,Sn−1) we have∫
B

|∇wτ |n ≤
∫
B

(|∇wτ |2 + τ)n/2 (7.8)

≤
∫
B

(|∇ uε
|uε|
|2 + τ)n/2 ≤

∫
B

(|∇ uε
|uε|
|2 + 1)n/2 ≤ C

by using (7.4), where C is a constant which is independent of ε, τ . Then there
exist w∗ ∈W 1,n

uε
|uε|

(B,Sn−1) and a subsequence of wτ such that

wτ
w−→ w∗, in W 1,n(B,Rn). (7.9)

Noting the weak lower semicontinuity of
∫
B
|∇w|n, we have∫

B

|∇w∗|n ≤ limτ→0

∫
B

|∇wτ |n (7.10)

≤ limτ→0

∫
B

|∇wτ |n ≤ limτ→0

∫
B

(|∇wτ |2 + τ)n/2.

The fact that wτ solves (7.6) implies

limτ→0

∫
B

(|∇wτ |2 + τ)n/2 ≤ lim
τ→0

∫
B

(|∇w∗|2 + τ)n/2 =
∫
B

|∇w∗|n,

where w∗ is a solution of (7.3). This and (7.10) lead to∫
B

|∇w∗|n ≤ limτ→0

∫
B

|∇wτ |n ≤ limτ→0

∫
B

|∇wτ |n ≤
∫
B

|∇w∗|n. (7.11)

Since w∗ ∈W 1,n
uε
|uε|

(B,Sn−1), we know w∗ also solves (7.3), namely∫
B

|∇w∗|n =
∫
B

|∇w∗|n.

Combining this with (7.11) yields

lim
τ→0

∫
B

|∇wτ |n =
∫
B

|∇w∗|n,

which and (7.9) imply

∇wτ → ∇w∗, in Ln(B,Rn). (7.12)

Step 4: Similar to the discussion of Step 3, we may derive the following
conclusion: Let uτ be a solution of

min{
∫
B

(|∇u|2 + τ)n/2 : u ∈W 1,n
un (B,Sn−1)}, τ ∈ (0, 1). (7.13)
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Then uτ satisfies ∫
B

|∇uτ |n ≤ C, (7.14)

where C is which is independent of τ , and uτ solves

−div(v(n−2)/2∇u) = u|∇u|2v(n−2)/2, v = |∇u|2 + τ. (7.15)

As τ → 0, there exists a subsequence of uτ denoted itself such that

∇uτ → ∇u∗, in Ln(B,Rn), (7.16)

where u∗ is a minimizer of
∫
B
|∇u|n in W 1,n

un (B,Sn−1). It is well-known that u∗

is a map of the least n-energy, and also an n-harmonic map.
Fix R > 2σ such that B(x0, R) ⊂ G \ ∪dj=1{aj}. Applying the regularity

results on the map of the least n-energy (for example, Theorem 3.1 in [5]), we
have

sup
B(x0,r)

|∇u∗|n ≤ sup
B(x0,R)

|∇u∗|n := C0. (7.17)

It is obvious that C0 is a constant which is independent of r.
Step 5: From (7.7) subtracts (7.15). Then

−div(v(n−2)/2
ε ∇w − v(n−2)/2∇u) = w|∇w|2v(n−2)/2

ε − u|∇u|2v(n−2)/2. (7.18)

Multiplying both sides of (7.18) by w − u and integrating over B we obtain

−
∫
∂B

(v(n−2)/2
ε wν − v(n−2)/2uν)(w − u)

+
∫
B

(v(n−2)/2
ε ∇w − v(n−2)/2∇u)∇(w − u)

=
∫
B

(w|∇w|2v(n−2)/2
ε − u|∇u|2v(n−2)/2)(w − u),

where ν denotes the unit outside-norm vector of ∂B. Thus

|
∫
B

(v(n−2)/2
ε ∇w − v(n−2)/2∇u)∇(w − u)|

≤ |
∫
∂B

(v(n−2)/2
ε wν − v(n−2)/2uν)(w − u)| (7.19)

+|
∫
B

(w|∇u|2v(n−2)/2 − u|∇u|2v(n−2)/2)(w − u)|

+|
∫
B

(w|∇w|2v(n−2)/2
ε − w|∇u|2v(n−2)/2)(w − u)|

= I1 + I2 + I3.

First we give an estimate for I1. Let w = wτ is a solution of (7.6). Integrating
both sides of (7.7) over B, we have

−
∫
∂B

v(n−2)/2
ε wν =

∫
B

w|∇w|2v(n−2)/2
ε ,
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which and (7.8) imply

|
∫
∂B

v(n−2)/2
ε wν | ≤

∫
B

vn/2ε ≤ C. (7.20)

An analogous discussion shows that for the solution u = uτ of (7.13) which
equips with (7.14), we may also obtain

|
∫
∂B

v(n−2)/2uν | ≤
∫
B

|∇u|n ≤ C. (7.21)

Applying (7.20)(7.21) we derive

I1 ≤ sup
∂B
|w − u|(|

∫
∂B

v(n−2)/2
ε wν |+ |

∫
∂B

v(n−2)/2uν |) (7.22)

≤ C sup
∂B
|w − u| = C sup

∂B
| uε
|uε|
− un|,

where C is independent of ε, τ . For the estimate of I3, we have

I3 ≤
∫
B

|u− w|||∇u|2v(n−2)/2 − |∇w|2v(n−2)/2
ε | (7.23)

≤ 2
∫
B

||∇u|2v(n−2)/2 − |∇w|2v(n−2)/2
ε |.

For estimating I2, we multiply both sides of (7.15) by (u−w) and integrate over
B, then

−
∫
∂B

v(n−2)/2uν(u− w) +
∫
B

v(n−2)/2∇u∇(u− w)

=
∫
B

|∇u|2v(n−2)/2u(u− w) =
∫
B

|∇u|2v(n−2)/2(1− uw).

Thus, we have

I2 ≤
∫
B

|∇u|2v(n−2)/2|u− w|2 = 2
∫
B

|∇u|2v(n−2)/2(1− uw)

≤ 2|
∫
∂B

v(n−2)/2uν(u− w)|+ 2|
∫
B

v(n−2)/2∇u∇(u− w)|.

Noting (7.21) we may derive

I2 ≤ C sup
∂B
| uε
|uε|
− un|+ 2|

∫
B

v(n−2)/2∇u∇(u− w)|. (7.24)

Step 6: Substituting (7.22)-(7.24) into (7.19) yields

|
∫
B

(v(n−2)/2
ε ∇w − v(n−2)/2∇u)∇(w − u)|

≤ C sup
∂B
| uε
|uε|
− un|+ 2|

∫
B

v(n−2)/2∇u∇(u− w)|

+2
∫
B

|v(n−2)/2
ε |∇w|2 − v(n−2)/2|∇u|2|.
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Letting τ → 0 and applying (7.12)(7.16) we obtain

|
∫
B

(|∇w∗|(n−2)/2∇w∗ − |∇u∗|(n−2)/2∇u∗)∇(w∗ − u∗)|

≤ C sup
∂B
| uε
|uε|
− un|+ 2|

∫
B

|∇u∗|n−1∇(u∗ − w∗)|+ 2
∫
B

||∇w∗|n − |∇u∗|n|.

Using Lemma 1.2 in [4], we have

2n−1

∫
B

|∇w∗−∇u∗|n ≤ |
∫
B

(|∇w∗|(n−2)/2∇w∗−|∇u∗|(n−2)/2∇u∗)∇(w∗−u∗)|.

Thus

(2n−1 − 2)
∫
B

|∇w∗ −∇u∗|n ≤ C sup
∂B
| uε
|uε|
− un|+ 2|

∫
B

|∇u∗|n−1∇(u∗ − w∗)|.

Denote ψ(ε) =
∫
B
|∇w∗ −∇u∗|n and let ε→ 0, then

(2n−1 − 2)ψ(ε) ≤ o(1) + 2(C0|B|)(n−1)/n(ψ(ε))1/n (7.25)

holds by using (7.2), where C0 is the constant in (7.17).
We claim that for some small constant σ > 0, the following holds:

ψ(ε)→ 0, as ε→ 0. (7.26)

Suppose (7.26) is not true, then there exists τ > 0, for any ε0 > 0, such that as
ε < ε0 we have ψ(ε) ≥ 2τ > τ or

(ψ(ε))(n−1)/n > τ (n−1)/n, ∀ε < ε0. (7.27)

Taking σ small enough so that

2(C0|B(x0, r)|)(n−1)/n = (2n−2 − 1)τ (n−1)/n,

we obtain from (7.25)

(ψ(ε))1/n[(ψ(ε))(n−1)/n − 2(C0|B|)(n−1)/n

2n−1 − 2
] (7.28)

= (ψ(ε))1/n[(ψ(ε))(n−1)/n − 1
2
τ (n−1)/n] = o(1).

Substituting (7.27) into (7.28) we derive (ψ(ε))1/n = o(1), which is contrary to
(7.27).

Step 7: Noting the weak lower semicontinuity of the functional
∫
B
|∇u|n,

from (4.9) we are led to∫
B

|∇un|n ≤ limεk→0

∫
B

|∇uεk |n.
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Combining this with (7.5) and (7.26) we obtain∫
B

|∇un|n ≤ limεk→0

∫
B

|∇uεk |n ≤ limεk→0

∫
B

|∇uεk |n

≤ lim
εk→0

∫
B

|∇w∗|n =
∫
B

|∇u∗|n.

Recalling the definition of u∗ in Step 4, and noticing un ∈ W 1,n
un (B,Sn−1), we

know that un is also a minimizer of
∫
B
|∇u|n and

lim
εk→0

∫
B

|∇uεk |n =
∫
B

|∇un|n =
∫
B

|∇u∗|n, (7.29)

which and (4.9) imply

∇uεk → ∇un, in Ln(B,Rn).

Combining this with the fact

uεk → un, in Ln(B,Rn),

which can be deduced from (4.6), we derive

uεk → un, in W 1,n(B,Rn).

Then it is not difficult to complete the proof of this theorem.

8 The proof of (7.5)

To prove (7.5), we will introduce a comparison function first. Consider the
functional

E(ρ,B) =
1
n

∫
B

(|∇ρ|2 + 1)n/2 +
1

2εn

∫
B

(1− ρ)2.

It is easy to prove that the minimizer ρ1 of E(ρ,B) on W 1,n
|uε|(B,R

+) exists and
satisfies

−div(v(n−2)/2∇ρ) =
1
εn

(1− ρ) on B, (8.2)

ρ|∂B = |uε|, (8.3)

where v = |∇ρ|2 + 1. Since 1/2 ≤ |uε| ≤ 1 on B, it follows from the maximum
principle that

1/2 ≤ |uε| ≤ ρ1 ≤ 1 (8.4)

on B.
Applying (4.6) we see easily that

E(ρ1, B) ≤ E(|uε|, B) ≤ CEε(uε, B) ≤ C. (8.5)
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Multiplying (8.2) by (ν · ∇ρ), where ρ = ρ1, and integrating over B, we
obtain

−
∫
∂B

v(n−2)/2(ν ·∇ρ)2+
∫
B

v(n−2)/2∇ρ·∇(ν ·∇ρ) =
1
εn

∫
B

(1−ρ)(ν ·∇ρ), (8.6)

where ν denotes the unit outside norm vector on ∂B. Using (8.5) we have

|
∫
B
v(n−2)/2∇ρ∇(ν · ∇ρ)| ≤ C

∫
B
v(n−2)/2|∇ρ|2 + 1

2 |
∫
B
v(n−2)/2ν · ∇v|

≤ C + 1
n |
∫
B
ν · ∇(vn/2)| ≤ C + 1

n

∫
B
|div(νvn/2)− vn/2divν|

C + 1
n

∫
∂B

vn/2.
(8.7)

Combining (8.3)(7.1) and (8.5) we also have

| 1
εn

∫
B

(1− ρ)(ν · ∇ρ)| ≤ 1
2εn |

∫
B

(1− ρ)2divν −
∫
∂B

(1− ρ)2|

≤ 1
2εn

∫
B

(1− ρ)2|divν|+ 1
2εn

∫
∂B

(1− ρ)2 ≤ C.

Substituting this and (8.7) into (8.6) yields

|
∫
∂B

v(n−2)/2(ν · ∇ρ)2| ≤ C +
1
n

∫
∂B

vn/2. (8.8)

Applying (8.3)(7.1) and (8.8), we obtain for any δ ∈ (0, 1),∫
∂B

vn/2 =
∫
∂B

v(n−2)/2[1 + (τ · ∇ρ)2 + (ν · ∇ρ)2]

=
∫
∂B

v(n−2)/2[1 + (τ · ∇|uε|)2 + (ν · ∇ρ)2]

≤
∫
∂B

v(n−2)/2 +
∫
∂B

v(n−2)/2(ν · ∇ρ)2

+ (
∫
∂B

vn−2)(n−2)/n(
∫
∂B

(τ · ∇|uε|)n)2/n

≤ C(δ) + ( 1
n + 2δ)

∫
∂B

vn/2,

where τ denotes the unit tangent vector on ∂B. Hence it follows by choosing
δ > 0 so small that ∫

∂B

vn/2 ≤ C. (8.9)

Now we multiply both sides of (8.2) by (1− ρ) and integrate over B. Then∫
B

v(n−2)/2|∇ρ|2 +
1
εn

∫
B

(1− ρ)2 = −
∫
∂B

v(n−2)/2(ν · ∇ρ)(1− ρ).

From this, using (7.1)(8.3)(8.4) and (8.9) we obtain

E(ρ1, B) ≤ C|(ν · ∇ρ)(1− ρ)|

≤ C|
∫
∂B

vn/2|(n−1)/n|
∫
∂B

(1− ρ)2|1/n

≤ C|
∫
∂B

(1− |uε|)2|1/n ≤ Cε

(8.10)
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Since uε is a minimizer of Eε(u,B), we have

Eε(uε, B) ≤ Eε(ρ1w,B)

= 1
n

∫
B

(|∇ρ1|2 + ρ2
1|∇w|2)n/2 + 1

4εn

∫
B

(1− ρ2
1)2,

(8.11)

where w is a solution of (7.3). On on hand,∫
B

(|∇ρ1|2 + ρ2
1|∇w|2)n/2dx−

∫
B

(ρ2
1|∇w|2)n/2dx

= n
2

∫
B

∫ 1

0
[(|∇ρ1|2 + ρ2

1|∇w|2)(n−2)/2s+ (ρ2
1|∇w|2)(n−2)/2(1− s)]ds|∇ρ1|2dx

≤ C
∫
B

(|∇ρ1|n + |∇ρ1|2|∇w|(n−2)/2)dx.
(8.12)

On the other hand, by using (8.10) and (7.4) we have∫
B

|∇ρ1|2|∇w|(n−2)/2 ≤ (
∫
B

|∇ρ1|4n/(n+2))(n+2)/2n(
∫
B

|∇w|n)(n−2)/2n ≤ Cελ.

(8.13)
Combining (8.11)-(8.13), we can derive

Eε(uε, B) ≤ 1
n

∫
B

ρn1 |∇w|n + Cελ,

where λ is a constant only depending on n. Thus (7.5) can be seen by (8.4).
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