Asymptotic behavior of regularizable minimizers of a Ginzburg-Landau functional in higher dimensions *

Yutian Lei

Abstract

We study the asymptotic behavior of the regularizable minimizers of a Ginzburg-Landau type functional. We also dicuss the location of the zeroes of the minimizers.

1 Introduction

Let $G \subset \mathbb{R}^{n}(n \geq 2)$ be a bounded and simply connected domain with smooth boundary ∂G. Let g be a smooth map from ∂G into S^{n-1} satisfying $d=$ $\operatorname{deg}(g, \partial G) \neq 0$. Consider the Ginzburg-Landau-type functional

$$
E_{\varepsilon}(u, G)=\frac{1}{p} \int_{G}|\nabla u|^{p}+\frac{1}{4 \varepsilon^{p}} \int_{G}\left(1-|u|^{2}\right)^{2}, \quad(p>1)
$$

with a small parameter $\varepsilon>0$. It is known that this functional achieves its minimum on

$$
W_{p}=\left\{v \in W^{1, p}\left(G, \mathbb{R}^{n}\right):\left.v\right|_{\partial G}=g\right\}
$$

at a function u_{ε}. We are concerned with the asymptotic behavior of u_{ε} and the location of the zeroes of u_{ε} as $\varepsilon \rightarrow 0$.

The functional $E_{\varepsilon}(u, G)$ was introduced in the study of the Ginzburg-Landau vortices by F. Bethue, H. Brezis and F. Helein [1] in the case $p=n=2$. Similar models are also used in many other theories of phase transition. The minimizer u_{ε} of $E_{\varepsilon}(u, G)$ represents a complex order parameter. The zeroes of u_{ε} and the module $\left|u_{\varepsilon}\right|$ both have physics senses, for example, in superconductivity $\left|u_{\varepsilon}\right|^{2}$ is proportional to the density of supercoducting electrons, and the zeroes of u_{ε} are the vortices, which were introduced in the type-II superconductors.

In the case $1<p<n$, it is easily seen that $W_{g}^{1, p}\left(G, S^{n-1}\right) \neq \emptyset$. It is not difficult to prove that the existence of solution u_{p} for the minimization problem

$$
\min \left\{\int_{G}|\nabla u|^{p}: u \in W_{g}^{1, p}\left(G, S^{n-1}\right)\right\}
$$

[^0]by taking the minimizing sequence. This solution is called a map of the least p-energy with boundary value g. Using the variational methods, we can proved that the solution u_{p} is also p-harmonic map on G with the boundary data g, namely, it is a weak solution of the following equation
$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=u|\nabla u|^{p} .
$$

As $\varepsilon \rightarrow 0$, there exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε}, the minimizer of $E_{\varepsilon}(u, G)$, such that

$$
u_{\varepsilon_{k}} \rightarrow u_{p}, \quad \text { in } W^{1, p}\left(G, \mathbb{R}^{n}\right)
$$

In the case $p>n, W_{g}^{1, p}\left(G, S^{n-1}\right)=\emptyset$. Thus there is no map of least p-energy on G with the boundary value g. It seems to be very difficult to study the convergence for minimizers of $E_{\varepsilon}(u, G)$ in W_{p}. Some results on the asymptotic behavior of the radial minimizers of $E_{\varepsilon}(u, G)$ were presented in [7].

When $p=n$, this problem was introduced in [1] (the open problem 17). M. C. Hong studied the asymptotic behavior for the regularizable minimizers of $E_{\varepsilon}(u, G)$ in $W_{n}[6]$. He proved that there exist $\left\{a_{1}, a_{2}, \ldots, a_{J}\right\} \subset \bar{G}, J \in N$ and a subsequence $u_{\varepsilon_{k}}$ of the regularizable minimizers u_{ε} such that

$$
\begin{equation*}
u_{\varepsilon_{k}} \xrightarrow{w} u_{n}, \quad \text { in } W_{\operatorname{loc}}^{1, n}\left(G \backslash\left\{a_{1}, a_{2}, \ldots, a_{J}\right\}, \mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

as $\varepsilon_{k} \rightarrow 0$, where u_{n} is an n-harmonic map.
In this paper we shall discuss the asymptotic behavior for the regularizable minimizers of $E_{\varepsilon}(u, G)$ on W_{n} in the case $p=n$. Without loss of generality, we may assume $d>0$. Recalling a minimizer of $E_{\varepsilon}(u, G)$ on W_{n} be called the regularizable minimizer, if it is the limit of the minimizer of the regularized functional

$$
E_{\varepsilon}^{\tau}(u, G)=\frac{1}{p} \int_{G}\left(|\nabla u|^{2}+\tau\right)^{p / 2}+\frac{1}{4 \varepsilon^{p}} \int_{G}\left(1-|u|^{2}\right)^{2}, \quad(\tau \in(0,1))
$$

on W_{n} in $W^{1, p}$. It is not difficult to prove that the regularizable minimizer is also a minimizer of $E_{\varepsilon}(u, G)$. In order to find the zeroes of the minimizers, we should first locate the singularities of the n -harmonic map u_{n}.
Theorem 1.1 If $a_{j} \in \bar{G}, j=1,2, \ldots, J$ are the singularities of n-harmonic map u_{n}, then $J=d$, the degree $\operatorname{deg}\left(u_{n}, a_{j}\right)=1$, and $\left\{a_{j}\right\}_{j=1}^{d} \subset G$. Moreover, for every j, there exists at least one zero of the regularizable minimizer u_{ε} near to a_{j}.

Because the module of the minimizer has the physics sense, we have also studied its asymptotic behavior.

Theorem 1.2 Let u_{ε} be a regularizable minimizer of $E_{\varepsilon}(u, G), \rho=\left|u_{\varepsilon}\right|$, then there exists a constant C independent of ε such that

$$
\int_{G}|\nabla \rho|^{n} \leq C, \quad \text { and } \quad \frac{1}{\varepsilon^{n}} \int_{G}\left(1-\rho^{2}\right) \leq C(1+|\ln \varepsilon|) .
$$

For any given $\eta>0$, denote $G_{\eta}=G \backslash \cup_{j=1}^{d} B\left(a_{j}, \eta\right)$, then as $\varepsilon \rightarrow 0$,

$$
\begin{aligned}
& \frac{1}{\varepsilon^{n}} \int_{G_{\eta}}\left(1-\rho^{2}\right)^{2} \rightarrow 0, \\
& \rho \rightarrow 1, \quad \text { in } C_{\mathrm{loc}}\left(G_{\eta}, R\right) .
\end{aligned}
$$

At last, we develop the conclusion of (1.1) into following
Theorem 1.3 There exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε} such that as $\varepsilon \rightarrow 0$,

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } W_{\mathrm{loc}}^{1, n}\left(G \backslash \cup_{j=1}^{d}\left\{a_{j}\right\}, \mathbb{R}^{n}\right)
$$

We shall prove Theorems 1.2 and 1.3 in $\S 5$ and $\S 7$ respectively, and the proof of Theorem 1.1 will be given in $\S 6$.

2 Basic properties of the regularizable minimizers

First we recall the minimizer of the regularized functional

$$
E_{\varepsilon}^{\tau}(u, G)=\frac{1}{n} \int_{G}\left(|\nabla u|^{2}+\tau\right)^{n / 2}+\frac{1}{4 \varepsilon^{n}} \int_{G}\left(1-|u|^{2}\right)^{2}, \quad \tau \in(0,1)
$$

on W_{n}, denoted by u_{ε}^{τ}. As $\tau \rightarrow 0$, there exists a subsequence $u_{\varepsilon}^{\tau_{k}}$ of u_{ε}^{τ} such that

$$
\begin{equation*}
\lim _{\tau_{k} \rightarrow 0} u_{\varepsilon}^{\tau_{k}}=u_{\varepsilon}, \quad \text { in } W^{1, n}\left(G, \mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

and the limit u_{ε} is one minimizer of $E_{\varepsilon}(u, G)$ on W_{n}, which is named the regularizable minimizer. It is not difficult to prove that u_{ε}^{τ} solves the problem

$$
\begin{gather*}
-\operatorname{div}\left[\left(|\nabla u|^{2}+\tau\right)^{(n-2) / 2} \nabla u\right]=\frac{1}{\varepsilon^{n}} u\left(1-|u|^{2}\right), \quad \text { on } G, \tag{2.2}\\
\left.u\right|_{\partial G}=g
\end{gather*}
$$

and satisfies the maximum principle: $\left|u_{\varepsilon}^{\tau}\right| \leq 1$ on \bar{G}. Moreover
Proposition 2.1 (Theorem 2.2 in [6]) For any $\delta>0$, there exists a constant C independent of ε such that

$$
\begin{equation*}
\overline{\lim }_{\tau \rightarrow 0}\left|\nabla u_{\varepsilon}^{\tau}\right| \leq C \varepsilon^{-1}, \quad \text { on } G^{\delta \varepsilon}, \tag{2.3}
\end{equation*}
$$

where $G^{\delta \varepsilon}=\{x \in G: \operatorname{dist}(x, \partial G) \geq \delta \varepsilon\}$.
In this section we shall present some basic properties of the regularizable minimizer u_{ε}. Clearly it is a weak solution of the equation

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=\frac{1}{\varepsilon^{n}} u\left(1-|u|^{2}\right), \quad \text { on } G, \tag{2.4}
\end{equation*}
$$

and it is known that $\left|u_{\varepsilon}\right| \leq 1$ a.e. on $\bar{G}[6]$. We also have
Proposition 2.2 For any $\delta>0$, there exists a constant C independent of ε such that

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{\infty}\left(B\left(x, \delta \varepsilon / 8, \mathbb{R}^{n}\right)\right.} \leq C \varepsilon^{-1}, \quad \text { if } x \in G^{\delta \varepsilon} .
$$

Proof. Let $y=x \varepsilon^{-1}$ in (2.4) and denote $v(y)=u(x), G_{\varepsilon}=\left\{y=x \varepsilon^{-1}: x \in\right.$ $G\}, G^{\delta}=\left\{y \in G_{\varepsilon}: \operatorname{dist}\left(y, \partial G_{\varepsilon}\right)>\delta\right\}$. Since that u is a weak solution of (2.4), we have

$$
\int_{G_{\varepsilon}}|\nabla v|^{n-2} \nabla v \nabla \phi=\int_{G_{\varepsilon}} v\left(1-|v|^{2}\right) \phi, \quad \phi \in W_{0}^{1, n}\left(G_{\varepsilon}, \mathbb{R}^{n}\right) .
$$

Taking $\phi=v \zeta^{n}, \zeta \in C_{0}^{\infty}\left(G_{\varepsilon}, R\right)$, we obtain

$$
\int_{G_{\varepsilon}}|\nabla v|^{n} \zeta^{n} \leq n \int_{G_{\varepsilon}}|\nabla v|^{n-1} \zeta^{n-1}|\nabla \zeta||v|+\int_{G_{\varepsilon}}|v|^{2}\left(1-|v|^{2}\right) \zeta^{n} .
$$

Setting $y \in G^{\delta}, B(y, \delta / 2) \subset G_{\varepsilon}$, and $\zeta=1 \quad$ in $B(y, \delta / 4), \zeta=0 \quad$ in $G_{\varepsilon} \backslash$ $B(y, \delta / 2),|\nabla \zeta| \leq C(\delta)$, we have

$$
\int_{B(y, \delta / 2)}|\nabla v|^{n} \zeta^{n} \leq C(\delta) \int_{B(y, \delta / 2)}|\nabla v|^{n-1} \zeta^{n-1}+C(\delta)
$$

Using Holder inequality we can derive $\int_{B(y, \delta / 4)}|\nabla v|^{n} \leq C(\delta)$. Combining this with the theorem of [9] yields

$$
\|\nabla v\|_{L^{\infty}(B(y, \delta / 8))}^{n} \leq C(\delta) \int_{B(y, \delta / 4)}(1+|\nabla v|)^{n} \leq C(\delta)
$$

which implies

$$
\|\nabla u\|_{L^{\infty}(B(x, \varepsilon \delta / 8))} \leq C(\delta) \varepsilon^{-1}
$$

Proposition 2.3 (Lemma 2.1 in [6]) There exists a constant C independent of ε such that for $\varepsilon \in(0,1)$,

$$
\begin{equation*}
E_{\varepsilon}\left(u_{\varepsilon}, G\right) \leq d \frac{(n-1)^{n / 2}}{n}\left|S^{n-1}\right||\ln \varepsilon|+C \tag{2.5}
\end{equation*}
$$

Proposition 2.4 There exists a constant C independent of ε such that

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G}\left(1-\left|u_{e}\right|^{2}\right)^{2} \leq C \tag{2.6}
\end{equation*}
$$

Proof. By (3.6) in [6],

$$
\int_{G}\left|\nabla u_{\varepsilon}\right|^{n} \geq d(n-1)^{n / 2}\left|S^{n-1}\right||\ln \varepsilon|-C .
$$

Applying Proposition 2.3 we may obtain (2.6).

3 A class of bad balls

Fix $\rho>0$. For the regularizable minimizer u_{ε}, from Theorem 2.2 in [6] we know

$$
\begin{equation*}
\left|u_{\varepsilon}\right| \geq \frac{1}{2}, \quad \text { on } G \backslash G^{\rho \varepsilon} \tag{3.1}
\end{equation*}
$$

where $G^{\rho \varepsilon}=\{x \in G: \operatorname{dist}(x, \partial G) \geq \rho \varepsilon\}$. Thus there exists no zero of u_{ε} on $G \backslash G^{\rho \varepsilon}$.

Proposition 3.1 Let u_{ε} be a regularizable minimizer of $E_{\varepsilon}(u, G)$, There exist positive constants λ, μ which are independent of $\varepsilon \in(0,1)$ such that if

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G^{\rho \varepsilon} \cap B^{2 l \varepsilon}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu \tag{3.2}
\end{equation*}
$$

where $B^{2 l \varepsilon}$ is some ball of radius $2 l \varepsilon$ with $l \geq \lambda$, then

$$
\begin{equation*}
\left|u_{\varepsilon}\right| \geq \frac{1}{2}, \quad \forall x \in G^{\rho \varepsilon} \cap B^{l \varepsilon} \tag{3.3}
\end{equation*}
$$

Proof. First it is known that there exists a constant $\beta>0$ such that for any $x \in G^{\rho \varepsilon}$ and $0<r \leq 1$,

$$
\left|G^{\rho \varepsilon} \cap B(x, r)\right| \geq \beta r^{n}
$$

Next we take

$$
\lambda=\min \left(\frac{1}{4 C}, \frac{1}{8} \rho\right), \quad \mu=\frac{\beta \lambda^{n}}{16}
$$

where C is the constant in Proposition 2.2.
Suppose that there is a point $x_{0} \in G^{\rho \varepsilon} \cap B^{l \varepsilon}$ such that $\left|u_{\varepsilon}\left(x_{0}\right)\right|<1 / 2$, then applying Proposition 2.2 we have

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}\left(x_{0}\right)\right| \leq C \varepsilon^{-1}\left|x-x_{0}\right|=\frac{1}{4}, \quad x \in B\left(x_{0}, \lambda \varepsilon\right) \cap G^{\rho \varepsilon}
$$

Hence

$$
\begin{gather*}
\left(1-\left|u_{\varepsilon}(x)\right|^{2}\right)^{2}>\frac{1}{16}, \quad \forall x \in B\left(x_{0}, \lambda \varepsilon\right) \cap G^{\rho \varepsilon} \\
\int_{B\left(x_{0}, \lambda \varepsilon\right) \cap G^{\rho \varepsilon}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}>\frac{1}{16}\left|G^{\rho \varepsilon} \cap B\left(x_{0}, \lambda \varepsilon\right)\right| \geq \beta \frac{1}{16}(\lambda \varepsilon)^{n}=\mu \varepsilon^{n} \tag{3.4}
\end{gather*}
$$

Since $x_{0} \in B^{l \varepsilon} \cap G^{\rho \varepsilon}$, we have $\left(B\left(x_{0}, \lambda \varepsilon\right) \cap G^{\rho \varepsilon}\right) \subset\left(B^{2 l \varepsilon} \cap G^{\rho \varepsilon}\right)$, thus (3.4) implies

$$
\int_{B^{2 l \varepsilon} \cap G^{\rho \varepsilon}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}>\mu \varepsilon^{n}
$$

which contradicts (3.2) and thus the proposition is proved.
To find the zeroes of the regularizable minimizer u_{ε} based on Proposition 3.1, we may take (3.2) as the ruler to distinguish the ball of radius $\lambda \varepsilon$ which contain the zeroes.

Let λ, μ be constants in Proposition 3.1. If

$$
\frac{1}{\varepsilon^{n}} \int_{G^{\rho \varepsilon} \cap B\left(x^{\varepsilon}, 2 \lambda \varepsilon\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu,
$$

then $B\left(x^{\varepsilon}, \lambda \varepsilon\right)$ is called good ball. Otherwise $B\left(x^{\varepsilon}, \lambda \varepsilon\right)$ is called bad ball. From Proposition 3.1 we are led to

$$
\begin{equation*}
\left|u_{\varepsilon}\right| \geq \frac{1}{2}, \quad \text { on } G^{\rho \varepsilon} \backslash \cup_{x^{\varepsilon} \in \Lambda} B\left(x^{\varepsilon}, \lambda \varepsilon\right) \tag{3.5}
\end{equation*}
$$

where Λ is the set of the centres of all bad balls. (3.5) and (3.1) imply that the zeroes of u_{ε} are contained in these bad balls.

Now suppose that $\left\{B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right), i \in I\right\}$ is a family of balls satisfying
(i) $x_{i}^{\varepsilon} \in G^{\rho \varepsilon}, i \in I$
(ii) $G^{\rho \varepsilon} \subset \cup_{i \in I} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right)$
(iii)

$$
\begin{equation*}
B\left(x_{i}^{\varepsilon}, \lambda \varepsilon / 4\right) \cap B\left(x_{j}^{\varepsilon}, \lambda \varepsilon / 4\right)=\emptyset, i \neq j . \tag{3.6}
\end{equation*}
$$

Let $J_{\varepsilon}=\left\{i \in I: B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right)\right.$ is a bad ball $\}$.
Proposition 3.2 There exists a positive integer N which is independent of ε such that the number of bad balls card $J_{\varepsilon} \leq N$.

Proof. Since (3.6) implies that every point in $G^{\rho \varepsilon}$ can be covered by finite, say m (independent of ε) balls, from (2.6) and the definition of bad balls, we have

$$
\begin{aligned}
\mu \varepsilon^{n} \operatorname{card} J_{\varepsilon} & \leq \sum_{i \in J_{\varepsilon}} \int_{B\left(x_{i}^{\varepsilon}, 2 \lambda \varepsilon\right) \cap G^{\rho \varepsilon}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \\
& \leq m \int_{\cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, 2 \lambda \varepsilon\right) \cap G^{\rho \varepsilon}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \\
& \leq m \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq m C \varepsilon^{n}
\end{aligned}
$$

and hence card $J_{\varepsilon} \leq \frac{m C}{\mu} \leq N$.
Similar to the argument of Theorem IV. 1 in [1], we have
Proposition 3.3 There exist a subset $J \subset J_{\varepsilon}$ and a constant $h \geq \lambda$ such that

$$
\begin{align*}
& \cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right) \subset \cup_{i \in J} B\left(x_{j}^{\varepsilon}, h \varepsilon\right), \\
& \left|x_{i}^{\varepsilon}-x_{j}^{\varepsilon}\right|>8 h \varepsilon, \quad i, j \in J, \quad i \neq j . \tag{3.7}
\end{align*}
$$

Proof. If there are two points x_{1}, x_{2} such that (3.7) is not true with $h=\lambda$, we take $h_{1}=9 \lambda$ and $J_{1}=J_{\varepsilon} \backslash\{1\}$. In this case, if (3.7) holds we are done. Otherwise we continue to choose a pair points x_{3}, x_{4} which does not satisfy (3.7) and take $h_{2}=9 h_{1}$ and $J_{2}=J_{\varepsilon} \backslash\{1,3\}$. After at most N steps we may conclude this proposition.

Applying Proposition 3.3 we may modify the family of bad balls such that the new one, denoted by $\left\{B\left(x_{i}^{\varepsilon}, h \varepsilon\right): i \in J\right\}$, satisfies

$$
\begin{gather*}
\cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right) \subset \cup_{i \in J} B\left(x_{i}^{\varepsilon}, h \varepsilon\right) \\
\lambda \leq h ; \quad \operatorname{card} J \leq \operatorname{card} J_{\varepsilon} \tag{3.8}\\
\left|x_{i}^{\varepsilon}-x_{j}^{\varepsilon}\right|>8 h \varepsilon, i, j \in J, i \neq j
\end{gather*}
$$

The last condition implies that every two balls in the new family do not intersect.
As $\varepsilon \rightarrow 0$, there exist a subsequence $x_{i}^{\varepsilon_{k}}$ of x_{i}^{ε} and $a_{i} \in \bar{G}$ such that

$$
x_{i}^{\varepsilon_{k}} \rightarrow a_{i}, \quad i=1,2, \ldots, N_{1}=\operatorname{card} J
$$

Perhaps there may be at least two subsequences converge to the same point, we denote by

$$
a_{1}, a_{2}, \ldots, a_{N_{2}}, \quad N_{2} \leq N_{1}
$$

the collection of distinct points in $\left\{a_{i}\right\}_{1}^{N_{1}}$.
To prove $a_{j} \bar{\in} \partial G$, it is convenient to enlarge a little G. Assume $G^{\prime} \subset \mathbb{R}^{n}$ is a bounded, simply connected domain with smooth boundary such that $\bar{G} \subset G^{\prime}$, and take a smooth map $\bar{g}:\left(G^{\prime} \backslash G\right) \rightarrow S^{n-1}$ such that $\bar{g}=g$ on ∂G. We extend the definition domain of every element in $\left\{u: G \rightarrow \mathbb{R}^{n}:\left.u\right|_{\partial G}=g\right\}$ to G^{\prime} such that $u=\bar{g}$ on $G^{\prime} \backslash G$. In particular, the regularizable minimizer u_{ε} can be defined on G^{\prime}.

Fix a small constant $\sigma>0$ such that

$$
\begin{gathered}
\overline{B\left(a_{j}, \sigma\right)} \subset G^{\prime}, \quad j=1,2, \ldots, N_{2} \\
4 \sigma<\left|a_{j}-a_{i}\right|, \quad i \neq j ; \quad 4 \sigma<\operatorname{dist}\left(G, \partial G^{\prime}\right) .
\end{gathered}
$$

Writing $\Lambda_{j}=\left\{i \in J: x_{i}^{\varepsilon_{k}} \rightarrow a_{j}\right\}, j=1,2, \ldots, N_{2}$, we have

$$
\begin{gathered}
\cup_{i \in \Lambda_{j}} \overline{B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right)} \subset B\left(a_{j}, \sigma\right), \quad j=1,2, \ldots, N_{2} \\
\cup_{j \in J} B\left(x_{j}^{\varepsilon_{k}}, h \varepsilon_{k}\right) \subset \cup_{j=1}^{N_{2}} B\left(a_{j}, \sigma / 4\right) \\
B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right) \cap B\left(x_{j}^{\varepsilon_{k}}, h \varepsilon_{k}\right)=\emptyset, \quad i, j \in J, i \neq j
\end{gathered}
$$

as long as ε_{k} is small enough. Let u_{ε} is the regularizable minimizer of $E_{\varepsilon}(u, G)$ and denote $d_{i}^{k}=\operatorname{deg}\left(u_{\varepsilon_{k}}, \partial B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right)\right), l_{j}^{k}=\operatorname{deg}\left(u_{\varepsilon_{k}}, \partial B\left(a_{j}, \sigma\right)\right)$, thus

$$
\begin{equation*}
l_{j}^{k}=\sum_{i \in \Lambda_{j}} d_{i}^{k}, \quad d=\sum_{j=1}^{N_{2}} l_{j}^{k} . \tag{3.9}
\end{equation*}
$$

To prove that the degrees d_{i}^{k} and l_{j}^{k} are independent of ε_{k}, we recall a proposition stated in [6] (Lemma 3.3) or [2] (Theorem 8.2).

Proposition 3.4 Let $\phi: S^{n-1} \rightarrow S^{n-1}$ be a C^{0}-map with $\operatorname{deg} \phi=d$. Then

$$
\int_{S^{n-1}}\left|\nabla_{\tau} \phi\right|^{n-1} d x \geq|d|(n-1)^{(n-1) / 2}\left|S^{n-1}\right|
$$

Proposition 3.5 There exists a constant C which is independent of ε_{k} such that

$$
\left|d_{i}^{k}\right| \leq C, i \in J ; \quad\left|l_{j}^{k}\right| \leq C, j=1,2, \ldots, N_{2}
$$

Proof. Since $u=u_{\varepsilon}$ is a weak solution of (2.4), applying the theory of the local regularity in [9], we know $u \in C\left(\partial B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right)\right)$. Since (3.5) implies $|u| \geq 1 / 2$ on $\partial B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right)$, thus $\phi=\frac{u}{|u|} \in C\left(\partial B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right), S^{n-1}\right)$. From Proposition 3.4, we have

$$
\left|d_{i}^{k}\right| \leq\left|S^{n-1}\right|^{-1}(n-1)^{(1-n) / 2} \int_{\partial B\left(x_{i}^{\left.\varepsilon_{k}, h \varepsilon_{k}\right)}\right.}\left|\left(\frac{u}{|u|}\right)_{\tau}\right|^{n-1} .
$$

Since $|u| \geq \frac{1}{2}$ on $G^{\prime} \backslash G^{\rho \varepsilon}$, there is no zero of u_{ε} in it. Thus

$$
\operatorname{deg}\left(u_{\varepsilon_{k}}, \partial B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right)\right)=\operatorname{deg}\left(u_{\varepsilon_{k}}, \partial\left(B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right) \cap G^{\rho \varepsilon_{k}}\right)\right)
$$

and

$$
\begin{equation*}
\left|d_{i}^{k}\right| \leq\left|S^{n-1}\right|^{-1}(n-1)^{(1-n) / 2} \int_{\partial\left[B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right) \cap G^{\rho \varepsilon}\right]}\left|\left(\frac{u}{|u|}\right)_{\tau}\right|^{n-1} . \tag{3.10}
\end{equation*}
$$

Substituting (2.3) and the fact $\left|u_{\varepsilon_{k}}\right| \geq \frac{1}{2}$ on $\partial\left[B\left(x_{i}^{\varepsilon_{k}}, h \varepsilon_{k}\right) \cap G^{\rho \varepsilon}\right]$ into (3.10), we obtain

$$
\left|d_{i}^{k}\right| \leq C \varepsilon_{k}^{1-n}\left|S^{n-1}\right|^{-1}(n-1)^{(1-n) / 2}\left(h \varepsilon_{k}\right)^{n-1} \leq C
$$

where C is a constant which is independent of ε_{k}. Combining this with (3.9) we can complete the proof of the proposition.

Proposition 3.5 implies that there exist a number k_{j} which is independent of ε_{k} and a subsequence of l_{j}^{k} denoted itself such that

$$
l_{j}^{k} \rightarrow k_{j}, \quad \text { as } \quad k \rightarrow \infty
$$

Since $l_{j}^{k}, k_{j} \in N,\left\{l_{j}^{k}\right\}$ must be constant sequence for any fixed j, namely $l_{j}^{k}=$ k_{j}. The same reason shows d_{i}^{k} can be writen as d_{i} which is also a number independent of ε_{k} later.

4 An estimate for the lower bound

Write $\Omega^{\prime}=G^{\prime} \backslash \cup_{j=1}^{N_{2}} B\left(a_{j}, \sigma\right)$. Fixing $j \in\left\{1,2, \ldots, N_{2}\right\}$ and taking $i_{0} \in \Lambda_{j}$, we have $x_{i_{0}} \rightarrow a_{j}$ as $\varepsilon \rightarrow 0$. Thus

$$
\begin{equation*}
\cup_{i \in \Lambda_{j}} \overline{B\left(x_{i}^{\varepsilon}, h \varepsilon\right)} \subset B\left(x_{i_{0}}, \sigma / 4\right) \subset B\left(a_{j}, \sigma\right) \tag{4.1}
\end{equation*}
$$

holds with ε small enough.
Denote $\Omega_{j}=B\left(a_{j}, \sigma\right) \backslash \cup_{i \in \Lambda_{j}} B\left(x_{i}^{\varepsilon}, h \varepsilon\right), \Omega_{j \sigma}=B\left(x_{i_{0}}, \sigma / 4\right) \backslash \cup_{i \in \Lambda_{j}} B\left(x_{i}^{\varepsilon}, h \varepsilon\right)$. To estimate the lower bound of $\left\|\nabla u_{\varepsilon}\right\|_{L^{n}\left(\Omega_{j}\right)}$, the following proposition is necessary that was given by Theorem 3.9 in [6].

Proposition 4.1 Let $A_{s, t}\left(x_{i}\right)=\left(B\left(x_{i}, s\right) \backslash B\left(x_{i}, t\right)\right) \cap G$ with $\varepsilon \leq t<s \leq R$. Assume that $u \in W_{g}^{1, n}\left(G, \mathbb{R}^{n}\right)$ and $\frac{1}{2} \leq|u| \leq 1$ on $A_{s, t}\left(x_{i}\right)$. If there is a constant C such that

$$
\frac{1}{\varepsilon^{n}} \int_{A_{s, t}\left(x_{i}\right)}\left(1-|u|^{2}\right)^{2} \leq C
$$

Then for $\varepsilon<\varepsilon_{0}$ there holds

$$
\int_{A_{s, t}\left(x_{i}\right)}|\nabla u|^{n} \geq\left|d_{i}\right|^{n /(n-1)}(n-1)^{n / 2}\left|S^{n-1}\right| \ln \frac{s}{t}-C
$$

where C is a constant which is independent of ε and d_{i} is the degree of u on each $\partial\left(B\left(x_{i}, r\right) \cap G\right), t \leq r \leq s$.

Proposition 4.2 Assume $\operatorname{Card} \Lambda_{j}=N$. Then

$$
\begin{equation*}
\int_{\Omega_{j}}\left|\nabla u_{\varepsilon}\right|^{n} \geq \int_{\Omega_{j, \sigma}}\left|\nabla u_{\varepsilon}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right|\left|k_{j}\right| \ln \frac{\sigma}{\varepsilon}-C \tag{4.2}
\end{equation*}
$$

where C is a constant which is independent of ε.
Proof. We give the proof following that in [6] (see Theorem 3.10), and the idea comes from [8]. Suppose $x_{1}, x_{2}, \ldots, x_{N}$ converge to a_{j}, and $d_{i, R}(i=1,2, \ldots, N)$ is the degree of u_{ε} around $\partial B\left(x_{i}, R\right)$. Let R_{ε}^{σ} denote the set of all numbers $R \in[\varepsilon, \sigma]$ such that $\partial B\left(x_{i}, R\right) \cap B\left(x_{j}, \varepsilon\right)=\emptyset$ for all $i \neq j$ and such that for some collection $J_{R} \subset\{1,2, \ldots, N\}$, satisfying $J_{R} \subset J_{R^{\prime}}$ if $R^{\prime} \leq R$, the family $\left\{B\left(x_{i}, R\right)\right\}_{i \in J_{R}}$ is disjoint and

$$
\cup_{i=1}^{N} B\left(x_{i}, \varepsilon\right) \subset \cup_{i \in J_{R^{\prime}}} B\left(x_{i}, R^{\prime}\right) \subset \cup_{i \in J_{R}} B\left(x_{i}, R\right), \quad R^{\prime} \leq R .
$$

Note that R_{ε}^{σ} is the union of closed intervals $\left[R_{0}^{l}, \mathbb{R}^{l}\right], 1 \leq l \leq L$, whose right endpoints correspond to a number $R=\mathbb{R}^{l}$ such that $\partial B\left(x_{i}, R\right) \cap \overline{B\left(x_{j}, R\right)} \neq \emptyset$ for some pair $i \neq j \in J_{R}$ and whose left endpoints correspond to a number R_{0}^{l} such that $\overline{B\left(x_{i}, \mathbb{R}^{l-1}\right)} \backslash \cup_{j \in J_{0}} B\left(x_{j}, R_{0}^{l}\right) \neq \emptyset$ for $i \bar{\in} J_{R_{0}^{l}} . J_{R}=J^{l}$ is a constant for $R \in\left[R_{0}^{l}, \mathbb{R}^{l}\right]$ and $J^{l+1} \subset J^{l}, J^{l+1} \neq J^{l}$. Thus $L \leq N$. Moreover, there exists a constant $M=M(h)>0$ such that

$$
\begin{equation*}
R_{0}^{l} \leq M \varepsilon, \quad \mathbb{R}^{L} \geq \sigma / M, \quad R_{0}^{l+1} \leq M R^{l} \tag{4.3}
\end{equation*}
$$

for all $l=1,2, \ldots, L-1$. Finally, observe that for all $R \in R_{\varepsilon}^{\sigma}$ and $J \in J_{R}$,

$$
\begin{equation*}
\left|k_{j}\right|=\left|\sum_{i \in J_{R}} d_{i, R}\right| \leq \sum_{i \in J_{R}}\left|d_{i, R}\right|^{n /(n-1)} \tag{4.4}
\end{equation*}
$$

Applying (4.3)(4.4) and proposition 4.1 we have

$$
\int_{\Omega_{j, \sigma}}\left|\nabla u_{\varepsilon}\right|^{n} \geq \sum_{l=1}^{L} \sum_{i \in J^{l}} \mid \int_{\left.A_{\mathbb{R}^{l}, R_{0}^{l}\left(x_{i}\right)} \nabla u_{\varepsilon}\right|^{n}, ~}
$$

$$
\begin{aligned}
& \geq \sum_{l=1}^{L} \sum_{i \in J^{l}}\left|S^{n-1}\right|(n-1)^{n / 2}\left|d_{i, \mathbb{R}^{l}}\right| \ln \left(\mathbb{R}^{l} / R_{0}^{l}\right)-C \\
& \geq\left|S^{n-1}\right|(n-1)^{n / 2}\left|k_{j}\right| \sum_{l}\left(\ln \mathbb{R}^{l}-\ln R_{0}^{l}\right)-C \\
& \geq(n-1)^{n / 2}\left|S^{n-1}\right|\left|k_{j}\right| \ln \frac{\sigma}{\varepsilon}-C .
\end{aligned}
$$

This and (4.1) imply that (4.2) holds.
Remark In fact the following results

$$
\int_{\Omega_{j}}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right|\left|k_{j}\right|^{n /(n-1)} \ln \frac{\sigma}{\varepsilon}
$$

and

$$
\int_{\Omega_{j}}\left(1-\left|u_{\varepsilon}\right|^{n}\right) \left\lvert\, \nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|^{n}} \leq C\right.
$$

had been presented in the proof of Theorem 3.9 in [6], where C which is independent of ε. Noticing

$$
\int_{\Omega_{j}}\left|u_{\varepsilon}\right|^{n}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n}=\int_{\Omega_{j}}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n}-\int_{\Omega_{j}}\left(1-\left|u_{\varepsilon}\right|^{n}\right)\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n},
$$

we have

$$
\int_{\Omega_{j}}\left|u_{\varepsilon}\right|^{n}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n} \geq(n-1)^{n / 2}\left|k_{j}\right|^{n /(n-1)}\left|S^{n-1}\right| \ln \frac{\sigma}{\varepsilon}-C .
$$

Theorem 4.3 There exists a constant C which is independent of $\varepsilon, \sigma \in(0,1)$ such that

$$
\begin{gather*}
\int_{\cup_{j=1}^{N_{2} \Omega_{j}}}\left|\nabla u_{\varepsilon}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{\sigma}{\varepsilon}-C, \tag{4.5}\\
\frac{1}{n} \int_{G_{\sigma}}\left|\nabla u_{\varepsilon}\right|^{n}+\frac{1}{4 \varepsilon^{n}} \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \frac{1}{n}(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{1}{\sigma}+C \tag{4.6}
\end{gather*}
$$

where $G_{\sigma}=G \backslash \cup_{j=1}^{N_{2}} B\left(a_{j}, \sigma\right)$.
Proof. From (4.2) and Proposition 2.3 we have

$$
(n-1)^{n / 2}\left|S^{n-1}\right|\left(\sum_{j=1}^{N_{2}}\left|k_{j}\right|\right) \ln \frac{\sigma}{\varepsilon} \leq(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{1}{\varepsilon}+C
$$

or $\left(\sum_{j=1}^{N_{2}}\left|k_{j}\right|-d\right) \ln \frac{1}{\varepsilon} \leq C$. It is seen as ε small enough

$$
\sum_{j=1}^{N_{2}}\left|k_{j}\right| \leq d=\sum_{j=1}^{N_{2}} k_{j}
$$

which implies

$$
\begin{equation*}
k_{j} \geq 0 \tag{4.7}
\end{equation*}
$$

This and (3.9) imply

$$
\begin{equation*}
\sum_{j=1}^{N_{2}}\left|k_{j}\right|=\sum_{j=1}^{N_{2}} k_{j}=d \tag{4.8}
\end{equation*}
$$

Substituting (4.8) into (4.2) yields (4.5), and (4.6) may be concluded from (4.5) and Proposition 2.3.

From (4.6) and the fact $\left|u_{\varepsilon}\right| \leq 1$ a.e. on G, we may conclude that there exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε} such that

$$
\begin{equation*}
u_{\varepsilon_{k}} \xrightarrow{w} u_{*}, \quad W^{1, n}\left(G_{\sigma}, \mathbb{R}^{n}\right) \tag{4.9}
\end{equation*}
$$

as $\varepsilon_{k} \rightarrow 0$. Compare (4.9) with (1.1) we known $u_{*}=u_{n}$ on G_{σ}, and

$$
\begin{equation*}
\left\{a_{j}\right\}_{j=1}^{N_{2}}=\left\{a_{j}\right\}_{j=1}^{J} . \tag{4.10}
\end{equation*}
$$

These points were called the singularities of u_{n}.
To show these singularities $a_{j} \bar{\epsilon} \partial G$, the following conclussion is necessary.
Proposition 4.4 Assume $a \in \partial G$ and $\sigma \in(0, R)$ with a small constant R. If

$$
u \in W^{1, n}\left(A_{R, \sigma}(a), S^{n-1}\right) \cap C^{0}, \quad u=\bar{g}
$$

on $\left(G^{\prime} \backslash G\right) \cap B(a, R)$ and $\operatorname{deg}(u, \partial B(a, R))=1$, then there exists a constant C which is independent of σ such that

$$
\begin{equation*}
\int_{A_{R, \sigma}(a)}|\nabla u|^{n} \geq 2^{\frac{1}{n}}(n-1)^{n / 2}\left|S^{n-1}\right| \ln \frac{1}{\sigma}-C \tag{4.11}
\end{equation*}
$$

Proof. Similar to the proof of Lemma VI. 1 in [1], we may write G as the half space

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{n}>0\right\}
$$

locally and a as 0 by a conformal change.
Denote $S_{t}=\partial B(0, t), t \in(\sigma, R)$. Noticing that \bar{g} is smooth on $G^{\prime} \backslash G$, we have

$$
\sup _{\overline{G^{\prime}} \backslash G}\left|\bar{g}_{\tau}\right| \leq C_{1} .
$$

Taking t sufficiently small such that

$$
t \leq(n-1)^{1 / 2} \frac{\left(2^{n-1}-1\right)^{1 /(n-1)}}{2 C_{1}}
$$

then

$$
\begin{equation*}
\int_{S_{t}^{-}}\left|\bar{g}_{\tau}\right|^{n-1} \leq\left|S_{t}^{-}\right| C_{1}^{n-1} \leq\left|S^{n-1}\right| t^{n-1} C_{1}^{n-1} \leq(n-1)^{(n-1) / 2}\left|S^{n-1}\right|\left(1-2^{1-n}\right) \tag{4.12}
\end{equation*}
$$

with $R<1$ small enough, where $S_{t}^{-}=S_{t} \cap\left\{x_{n}<0\right\}$. On the other hand we can be led to

$$
(n-1)^{(n-1) / 2}\left|S^{n-1}\right| \leq \int_{S_{t}}\left|u_{\tau}\right|^{n-1}=\int_{S_{t}^{+}}\left|u_{\tau}\right|^{n-1}+\int_{S_{t}^{-}}\left|\bar{g}_{\tau}\right|^{n-1}
$$

from Proposition 3.4. Here $S_{t}^{+}=S_{t} \backslash S_{t}^{-}$. Combining this with (4.12) yields

$$
\begin{align*}
\int_{S_{t}^{+}}\left|u_{\tau}\right|^{n} & \geq\left|S_{t}^{+}\right|^{-1 /(n-1)}\left(\int_{S_{t}^{+}}\left|u_{\tau}\right|^{n-1}\right)^{n /(n-1)} \tag{4.1}\\
& \geq 2^{\frac{1}{n}}\left|S^{n-1}\right|(n-1)^{n / 2} t^{-1} \tag{4.2}
\end{align*}
$$

Integrating this over (σ, R), we obtain

$$
\int_{A_{R, \sigma}}|\nabla u|^{n} \geq 2^{\frac{1}{n}}\left|S^{n-1}\right|(n-1)^{n / 2} \ln \frac{R}{\sigma}
$$

which implies (4.11). To prove $k_{j}=1$ for any j, we suppose $R>2 \sigma$ is a small constant such that

$$
\begin{equation*}
\overline{B\left(a_{j}, R\right)} \subset G^{\prime} ; \quad B\left(a_{j}, R\right) \cap B\left(a_{i}, R\right)=\emptyset, i \neq j . \tag{4.13}
\end{equation*}
$$

Denote $\Pi=\left\{v \in W^{1, n}\left(\Omega^{\prime}, S^{n-1}\right) \cap C^{0}: \operatorname{deg}\left(v, \partial B\left(a_{j}, r\right)\right)=k_{j}, r \in(\sigma, R), j=\right.$ $\left.1,2, \ldots, N_{2}\right\}$.

Proposition 4.5 For any $v \in \Pi$, if $k_{j} \geq 0, j=1,2, \ldots, N_{2}$, then there exists a constant $C=C(R)$ which is independent of σ such that

$$
\begin{equation*}
\int_{\Omega^{\prime}}|\nabla v|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right|\left(\sum_{j=1}^{N_{2}} k_{j}^{\frac{n}{n-1}}\right) \ln \frac{1}{\sigma}-C . \tag{4.14}
\end{equation*}
$$

Proof. Write $A_{R, \sigma}\left(a_{j}\right)=B\left(a_{j}, R\right) \backslash B\left(a_{j}, \sigma\right)$, thus $\cup_{j=1}^{N_{2}} A_{R, \sigma}\left(a_{j}\right) \subset \Omega^{\prime}$. From Proposition 3.4 we have

$$
\begin{aligned}
k_{j}=\left|k_{j}\right| & \leq(n-1)^{(1-n) / 2}\left|S^{n-1}\right|^{-1} \int_{S^{n-1}}\left|v_{\tau}\right|^{n-1} \\
& \leq(n-1)^{(1-n) / 2}\left|S^{n-1}\right|^{(n-1) / n}\left(\int_{S^{n-1}}\left|v_{\tau}\right|^{n}\right)^{(n-1) / n}
\end{aligned}
$$

namely

$$
\int_{S^{n-1}}\left|v_{\tau}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right| k_{j}^{n /(n-1)}
$$

On the other hand, we may obtain

$$
\int_{\Omega^{\prime}}|\nabla v|^{n} \geq \sum_{j=1}^{N_{2}} \int_{A_{R, \sigma}\left(a_{j}\right)}|\nabla v|^{n}
$$

$$
\begin{aligned}
& \geq \sum_{j=1}^{N_{2}} \int_{\sigma}^{R} \int_{S^{n-1}} r^{-n}\left|\nabla_{\tau} v\right|^{n} r^{n-1} d \zeta d r \\
& \geq(n-1)^{n / 2}\left|S^{n-1}\right| \sum_{j=1}^{N_{2}} k_{j}^{n /(n-1)} \int_{\sigma}^{R} r^{-1} d r \\
& =(n-1)^{n / 2}\left|S^{n-1}\right|\left(\sum_{j=1}^{N_{2}} k_{j}^{n /(n-1)}\right) \ln \frac{R}{\sigma}
\end{aligned}
$$

which implies (4.14).

5 The proof of Theorem 1.2

Let u_{ε} be a regularizable minimizer of $E_{\varepsilon}(u, G)$. Proposition 2.4 has given one estimate of convergence rate of $\left|u_{\varepsilon}\right|$. Moreover, we also have

Theorem 5.1 There exists a constant C which is independent of $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right) \leq C\left(1+\ln \frac{1}{\varepsilon}\right) \tag{5.1}
\end{equation*}
$$

Proof. The minimizer $u=u_{\varepsilon}^{\tau}$ of the regularized functional $E_{\varepsilon}^{\tau}(u, G)$ solves (2.2). Taking the inner product of the both sides of (2.2) with u and integrating over G we have

$$
\begin{align*}
\frac{1}{\varepsilon^{n}} \int_{G}|u|^{2}\left(1-|u|^{2}\right) & =-\int_{G} \operatorname{div}\left(v^{(n-2) / 2} \nabla u\right) u \\
& =\int_{G} v^{(n-2) / 2}|\nabla u|^{2}-\int_{\partial G} v^{(n-2) / 2} u u_{n} \tag{5.2}\\
& \leq \int_{G} v^{(n-2) / 2}|\nabla u|^{2}+C \int_{\partial G} v^{n / 2}+C
\end{align*}
$$

where n denotes the unit outward normal to ∂G and u_{n} the derivative with respect to n.

To estimate $\int_{\partial G} v^{n / 2}$, we choose a smooth vector field ν such that $\left.\nu\right|_{\partial G}=n$. Multiplying (2.2) by $(\nu \cdot \nabla u)$ and integrating over G, we obtain

$$
\begin{aligned}
\frac{1}{\varepsilon^{n}} \int_{G} u\left(1-|u|^{2}\right)(\nu \cdot \nabla u) & =-\int_{G} \operatorname{div}\left(v^{(n-2) / 2} \nabla u\right)(\nu \cdot \nabla u) \\
& =\int_{G} v^{(n-2) / 2} \nabla u \cdot(\nu \cdot \nabla u)-\int_{\partial G} v^{(n-2) / 2}\left|u_{n}\right|^{2}
\end{aligned}
$$

Combining this with

$$
\begin{aligned}
\frac{1}{\varepsilon^{n}} \int_{G} u\left(1-|u|^{2}\right)(\nu \cdot \nabla u) & =\frac{1}{2 \varepsilon^{n}} \int_{G}\left(1-|u|^{2}\right)\left(\nu \cdot \nabla\left(|u|^{2}\right)\right) \\
& =-\frac{1}{4 \varepsilon^{n}} \int_{G}\left(1-|u|^{2}\right)^{2} \operatorname{div} \nu
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{G} v^{(n-2) / 2} \nabla u \cdot \nabla(\nu \cdot \nabla u) \\
& \quad=\int_{G} v^{(n-2) / 2}|\nabla u|^{2} \operatorname{div} \nu+\frac{1}{n} \int_{G} \nu \cdot \nabla\left(v^{n / 2}\right) \\
& \quad=\int_{G} v^{(n-2) / 2}|\nabla u|^{2} \operatorname{div} \nu+\frac{1}{n} \int_{\partial G} v^{n / 2}-\frac{1}{n} \int_{G} v^{n / 2} \operatorname{div} \nu
\end{aligned}
$$

we obtain

$$
\int_{\partial G} v^{(n-2) / 2}\left|u_{n}\right|^{2} \leq \frac{C}{4 \varepsilon^{n}} \int_{G}\left(1-|u|^{2}\right)^{2}+C \int_{G} v^{n / 2}+\frac{1}{n} \int_{\partial G} v^{n / 2} .
$$

Thus

$$
\begin{aligned}
\int_{\partial G} v^{n / 2} & =\int_{\partial G} v^{(n-2) / 2}\left(\left|u_{n}\right|^{2}+\left|g_{t}\right|^{2}+\tau\right) \\
& \leq C \int_{\partial G} v^{(n-2) / 2}+\frac{1}{n} \int_{\partial G} v^{n / 2}+C E_{\varepsilon}^{\tau}\left(u_{\varepsilon}^{\tau}, G\right)
\end{aligned}
$$

Substituting this into (5.2) yields

$$
\frac{1}{\varepsilon^{n}} \int_{G}|u|^{2}\left(1-|u|^{2}\right) \leq C E_{\varepsilon}^{\tau}\left(u_{\varepsilon}^{\tau}, G\right)
$$

Let $\tau \rightarrow 0$, applying (2.1) and Proposition 2.3 we have

$$
\frac{1}{\varepsilon^{n}} \int_{G}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right) \leq C E_{\varepsilon}\left(u_{\varepsilon}, G\right) \leq C(1+|\ln \varepsilon|)
$$

which and (2.6) imply (5.1).
Theorem 5.2 Denote $\rho=\left|u_{\varepsilon}\right|$. There exists a constant C which is independent of $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
\|\nabla \rho\|_{L^{n}(G)} \leq C . \tag{5.3}
\end{equation*}
$$

Proof. Denote $u=u_{\varepsilon}$. From the Remark in $\S 4$ we know

$$
\int_{\Omega_{j}}|u|^{n}\left|\nabla \frac{u}{|u|}\right|^{n} d x \geq(n-1)^{n / 2}\left|k_{j}\right|^{\frac{n}{n-1}}\left|S^{n-1}\right| \ln \frac{\sigma}{\varepsilon}-C .
$$

Thus we may modify (4.5) as

$$
\int_{\cup_{j=1}^{N_{2}} \Omega_{j}} \rho^{n}\left|\nabla \frac{u}{|u|}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{\sigma}{\varepsilon}-C .
$$

Combining this with

$$
\int_{\cup_{j=1}^{N_{2} \Omega_{j}}}|\nabla u|^{n} \geq \int_{\cup_{j=1}^{N_{2}} \Omega_{j}} \rho^{n}\left|\nabla \frac{u}{|u|}\right|^{n}+\int_{\cup_{j=1}^{N_{2}} \Omega_{j}}|\nabla \rho|^{n}-C
$$

and Proposition 2.3, we derive

$$
\begin{equation*}
\int_{\cup_{j=1}^{N_{2} \Omega_{j}}}|\nabla \rho|^{n} \leq C . \tag{5.4}
\end{equation*}
$$

On the other hand, from (2.1) and Proposition 2.1 we are led to

$$
\int_{G^{\rho \varepsilon} \cap B\left(x_{i}, h \varepsilon\right)}\left|\nabla u_{\varepsilon}\right|^{n}=\lim _{\tau_{k} \rightarrow 0} \int_{G^{\rho \varepsilon} \cap B\left(x_{i}, h \varepsilon\right)}\left|\nabla u_{\varepsilon}^{\tau_{k}}\right|^{n} \leq C(\lambda \varepsilon)^{n}(C / \varepsilon)^{n} \leq C
$$

for $i \in \Lambda_{j}$. Summarizing for i and using (5.4) we can obtain (5.3).
Theorem 5.3 For the $\sigma>0$ in Theorem 4.4, then as $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G_{3 \sigma}}\left(1-\rho^{2}\right)^{2} \rightarrow 0 \tag{5.5}
\end{equation*}
$$

where $G_{3 \sigma}=G \backslash \cup_{j=1}^{N_{2}} B\left(a_{j}, 3 \sigma\right)$.
Proof. The regularizable minimizer u_{ε} satisfies

$$
\begin{equation*}
\int_{G_{\sigma}}|\nabla u|^{n-2} \nabla u \nabla \phi=\frac{1}{\varepsilon^{n}} \int_{G_{\sigma}} u \phi\left(1-|u|^{2}\right), \tag{5.6}
\end{equation*}
$$

where $\phi \in W_{0}^{1, n}\left(G_{\sigma}, \mathbb{R}^{n}\right)$ since u_{ε} is a weak solution of (2.4). Denoting $u=$ $u_{\varepsilon}^{\tau}=\rho w, \rho=|u|, w=\frac{u}{|u|}$ in G_{σ} and taking $\phi=\rho w \zeta, \zeta \in W_{0}^{1, n}\left(G_{\sigma}, \mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\int_{G_{\sigma}}|\nabla u|^{n-2}(w \nabla \rho+\rho \nabla w)(\rho \zeta \nabla w+\rho w \nabla \zeta+w \zeta \nabla \rho)=\frac{1}{\varepsilon^{n}} \int_{G_{\sigma}} \rho^{2} \zeta\left(1-\rho^{2}\right) \tag{5.7}
\end{equation*}
$$

Substituting $2 w \nabla w=\nabla\left(|w|^{2}\right)=0$ into (5.7), we obtain

$$
\begin{equation*}
\int_{G_{\sigma}}|\nabla u|^{n-2}\left(\rho \nabla \rho \nabla \zeta+|\nabla u|^{2} \zeta\right)=\frac{1}{\varepsilon^{n}} \int_{G_{\sigma}} \rho^{2} \zeta\left(1-\rho^{2}\right) \tag{5.8}
\end{equation*}
$$

Set $S=\left\{x \in G_{\sigma}: \rho(x)>1-\varepsilon^{\beta}\right\}$ for some fixed $\beta \in(0, n / 2)$ and $\bar{\rho}=\max (\rho, 1-$ ε^{β}), thus $\rho=\bar{\rho}$ on S. In (5.8) taking $\zeta=(1-\bar{\rho}) \psi$, where $\psi \in C^{\infty}\left(G_{\sigma}, R\right), \psi=0$ on $G_{\sigma} \backslash G_{2 \sigma}, 0<\psi<1$ on $G_{2 \sigma} \backslash G_{3 \sigma}, \psi=1$ on $G_{3 \sigma}$, we have

$$
\begin{align*}
& \int_{G_{\sigma}}|\nabla u|^{n-2} \rho \nabla \rho \cdot \nabla \bar{\rho} \psi+\frac{1}{\varepsilon^{n}} \int_{G_{\sigma}} l^{2}\left(1-\rho^{2}\right)(1-\bar{\rho}) \psi \tag{5.9}\\
& \quad=\int_{G_{\sigma}}|\nabla u|^{n-2} \rho \nabla \rho \nabla \psi(1-\bar{\rho})+\int_{G_{\sigma}}|\nabla u|^{n} \psi(1-\bar{\rho})
\end{align*}
$$

Noticing $1 / 2 \leq l \leq 1$ in G_{σ} and applying (4.6) we obtain

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G_{3 \sigma}}(1-\bar{\rho})\left(1-\rho^{2}\right)+\int_{S \cap G_{3 \sigma}}|\nabla u|^{n-2}|\nabla \rho|^{2} \leq C \varepsilon^{\beta} \tag{5.10}
\end{equation*}
$$

On the other hand, (2.6) implies

$$
\varepsilon^{2 \beta}\left|G_{\sigma} \backslash S\right| \leq \int_{G_{\sigma} \backslash S}\left(1-l^{2}\right)^{2} \leq C \varepsilon^{n}
$$

namely $\left|G_{\sigma} \backslash S\right| \leq C \varepsilon^{n-2 \beta}$. Then there exists a small constant $\varepsilon_{0}>0$ such that

$$
G_{3 \sigma} \subset S \cup E
$$

as $\varepsilon \in\left(0, \varepsilon_{0}\right)$ where E is a set, the measure of which converges to zero. Thus

$$
\lim _{\varepsilon \rightarrow 0} \int_{G_{3 \sigma}}\left(1-\rho^{2}\right)(1-\bar{\rho})=\lim _{\varepsilon \rightarrow 0} \int_{G_{3 \sigma}}(1+\rho)(1-\rho)^{2}
$$

By (5.10),

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{n}} \int_{G_{3 \sigma}}(1+\rho)^{2}(1-\rho)^{2} \\
& \quad \leq \lim _{\varepsilon \rightarrow 0} \frac{2}{\varepsilon^{n}} \int_{G_{3 \sigma}}(1-\bar{\rho})\left(1-\rho^{2}\right)=0
\end{aligned}
$$

This is our conclusion.

Theorem 5.4 Assume $B(x, 2 \sigma) \subset G_{\sigma}$ satisfies

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{B(x, \sigma)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \rightarrow 0, \text { as } \varepsilon \rightarrow 0 \tag{5.11}
\end{equation*}
$$

then $\left|u_{\varepsilon}\right| \rightarrow 1$ in $C(B(x, \sigma), R)$.

Proof. Since $B(x, 2 \sigma) \subset G_{\sigma}$, there exists ε_{0} sufficiently small so that $B(x, \sigma) \subset$ $G^{2 \delta \varepsilon_{0}}$. We always assume $\varepsilon<\varepsilon_{0}$. For $x_{0} \in B(x, \sigma)$, set $\alpha=\left|u_{\varepsilon}\left(x_{0}\right)\right|$. Proposition 2.2 implies

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}\left(x_{0}\right)\right|<C \varepsilon^{-1} \tau \varepsilon, \quad \text { if } x \in B\left(x_{0}, \tau \varepsilon\right)
$$

where $\tau=(1-\alpha)(N C)^{-1}, C$ is the constant in Proposition 2.2 and N is a large number such that $\tau<\delta$. Thus $B\left(x_{0}, \tau \varepsilon\right) \subset B(x, \sigma)$ and

$$
\begin{gathered}
\left|u_{\varepsilon}(x)\right| \leq \alpha+C \tau, \quad \text { if } x \in B\left(x_{0}, \tau \varepsilon\right), \\
\int_{B\left(x_{0}, \tau \varepsilon\right)}\left(1-\left|u_{\varepsilon}(x)\right|^{2}\right)^{2} \geq(1-1 / N)^{2}(1-\alpha)^{n+2} \pi \varepsilon^{n}(N C)^{-n} .
\end{gathered}
$$

Combining this with (5.11) we obtain $(1-\alpha)^{n+2}=o(1)$ as $\varepsilon \rightarrow 0$. Thus it is not difficult to complete the proof of Theorem.

6 The proof of Theorem 1.1

It is known that the singularities of u_{n} are in \bar{G} from the discussion in $\S 3$. Since $\operatorname{deg}(g, \partial G)>0$, we can see that the zeroes of u_{ε} are also in G. Moreover, the zeroes are contained in finite bad balls, i.e. $B\left(x_{i}^{\varepsilon}, h \varepsilon\right), i \in J$. As $\varepsilon \rightarrow$ $0, B\left(x_{i}^{\varepsilon}, h \varepsilon\right) \rightarrow a_{j}, i \in \Lambda_{j}$. This implies that the zeroes of u_{ε} distribute near these singularities of u_{n} as $\varepsilon \rightarrow 0$. Thus it is necessary to describe these singularities $\left\{a_{j}\right\}, j=1,2, \ldots, N_{2}$.

Proposition 6.1 $k_{j}=\operatorname{deg}\left(u_{n}, a_{j}\right)$.
Proof. Denote $\Omega^{\prime}=G^{\prime} \backslash \cup_{j=1}^{N_{2}} B\left(a_{j}, \sigma\right)$. Combining (4.6) and

$$
\int_{G^{\prime} \backslash G}\left|\nabla u_{\varepsilon}\right|^{n}=\int_{G^{\prime} \backslash G}|\nabla \bar{g}|^{n} \leq C,
$$

we have

$$
\begin{equation*}
\int_{\Omega^{\prime}}\left|\nabla u_{\varepsilon}\right|^{n} \leq C+(n-1)^{n / 2}\left|S^{n-1}\right| d|\ln \sigma|, \tag{6.1}
\end{equation*}
$$

where C is a constant which is independent of ε. For R in (4.13), from (6.1) we have

$$
\int_{A_{R, \sigma}\left(a_{j}\right)}\left|\nabla u_{\varepsilon}\right|^{n} \leq C
$$

Then we know that there exists a constant $r \in(\sigma, R)$ such that

$$
\int_{\partial B\left(a_{j}, r\right)}\left|\nabla u_{\varepsilon}\right|^{n} \leq C(r)
$$

by using integral mean value theorem. Thus there exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε} such that

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } C\left(\partial B\left(a_{j}, r\right)\right)
$$

as $\varepsilon_{k} \rightarrow 0$, which implies

$$
k_{j}=\operatorname{deg}\left(u_{\varepsilon}, \partial B\left(a_{j}, \sigma\right)\right)=\operatorname{deg}\left(u_{n}, a_{j}\right)
$$

Proposition 6.2 $k_{j}=0$ or $k_{j}=1$.
Proof. From the regularity results on n-harmonic maps (see [3][5] or [9]), we know $u_{n} \in C^{0}\left(G_{\sigma}, \mathbb{R}^{n}\right)$. Set

$$
w= \begin{cases}\bar{g} & \text { on } G^{\prime} \backslash G \\ u_{n} & \text { on } G_{\sigma},\end{cases}
$$

then $w \in \Pi$. Using Proposition 4.5 and (4.7) we have

$$
\begin{equation*}
\int_{\Omega^{\prime}}|\nabla w|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right|\left(\sum_{j=1}^{N_{2}} k_{j}^{\frac{n}{n-1}}\right) \ln \frac{1}{\sigma}-C(R) . \tag{6.2}
\end{equation*}
$$

On the other hand, (6.1) and (4.9) imply

$$
u_{\varepsilon_{k}} \xrightarrow{w} w, \quad \text { in } W^{1, n}\left(\Omega^{\prime}, \mathbb{R}^{n}\right) .
$$

Noting this and the weak lower semicontinuity of $\int_{\Omega^{\prime}}|\nabla u|^{n}$, applying (6.1) we have

$$
\begin{equation*}
\int_{\Omega^{\prime}}|\nabla w|^{n} \leq \underline{\lim }_{\varepsilon_{k} \rightarrow 0} \int_{\Omega^{\prime}}\left|\nabla u_{\varepsilon_{k}}\right|^{n} \leq(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{1}{\sigma}+C . \tag{6.3}
\end{equation*}
$$

Combining this with (6.2), we obtain

$$
\left(\sum_{j=1}^{N_{2}} k_{j}^{\frac{n}{n-1}}-d\right) \ln \frac{1}{\sigma} \leq C \quad \text { or } \quad \sum_{j=1}^{N_{2}} k_{j}^{\frac{n}{n-1}} \leq d=\sum_{j=1}^{N_{2}} k_{j}
$$

for σ small enough. Thus $\left(k_{j}^{1 /(n-1)}-1\right) k_{j} \leq 0$ which implies that the Proposition holds.

Proposition $6.3 k_{j}>0, j=1,2, \ldots, N_{2}$.
Proof. Suppose $k_{1}=0$ and $k_{2}, k_{3}, \ldots, k_{N_{2}}>0$. Similar to the proof of Theorem 4.3 we have

$$
\int_{\cup_{j=2}^{N_{2} \Omega_{j}}}\left|\nabla u_{\varepsilon}\right|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right| d \ln \frac{\sigma}{\varepsilon}-C .
$$

By this we can rewrite (4.6) as

$$
\int_{G \backslash \cup_{j=2}^{N_{2}} B\left(a_{j}, \sigma\right)}\left|\nabla u_{\varepsilon}\right|^{n}+\frac{1}{4 \varepsilon^{n}} \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq C(\sigma) .
$$

Thus similar to the proof of Theorem 5.3 we may modify (5.5) as

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G \backslash \cup_{j=2}^{N_{2}} B\left(a_{j}, 3 \sigma\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \rightarrow 0 \tag{6.4}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. Noticing

$$
G \cap B\left(a_{1}, \sigma\right) \subset G \cap B\left(a_{1}, R\right) \subset G \backslash \cup_{j=2}^{N_{2}} B\left(a_{j}, R\right) \subset G \backslash \cup_{j=2}^{N_{2}} B\left(a_{j}, 3 \sigma\right)
$$

we have

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{G \cap B\left(a_{1}, \sigma\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \rightarrow 0 \tag{6.5}
\end{equation*}
$$

On the other hand, the definition of a_{1} implies that there exists at least one bad ball $B\left(x_{0}^{\varepsilon}, h \varepsilon\right)$ such that

$$
G \cap B\left(x_{0}^{\varepsilon}, h \varepsilon\right) \subset G \cap B\left(a_{1}, \sigma\right) .
$$

Applying the definition of bad ball we obtain

$$
\frac{1}{\varepsilon^{n}} \int_{G \cap B\left(a_{1}, \sigma\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \geq \frac{1}{\varepsilon^{n}} \int_{G \cap B\left(x_{0}^{\varepsilon}, h \varepsilon\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \geq \mu>0
$$

which is contrary to (6.5). This contradiction shows $k_{1}>0$.

Remark We may conclude $k_{j}=1, j=1,2, \ldots, N_{2}$ from Proposition 6.2 and Proposition 6.3. Noticing $d=\sum_{j=1}^{N_{2}} k_{j}$, we obtain

$$
N_{2}=d, \quad 1=k_{j}=\sum_{i \in \Lambda_{j}} d_{i} .
$$

Thus on one hand, although the number of the singularities of n - harmonic maps is indefinite (see Theorem A and Theorem C in [3]), we can say that for this n - harmonic map u_{n}, the limit of the regularizable minimizer $u_{\varepsilon_{k}}$ in $W^{1, n}$ as $k \rightarrow \infty$, the number of its singularities is just the degree d by applying (4.10). On the other hand, there exists at least one $i_{0} \in \Lambda_{j}$ such that $d_{i_{0}} \neq 0$. Then we know that there exists at least one zero of u_{ε} in $B\left(x_{i_{0}}^{\varepsilon}, h \varepsilon\right)$ by using Kronecker's theorem.

Theorem 6.4 $a_{j} \in G, \quad j=1,2, \ldots, d$.
Proof. Suppose $a_{1} \in \partial G, a_{2}, a_{3}, \ldots, a_{d} \in G$. Set

$$
\Omega_{\sigma}=\left(G^{\prime} \backslash B\left(a_{1}, R\right)\right)-\cup_{j=2}^{d} B\left(a_{j}, \sigma\right), \quad w= \begin{cases}u_{n} & \text { on } G_{\sigma} \\ \bar{g} & \text { on } G^{\prime} \backslash G\end{cases}
$$

Using Proposition 4.5 on Ω_{σ} we have

$$
\begin{equation*}
\int_{\Omega_{\sigma}}|\nabla w|^{n} \geq(n-1)^{n / 2}\left|S^{n-1}\right|(d-1) \ln \frac{1}{\sigma}-C(R) \tag{6.6}
\end{equation*}
$$

Taking $u=w, a=a_{1}$ in Proposition 4.4 we have

$$
\int_{A_{R, \sigma}\left(a_{1}\right)}|\nabla w|^{n} \geq 2^{\frac{1}{n}}(n-1)^{n / 2}\left|S^{n-1}\right| \ln \frac{1}{\sigma}-C
$$

Combining this with (6.6) yields

$$
\int_{\Omega^{\prime}}|\nabla w|^{n} \geq\left(d+2^{\frac{1}{n}}-1\right)(n-1)^{n / 2}\left|S^{n-1}\right| \ln \frac{1}{\sigma}-C
$$

Compare this to (6.3) we obtain

$$
\left(d+2^{\frac{1}{n}}-1-d\right) \ln \frac{1}{\sigma} \leq C
$$

where C is a constant which is independent of σ. It is impossible as σ small enough, so $a_{1} \in G$.

7 The proof of Theorem 1.3

Theorem 7.1 Let u_{ε} be the regularizable minimizer of $E_{\varepsilon}(u, G)$. Then there exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε} such that

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } W_{\mathrm{loc}}^{1, n}\left(G \backslash \cup_{j=1}^{d}\left\{a_{j}\right\}, \mathbb{R}^{n}\right)
$$

Proof. Step 1: Suppose the ball $B\left(x_{0}, 2 \sigma\right) \subset G \backslash \cup_{j=1}^{d}\left\{a_{j}\right\}$, where the constant σ may be sufficiently small but independent of ε. Since (4.6) implies

$$
E_{\varepsilon}\left(u_{\varepsilon}, B\left(x_{0}, 2 \sigma\right) \backslash B\left(x_{0}, \sigma\right)\right) \leq C
$$

we know there is a constant $r \in(\sigma, 2 \sigma)$ such that

$$
\begin{equation*}
\int_{\partial B\left(x_{0}, r\right)}\left|\nabla u_{\varepsilon}\right|^{n}+\frac{1}{\varepsilon^{n}} \int_{\partial B\left(x_{0}, r\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq C(r), \tag{7.1}
\end{equation*}
$$

by applying the integral mean value theorem. Thus, there exists a subsequence $u_{\varepsilon_{k}}$ of u_{ε} such that

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } C\left(\partial B\left(x_{0}, r\right), \mathbb{R}^{n}\right)
$$

which leads to

$$
\begin{equation*}
\frac{u_{\varepsilon_{k}}}{\left|u_{\varepsilon_{k}}\right|} \rightarrow u_{n}, \quad \text { in } C\left(\partial B\left(x_{0}, r\right), \mathbb{R}^{n}\right) \tag{7.2}
\end{equation*}
$$

Step 2: Denote $\rho=\left|u_{\varepsilon}\right|$ on $B=B\left(x_{0}, r\right)$. It is not difficult to prove that the minimizer w of the problem

$$
\begin{equation*}
\min \left\{\int_{B}|\nabla u|^{n}: u \in W_{\frac{\varepsilon_{\varepsilon}}{\left|u_{\varepsilon}\right|}}^{1, n}\left(B, S^{n-1}\right)\right\} \tag{7.3}
\end{equation*}
$$

exists. Noting u_{ε} be a minimizer of $E_{\varepsilon}(u, G)$, we have

$$
E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq \frac{1}{n} \int_{B}|\nabla(\rho w)|^{n}+\frac{1}{4 \varepsilon^{n}} \int_{B}\left(1-\rho^{2}\right)^{2}
$$

Obviously (4.6) and $\left|u_{\varepsilon}\right| \geq 1 / 2$ on B imply

$$
\frac{1}{2^{n}} \int_{B}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n} \leq \int_{B}\left|\nabla u_{\varepsilon}\right|^{n} \leq C
$$

thus

$$
\begin{equation*}
\int_{B}|\nabla w|^{n} \leq \int_{B}\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{n} \leq C \tag{7.4}
\end{equation*}
$$

Applying this we may claim that

$$
\begin{equation*}
\int_{B}\left|\nabla u_{\varepsilon}\right|^{n} \leq C \varepsilon^{\lambda}+\int_{B}|\nabla w|^{n} \tag{7.5}
\end{equation*}
$$

for some $\lambda>0$. Its proof can be seen in $\S 8$.
Step 3: Let w^{τ} is a solution of

$$
\begin{equation*}
\min \left\{\int_{B}\left(|\nabla w|^{2}+\tau\right)^{n / 2}: w \in W_{\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}}^{1, n}\left(B, S^{n-1}\right)\right\}, \quad \tau \in(0,1) . \tag{7.6}
\end{equation*}
$$

It is easy to see that w^{τ} solves

$$
\begin{equation*}
-\operatorname{div}\left(v_{\varepsilon}^{(n-2) / 2} \nabla w\right)=w|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2}, \quad v_{\varepsilon}=|\nabla w|^{2}+\tau . \tag{7.7}
\end{equation*}
$$

as $\tau \rightarrow 0$. Noticing $\frac{u_{\varepsilon} \mid}{\left|u_{\varepsilon}\right|} \in W_{\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}}^{1 u_{\varepsilon}}\left(B, S^{n-1}\right)$ we have

$$
\begin{align*}
\int_{B}\left|\nabla w^{\tau}\right|^{n} & \leq \int_{B}\left(\left|\nabla w^{\tau}\right|^{2}+\tau\right)^{n / 2} \tag{7.8}\\
& \leq \int_{B}\left(\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{2}+\tau\right)^{n / 2} \leq \int_{B}\left(\left|\nabla \frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}\right|^{2}+1\right)^{n / 2} \leq C
\end{align*}
$$

by using (7.4), where C is a constant which is independent of ε, τ. Then there exist $w^{*} \in W_{\frac{u_{\varepsilon}}{1, n}}^{\left|u_{\varepsilon}\right|}\left(B, S^{n-1}\right)$ and a subsequence of w^{τ} such that

$$
\begin{equation*}
w^{\tau} \xrightarrow{w} w^{*}, \quad \text { in } W^{1, n}\left(B, \mathbb{R}^{n}\right) . \tag{7.9}
\end{equation*}
$$

Noting the weak lower semicontinuity of $\int_{B}|\nabla w|^{n}$, we have

$$
\begin{align*}
\int_{B}\left|\nabla w^{*}\right|^{n} & \leq \underline{\lim }_{\tau \rightarrow 0} \int_{B}\left|\nabla w^{\tau}\right|^{n} \tag{7.10}\\
& \leq \varlimsup_{\tau \rightarrow 0} \int_{B}\left|\nabla w^{\tau}\right|^{n} \leq \varlimsup_{\tau \rightarrow 0} \int_{B}\left(\left|\nabla w^{\tau}\right|^{2}+\tau\right)^{n / 2}
\end{align*}
$$

The fact that w^{τ} solves (7.6) implies

$$
\overline{\lim }_{\tau \rightarrow 0} \int_{B}\left(\left|\nabla w^{\tau}\right|^{2}+\tau\right)^{n / 2} \leq \lim _{\tau \rightarrow 0} \int_{B}\left(\left|\nabla w_{*}\right|^{2}+\tau\right)^{n / 2}=\int_{B}\left|\nabla w_{*}\right|^{n},
$$

where w_{*} is a solution of (7.3). This and (7.10) lead to

$$
\begin{equation*}
\int_{B}\left|\nabla w^{*}\right|^{n} \leq \underline{\lim }_{\tau \rightarrow 0} \int_{B}\left|\nabla w^{\tau}\right|^{n} \leq \varlimsup_{\lim }^{\tau \rightarrow 0} \int_{B}\left|\nabla w^{\tau}\right|^{n} \leq \int_{B}\left|\nabla w_{*}\right|^{n} \tag{7.11}
\end{equation*}
$$

Since $w^{*} \in W_{\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}}^{1, n}\left(B, S^{n-1}\right)$, we know w^{*} also solves (7.3), namely

$$
\int_{B}\left|\nabla w_{*}\right|^{n}=\int_{B}\left|\nabla w^{*}\right|^{n} .
$$

Combining this with (7.11) yields

$$
\lim _{\tau \rightarrow 0} \int_{B}\left|\nabla w^{\tau}\right|^{n}=\int_{B}\left|\nabla w^{*}\right|^{n}
$$

which and (7.9) imply

$$
\begin{equation*}
\nabla w^{\tau} \rightarrow \nabla w^{*}, \quad \text { in } L^{n}\left(B, \mathbb{R}^{n}\right) \tag{7.12}
\end{equation*}
$$

Step 4: Similar to the discussion of Step 3, we may derive the following conclusion: Let u^{τ} be a solution of

$$
\begin{equation*}
\min \left\{\int_{B}\left(|\nabla u|^{2}+\tau\right)^{n / 2}: u \in W_{u_{n}}^{1, n}\left(B, S^{n-1}\right)\right\}, \quad \tau \in(0,1) \tag{7.13}
\end{equation*}
$$

Then u^{τ} satisfies

$$
\begin{equation*}
\int_{B}\left|\nabla u^{\tau}\right|^{n} \leq C, \tag{7.14}
\end{equation*}
$$

where C is which is independent of τ, and u^{τ} solves

$$
\begin{equation*}
-\operatorname{div}\left(v^{(n-2) / 2} \nabla u\right)=u|\nabla u|^{2} v^{(n-2) / 2}, \quad v=|\nabla u|^{2}+\tau \tag{7.15}
\end{equation*}
$$

As $\tau \rightarrow 0$, there exists a subsequence of u^{τ} denoted itself such that

$$
\begin{equation*}
\nabla u^{\tau} \rightarrow \nabla u^{*}, \quad \text { in } L^{n}\left(B, \mathbb{R}^{n}\right) \tag{7.16}
\end{equation*}
$$

where u^{*} is a minimizer of $\int_{B}|\nabla u|^{n}$ in $W_{u_{n}}^{1, n}\left(B, S^{n-1}\right)$. It is well-known that u^{*} is a map of the least n-energy, and also an n-harmonic map.

Fix $R>2 \sigma$ such that $B\left(x_{0}, R\right) \subset G \backslash \cup_{j=1}^{d}\left\{a_{j}\right\}$. Applying the regularity results on the map of the least n-energy (for example, Theorem 3.1 in [5]), we have

$$
\begin{equation*}
\sup _{B\left(x_{0}, r\right)}\left|\nabla u^{*}\right|^{n} \leq \frac{\sup }{B\left(x_{0}, R\right)}\left|\nabla u^{*}\right|^{n}:=C_{0} . \tag{7.17}
\end{equation*}
$$

It is obvious that C_{0} is a constant which is independent of r.
Step 5: From (7.7) subtracts (7.15). Then

$$
\begin{equation*}
-\operatorname{div}\left(v_{\varepsilon}^{(n-2) / 2} \nabla w-v^{(n-2) / 2} \nabla u\right)=w|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2}-u|\nabla u|^{2} v^{(n-2) / 2} \tag{7.18}
\end{equation*}
$$

Multiplying both sides of (7.18) by $w-u$ and integrating over B we obtain

$$
\begin{aligned}
& -\int_{\partial B}\left(v_{\varepsilon}^{(n-2) / 2} w_{\nu}-v^{(n-2) / 2} u_{\nu}\right)(w-u) \\
& +\int_{B}\left(v_{\varepsilon}^{(n-2) / 2} \nabla w-v^{(n-2) / 2} \nabla u\right) \nabla(w-u) \\
& =\int_{B}\left(w|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2}-u|\nabla u|^{2} v^{(n-2) / 2}\right)(w-u),
\end{aligned}
$$

where ν denotes the unit outside-norm vector of ∂B. Thus

$$
\begin{align*}
& \left|\int_{B}\left(v_{\varepsilon}^{(n-2) / 2} \nabla w-v^{(n-2) / 2} \nabla u\right) \nabla(w-u)\right| \\
& \quad \leq \quad\left|\int_{\partial B}\left(v_{\varepsilon}^{(n-2) / 2} w_{\nu}-v^{(n-2) / 2} u_{\nu}\right)(w-u)\right| \tag{7.19}\\
& \quad+\left|\int_{B}\left(w|\nabla u|^{2} v^{(n-2) / 2}-u|\nabla u|^{2} v^{(n-2) / 2}\right)(w-u)\right| \\
& \quad+\left|\int_{B}\left(w|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2}-w|\nabla u|^{2} v^{(n-2) / 2}\right)(w-u)\right| \\
& \quad=\quad I_{1}+I_{2}+I_{3} .
\end{align*}
$$

First we give an estimate for I_{1}. Let $w=w^{\tau}$ is a solution of (7.6). Integrating both sides of (7.7) over B, we have

$$
-\int_{\partial B} v_{\varepsilon}^{(n-2) / 2} w_{\nu}=\int_{B} w|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2}
$$

which and (7.8) imply

$$
\begin{equation*}
\left|\int_{\partial B} v_{\varepsilon}^{(n-2) / 2} w_{\nu}\right| \leq \int_{B} v_{\varepsilon}^{n / 2} \leq C \tag{7.20}
\end{equation*}
$$

An analogous discussion shows that for the solution $u=u^{\tau}$ of (7.13) which equips with (7.14), we may also obtain

$$
\begin{equation*}
\left|\int_{\partial B} v^{(n-2) / 2} u_{\nu}\right| \leq \int_{B}|\nabla u|^{n} \leq C \tag{7.21}
\end{equation*}
$$

Applying (7.20)(7.21) we derive

$$
\begin{align*}
I_{1} & \leq \sup _{\partial B}|w-u|\left(\left|\int_{\partial B} v_{\varepsilon}^{(n-2) / 2} w_{\nu}\right|+\left|\int_{\partial B} v^{(n-2) / 2} u_{\nu}\right|\right) \tag{7.22}\\
& \leq C \sup _{\partial B}|w-u|=C \sup _{\partial B}\left|\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}-u_{n}\right|
\end{align*}
$$

where C is independent of ε, τ. For the estimate of I_{3}, we have

$$
\begin{align*}
I_{3} & \leq\left.\int_{B}|u-w|| | \nabla u\right|^{2} v^{(n-2) / 2}-|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2} \mid \tag{7.23}\\
& \leq\left. 2 \int_{B}| | \nabla u\right|^{2} v^{(n-2) / 2}-|\nabla w|^{2} v_{\varepsilon}^{(n-2) / 2} \mid
\end{align*}
$$

For estimating I_{2}, we multiply both sides of (7.15) by $(u-w)$ and integrate over B, then

$$
\begin{aligned}
& -\int_{\partial B} v^{(n-2) / 2} u_{\nu}(u-w)+\int_{B} v^{(n-2) / 2} \nabla u \nabla(u-w) \\
& \quad=\int_{B}|\nabla u|^{2} v^{(n-2) / 2} u(u-w)=\int_{B}|\nabla u|^{2} v^{(n-2) / 2}(1-u w) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
I_{2} & \leq \int_{B}|\nabla u|^{2} v^{(n-2) / 2}|u-w|^{2}=2 \int_{B}|\nabla u|^{2} v^{(n-2) / 2}(1-u w) \\
& \leq 2\left|\int_{\partial B} v^{(n-2) / 2} u_{\nu}(u-w)\right|+2\left|\int_{B} v^{(n-2) / 2} \nabla u \nabla(u-w)\right|
\end{aligned}
$$

Noting (7.21) we may derive

$$
\begin{equation*}
I_{2} \leq C \sup _{\partial B}\left|\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}-u_{n}\right|+2\left|\int_{B} v^{(n-2) / 2} \nabla u \nabla(u-w)\right| \tag{7.24}
\end{equation*}
$$

Step 6: Substituting (7.22)-(7.24) into (7.19) yields

$$
\begin{aligned}
& \left|\int_{B}\left(v_{\varepsilon}^{(n-2) / 2} \nabla w-v^{(n-2) / 2} \nabla u\right) \nabla(w-u)\right| \\
& \quad \leq C \sup _{\partial B}\left|\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}-u_{n}\right|+2\left|\int_{B} v^{(n-2) / 2} \nabla u \nabla(u-w)\right| \\
& \quad+\left.2 \int_{B}\left|v_{\varepsilon}^{(n-2) / 2}\right| \nabla w\right|^{2}-v^{(n-2) / 2}|\nabla u|^{2} \mid
\end{aligned}
$$

Letting $\tau \rightarrow 0$ and applying (7.12)(7.16) we obtain

$$
\begin{aligned}
& \left|\int_{B}\left(\left|\nabla w^{*}\right|^{(n-2) / 2} \nabla w^{*}-\left|\nabla u^{*}\right|^{(n-2) / 2} \nabla u^{*}\right) \nabla\left(w^{*}-u^{*}\right)\right| \\
& \left.\quad \leq \quad C \sup _{\partial B}\left|\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}-u_{n}\right|+\left.2\left|\int_{B}\right| \nabla u^{*}\right|^{n-1} \nabla\left(u^{*}-w^{*}\right)\left|+2 \int_{B}\right|\left|\nabla w^{*}\right|^{n}-\left|\nabla u^{*}\right|^{n} \right\rvert\, .
\end{aligned}
$$

Using Lemma 1.2 in [4], we have
$2^{n-1} \int_{B}\left|\nabla w^{*}-\nabla u^{*}\right|^{n} \leq\left|\int_{B}\left(\left|\nabla w^{*}\right|^{(n-2) / 2} \nabla w^{*}-\left|\nabla u^{*}\right|^{(n-2) / 2} \nabla u^{*}\right) \nabla\left(w^{*}-u^{*}\right)\right|$.
Thus
$\left.\left(2^{n-1}-2\right) \int_{B}\left|\nabla w^{*}-\nabla u^{*}\right|^{n} \leq C \sup _{\partial B}\left|\frac{u_{\varepsilon}}{\left|u_{\varepsilon}\right|}-u_{n}\right|+\left.2\left|\int_{B}\right| \nabla u^{*}\right|^{n-1} \nabla\left(u^{*}-w^{*}\right) \right\rvert\,$.
Denote $\psi(\varepsilon)=\int_{B}\left|\nabla w^{*}-\nabla u^{*}\right|^{n}$ and let $\varepsilon \rightarrow 0$, then

$$
\begin{equation*}
\left(2^{n-1}-2\right) \psi(\varepsilon) \leq o(1)+2\left(C_{0}|B|\right)^{(n-1) / n}(\psi(\varepsilon))^{1 / n} \tag{7.25}
\end{equation*}
$$

holds by using (7.2), where C_{0} is the constant in (7.17).
We claim that for some small constant $\sigma>0$, the following holds:

$$
\begin{equation*}
\psi(\varepsilon) \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0 \tag{7.26}
\end{equation*}
$$

Suppose (7.26) is not true, then there exists $\tau>0$, for any $\varepsilon_{0}>0$, such that as $\varepsilon<\varepsilon_{0}$ we have $\psi(\varepsilon) \geq 2 \tau>\tau$ or

$$
\begin{equation*}
(\psi(\varepsilon))^{(n-1) / n}>\tau^{(n-1) / n}, \quad \forall \varepsilon<\varepsilon_{0} \tag{7.27}
\end{equation*}
$$

Taking σ small enough so that

$$
2\left(C_{0}\left|B\left(x_{0}, r\right)\right|\right)^{(n-1) / n}=\left(2^{n-2}-1\right) \tau^{(n-1) / n}
$$

we obtain from (7.25)

$$
\begin{align*}
& (\psi(\varepsilon))^{1 / n}\left[(\psi(\varepsilon))^{(n-1) / n}-\frac{2\left(C_{0}|B|\right)^{(n-1) / n}}{2^{n-1}-2}\right] \tag{7.28}\\
& \quad=\quad(\psi(\varepsilon))^{1 / n}\left[(\psi(\varepsilon))^{(n-1) / n}-\frac{1}{2} \tau^{(n-1) / n}\right]=o(1)
\end{align*}
$$

Substituting (7.27) into (7.28) we derive $(\psi(\varepsilon))^{1 / n}=o(1)$, which is contrary to (7.27).

Step 7: Noting the weak lower semicontinuity of the functional $\int_{B}|\nabla u|^{n}$, from (4.9) we are led to

$$
\int_{B}\left|\nabla u_{n}\right|^{n} \leq \underline{\lim }_{\varepsilon_{k} \rightarrow 0} \int_{B}\left|\nabla u_{\varepsilon_{k}}\right|^{n} .
$$

Combining this with (7.5) and (7.26) we obtain

$$
\begin{aligned}
\int_{B}\left|\nabla u_{n}\right|^{n} \leq \varliminf_{\lim _{\varepsilon_{k} \rightarrow 0}} \int_{B}\left|\nabla u_{\varepsilon_{k}}\right|^{n} & \leq \varlimsup_{\lim _{\varepsilon_{k} \rightarrow 0}} \int_{B}\left|\nabla u_{\varepsilon_{k}}\right|^{n} \\
& \leq \lim _{\varepsilon_{k} \rightarrow 0} \int_{B}\left|\nabla w^{*}\right|^{n}=\int_{B}\left|\nabla u^{*}\right|^{n}
\end{aligned}
$$

Recalling the definition of u^{*} in Step 4, and noticing $u_{n} \in W_{u_{n}}^{1, n}\left(B, S^{n-1}\right)$, we know that u_{n} is also a minimizer of $\int_{B}|\nabla u|^{n}$ and

$$
\begin{equation*}
\lim _{\varepsilon_{k} \rightarrow 0} \int_{B}\left|\nabla u_{\varepsilon_{k}}\right|^{n}=\int_{B}\left|\nabla u_{n}\right|^{n}=\int_{B}\left|\nabla u^{*}\right|^{n} \tag{7.29}
\end{equation*}
$$

which and (4.9) imply

$$
\nabla u_{\varepsilon_{k}} \rightarrow \nabla u_{n}, \quad \text { in } L^{n}\left(B, \mathbb{R}^{n}\right)
$$

Combining this with the fact

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } L^{n}\left(B, \mathbb{R}^{n}\right)
$$

which can be deduced from (4.6), we derive

$$
u_{\varepsilon_{k}} \rightarrow u_{n}, \quad \text { in } W^{1, n}\left(B, \mathbb{R}^{n}\right)
$$

Then it is not difficult to complete the proof of this theorem.

8 The proof of (7.5)

To prove (7.5), we will introduce a comparison function first. Consider the functional

$$
E(\rho, B)=\frac{1}{n} \int_{B}\left(|\nabla \rho|^{2}+1\right)^{n / 2}+\frac{1}{2 \varepsilon^{n}} \int_{B}(1-\rho)^{2} .
$$

It is easy to prove that the minimizer ρ_{1} of $E(\rho, B)$ on $W_{\left|u_{\varepsilon}\right|}^{1, n}\left(B, R^{+}\right)$exists and satisfies

$$
\begin{align*}
-\operatorname{div}\left(v^{(n-2) / 2} \nabla \rho\right) & =\frac{1}{\varepsilon^{n}}(1-\rho) \quad \text { on } \quad B, \tag{8.2}\\
\left.\rho\right|_{\partial B} & =\left|u_{\varepsilon}\right|, \tag{8.3}
\end{align*}
$$

where $v=|\nabla \rho|^{2}+1$. Since $1 / 2 \leq\left|u_{\varepsilon}\right| \leq 1$ on B, it follows from the maximum principle that

$$
\begin{equation*}
1 / 2 \leq\left|u_{\varepsilon}\right| \leq \rho_{1} \leq 1 \tag{8.4}
\end{equation*}
$$

on \bar{B}.
Applying (4.6) we see easily that

$$
\begin{equation*}
E\left(\rho_{1}, B\right) \leq E\left(\left|u_{\varepsilon}\right|, B\right) \leq C E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq C . \tag{8.5}
\end{equation*}
$$

Multiplying (8.2) by $(\nu \cdot \nabla \rho)$, where $\rho=\rho_{1}$, and integrating over B, we obtain

$$
\begin{equation*}
-\int_{\partial B} v^{(n-2) / 2}(\nu \cdot \nabla \rho)^{2}+\int_{B} v^{(n-2) / 2} \nabla \rho \cdot \nabla(\nu \cdot \nabla \rho)=\frac{1}{\varepsilon^{n}} \int_{B}(1-\rho)(\nu \cdot \nabla \rho), \tag{8.6}
\end{equation*}
$$

where ν denotes the unit outside norm vector on ∂B. Using (8.5) we have

$$
\begin{align*}
& \quad\left|\int_{B} v^{(n-2) / 2} \nabla \rho \nabla(\nu \cdot \nabla \rho)\right| \leq C \int_{B} v^{(n-2) / 2}|\nabla \rho|^{2}+\frac{1}{2}\left|\int_{B} v^{(n-2) / 2} \nu \cdot \nabla v\right| \\
& \leq C+\frac{1}{n}\left|\int_{B} \nu \cdot \nabla\left(v^{n / 2}\right)\right| \leq C+\frac{1}{n} \int_{B}\left|\operatorname{div}\left(\nu v^{n / 2}\right)-v^{n / 2} \operatorname{div\nu }\right| \\
& C+\frac{1}{n} \int_{\partial B} v^{n / 2} . \tag{8.7}
\end{align*}
$$

Combining (8.3)(7.1) and (8.5) we also have

$$
\begin{aligned}
& \left|\frac{1}{\varepsilon^{n}} \int_{B}(1-\rho)(\nu \cdot \nabla \rho)\right| \leq \frac{1}{2 \varepsilon^{n}}\left|\int_{B}(1-\rho)^{2} d i v \nu-\int_{\partial B}(1-\rho)^{2}\right| \\
& \leq \frac{1}{2 \varepsilon^{n}} \int_{B}(1-\rho)^{2}|d i v \nu|+\frac{1}{2 \varepsilon^{n}} \int_{\partial B}(1-\rho)^{2} \leq C .
\end{aligned}
$$

Substituting this and (8.7) into (8.6) yields

$$
\begin{equation*}
\left|\int_{\partial B} v^{(n-2) / 2}(\nu \cdot \nabla \rho)^{2}\right| \leq C+\frac{1}{n} \int_{\partial B} v^{n / 2} \tag{8.8}
\end{equation*}
$$

Applying (8.3)(7.1) and (8.8), we obtain for any $\delta \in(0,1)$,

$$
\begin{aligned}
& \int_{\partial B} v^{n / 2}=\int_{\partial B} v^{(n-2) / 2}\left[1+(\tau \cdot \nabla \rho)^{2}+(\nu \cdot \nabla \rho)^{2}\right] \\
= & \int_{\partial B} v^{(n-2) / 2}\left[1+\left(\tau \cdot \nabla\left|u_{\varepsilon}\right|\right)^{2}+(\nu \cdot \nabla \rho)^{2}\right] \\
\leq & \int_{\partial B} v^{(n-2) / 2}+\int_{\partial B} v^{(n-2) / 2}(\nu \cdot \nabla \rho)^{2} \\
& +\left(\int_{\partial B} v^{n-2}\right)^{(n-2) / n}\left(\int_{\partial B}\left(\tau \cdot \nabla\left|u_{\varepsilon}\right|\right)^{n}\right)^{2 / n} \\
\leq & C(\delta)+\left(\frac{1}{n}+2 \delta\right) \int_{\partial B} v^{n / 2},
\end{aligned}
$$

where τ denotes the unit tangent vector on ∂B. Hence it follows by choosing $\delta>0$ so small that

$$
\begin{equation*}
\int_{\partial B} v^{n / 2} \leq C . \tag{8.9}
\end{equation*}
$$

Now we multiply both sides of (8.2) by $(1-\rho)$ and integrate over B. Then

$$
\int_{B} v^{(n-2) / 2}|\nabla \rho|^{2}+\frac{1}{\varepsilon^{n}} \int_{B}(1-\rho)^{2}=-\int_{\partial B} v^{(n-2) / 2}(\nu \cdot \nabla \rho)(1-\rho) .
$$

From this, using (7.1)(8.3)(8.4) and (8.9) we obtain

$$
\begin{align*}
& E\left(\rho_{1}, B\right) \leq C|(\nu \cdot \nabla \rho)(1-\rho)| \\
\leq & C\left|\int_{\partial B} v^{n / 2}\right|^{(n-1) / n}\left|\int_{\partial B}(1-\rho)^{2}\right|^{1 / n} \tag{8.10}\\
\leq & C\left|\int_{\partial B}\left(1-\left|u_{\varepsilon}\right|\right)^{2}\right|^{1 / n} \leq C \varepsilon
\end{align*}
$$

Since u_{ε} is a minimizer of $E_{\varepsilon}(u, B)$, we have

$$
\begin{align*}
& E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq E_{\varepsilon}\left(\rho_{1} w, B\right) \\
= & \frac{1}{n} \int_{B}\left(\left|\nabla \rho_{1}\right|^{2}+\rho_{1}^{2}|\nabla w|^{2}\right)^{n / 2}+\frac{1}{4 \varepsilon^{n}} \int_{B}\left(1-\rho_{1}^{2}\right)^{2}, \tag{8.11}
\end{align*}
$$

where w is a solution of (7.3). On on hand,

$$
\begin{align*}
& \int_{B}\left(\left|\nabla \rho_{1}\right|^{2}+\rho_{1}^{2}|\nabla w|^{2}\right)^{n / 2} d x-\int_{B}\left(\rho_{1}^{2}|\nabla w|^{2}\right)^{n / 2} d x \\
= & \frac{n}{2} \int_{B} \int_{0}^{1}\left[\left(\left|\nabla \rho_{1}\right|^{2}+\rho_{1}^{2}|\nabla w|^{2}\right)^{(n-2) / 2} s+\left(\rho_{1}^{2}|\nabla w|^{2}\right)^{(n-2) / 2}(1-s)\right] d s\left|\nabla \rho_{1}\right|^{2} d x \\
\leq & C \int_{B}\left(\left|\nabla \rho_{1}\right|^{n}+\left|\nabla \rho_{1}\right|^{2}|\nabla w|^{(n-2) / 2}\right) d x . \tag{8.12}
\end{align*}
$$

On the other hand, by using (8.10) and (7.4) we have
$\int_{B}\left|\nabla \rho_{1}\right|^{2}|\nabla w|^{(n-2) / 2} \leq\left(\int_{B}\left|\nabla \rho_{1}\right|^{4 n /(n+2)}\right)^{(n+2) / 2 n}\left(\int_{B}|\nabla w|^{n}\right)^{(n-2) / 2 n} \leq C \varepsilon^{\lambda}$.
Combining (8.11)-(8.13), we can derive

$$
E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq \frac{1}{n} \int_{B} \rho_{1}^{n}|\nabla w|^{n}+C \varepsilon^{\lambda}
$$

where λ is a constant only depending on n. Thus (7.5) can be seen by (8.4).

References

[1] F. Bethuel, H. Brezis, F. Helein: Ginzburg-Landau Vortices, Birkhauser. 1994.
[2] H. Brezis, J. Coron, E. Leib: Harmonic maps with defects, Comm. Math. Phys. ,107 (1996).649-705.
[3] B. Chen, R.Hardt: Prescribing singularities for p-harmonic maps, Ind. Univ. Math. J. ,44 (1995).575-602.
[4] Y. Chen, M. Hong, N. Hungerbuhler: Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35.
[5] R. Hardt, F. Lin: Mappings minimizing the L^{p} norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588.
[6] M. Hong: Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps, Adv. in Diff. Eqns., 1 (1996), 611-634.
[7] Y. Lei, Z. Wu, H. Yuan: Radial minimizers of a Ginzburg-Landau type functional, Electron. J. Diff Eqns., 1999 (1999), No. 30, 1-21.
[8] M. Struwe: On the asymptotic behaviour of minimizers of the GinzburgLandau model in 2 dimensions, Diff. and Inter. Eqns., 7 (1994), 1613-1624.
[9] P. Tolksdorf: Everywhere regularity for some quasilinear systems with a lack of ellipticity, Anna. Math. Pura. Appl., 134 (1983), No. 30, 241-266.

Yutian Lei
Mathematics Department, SuZhou University
1 Shizi street
Suzhou, Jiangsu, 215006
P. R. China
e-mail: lythxl@163.com

[^0]: * Mathematics Subject Classifications: 35J70.

 Key words: Ginzburg-Landau functional, module and zeroes of regularizable minimizers. (C)2001 Southwest Texas State University.

 Submitted December 13, 2000. Published February 23, 2001.

