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Homogenization of a nonlinear degenerate

parabolic differential equation ∗

A. K. Nandakumaran & M. Rajesh

Abstract

In this article, we study the homogenization of the nonlinear degener-
ate parabolic equation

∂tb(
x

ε
, uε)− div a(

x

ε
,
t

ε
, uε,∇uε) = f(x, t),

with mixed boundary conditions(Neumann and Dirichlet) and obtain the
limit equation as ε → 0. We also prove corrector results to improve the
weak convergence of ∇uε to strong convergence.

1 Introduction

Let Ω be a bounded domain in Rn with Lipschitz boundary and let T > 0 be a
constant. Let ∂Ω = Γ1 ∪Γ2, where it is assumed that Γ1 has positive Hausdorff
measure, Hn−1(Γ1). We will denote Ω × [0, T ] by ΩT , and Γi × [0, T ] by Γi,T ,
i = 1, 2. We consider the following initial-boundary value problem

∂tb(xε , uε)− div a(xε ,
t
ε , uε,∇uε) = f(x, t) in ΩT ,

a(xε ,
t
ε , uε,∇uε).ν = 0 on Γ2,T ,
uε = g on Γ1,T ,

uε(x, 0) = u0 in Ω.

(1.1)

whose diffusion term is a monotone operator. Regarding the existence, unique-
ness and regularity results for the above problem, which we will refer to as (Pε),
we refer the reader to [2].

We are interested in the asymptotic behaviour of the problem (Pε) as ε→ 0.
The homogenization of such equations with b(y, s) ≡ s or b(y, s) linear in s has
been studied quite widely (cf. [3, 5, 4, 7, 6, 16, 9, 15]). However, the case where
b is nonlinear has not been studied so much. Recently, H. Jian (cf. [10]) studied
this problem for b(y, s) of the form b(s), assumed to be continuous and non-
decreasing in s and satisfying the monotonicity condition. It was shown, under
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2 Homogenization of a nonlinear equation EJDE–2001/17

an a priori assumption on the boundedness of the sequence uε in L∞(ΩT ), that
the homogenized equation corresponding to this problem is

∂tb(u)− div A(u,∇u) = f(x, t) in ΩT ,
A(u,∇u).ν = 0 on Γ2,T ,

u = g on Γ1,T ,
u(x, 0) = 0 in Ω

(1.2)

for a suitable function A. That is, the solutions uε of the in-homogeneous
problem converge in some sense to a solution u of the homogeneous problem.
They first obtain a uniform bound, with respect to ε, on ∇uε in Lp(ΩT ) and
hence on ∂tb(uε) and a(xε ,

t
ε , uε,∇uε) in an appropriate dual space. Thus, the

sequences ∂tb(uε), a(xε ,
t
ε , uε,∇uε) each have a weak ∗ limit in that space, but to

complete the analysis these limits have to be identified as ∂tb(u) and A(u,∇u),
respectively. A crucial link in showing this was the fact that b(uε) converges
strongly to b(u) in some Lq(ΩT ) and this in turn was used to prove the strong
convergence of uε to u in some Lr(ΩT ) ( note that we cannot conclude the
strong convergence of uε to u from the uniform bound on the sequence ∇uε
in Lp(ΩT ) because the time derivative is not involved, but this information is
hidden in the boundedness of ∂tb(uε)). This is then used to identify the limits
of the sequences ∂tb(uε) and a(xε ,

t
ε , uε,∇uε).

However, for the class of problems that we consider, b(xε , uε) can be expected
to have only a weak limit in any Lq(ΩT ). This does not help in proving the strong
convergence of uε to a u in any Lr(ΩT ), which is crucially needed for identifying
the weak limits of the sequences ∂tb(xε , uε) and a(xε ,

t
ε , uε,∇uε). However, we

are able to prove directly that uε → u in some Lr(ΩT ) by adapting a technique
found in [2]. From this we can prove that ∂tb(xε , uε) has as its weak limit
∂tb(u). Here, b(s) denotes the average of b(y, s) in the variable y in the unit cell
Y = [0, 1]n. Interestingly, we show that b(xε , uε) − b(

x
ε , u) strongly converges

to 0 in any Lq(ΩT ), 0 < q < ∞, which yields the strong convergence of b(uε)
to b(u) when b is independent of the variable y. The diffusion term in the
homogenized problem is the same as in [10], viz. divA(u,∇u) (cf. Theorem
(2.3)), but we identify this using the method of two-scale convergence. We also
use the two-scale convergence method to prove the corrector results.

We prove corrector results under the strong monotonicity assumption on a
which in turn, yields a corrector result for the work of H. Jian. That is, we
construct suitable strong approximations for ∇uε.

The layout of the paper is as follows. In Section 2, we give the weak formu-
lation for the problem (Pε). Then, we state our main results viz. Theorem 2.3
and Theorem 2.5. In Section 3, we prepare the ground for homogenization by
obtaining some a priori estimates and by proving the strong convergence of uε
to some u (for a subsequence) in some Lr(ΩT ). In Section 4, we prove our main
theorems.
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2 Assumptions and Main Results

For p > 1, p∗ will denote the conjugate exponent p/(p− 1). Let V be the space,
{v ∈W 1,p(Ω) : v = 0 on Γ1} and let V ∗ be the dual of V . Let E = Lp(0, T ;V )
and let W 1,p

per(Y ) be the space of elements of W 1,p(Y ) having the same trace on
opposite faces of Y . We say, uε ∈ g +E is a weak solution of the problem (Pε)
if it satisfies:

b(
x

ε
, uε) ∈ L∞(0, T ;L1(Ω)), ∂tb(

x

ε
, uε) ∈ Lp

∗
(0, T ;V ∗) , (2.1)

that is∫ T

0

< ∂tb(
x

ε
, uε), ξ(x, t) > dt+

∫
ΩT

(b(
x

ε
, uε)− b(

x

ε
, u0))∂tξ dx dt = 0 (2.2)

for all ξ ∈ E ∩W 1,1(0, T ;L∞(Ω)) with ξ(T ) = 0 and∫ T

0

< ∂tb(
x

ε
, uε), ξ(x, t) > dt+

∫
ΩT

a(
x

ε
,
t

ε
, uε,∇uε).∇ξ(x, t) dx dt

=
∫

ΩT

f(x, t)ξ(x, t) dx dt (2.3)

for all ξ ∈ E.
For the existence of a solution for the weak formulation we make the following

assumptions (cf. [2]).

(A1) The function b(y,s) is continuous in y and s, Y -periodic in y and non-
decreasing in s and b(y, 0) = 0.

(A2) There exists a constant θ > 0 such that for every δ and R with 0 < δ < R,
there exists C(δ,R) > 0 such that

|b(y, s1)− b(y, s2)| > C(δ,M)|s1 − s2|θ (2.4)

for all y ∈ Y and s1, s2 ∈ [−R,R] with δ < |s1|.

(A3) The mapping (y, s, µ, λ) 7→ a(y, s, µ, λ) defined from R
n × R× R× Rn to

R
n is measurable in (y, s) and continuous in (µ, λ). Further, it is assumed

that there exists three positive constants α, r, τ0 so that for all (y, s, µ, λ)
and all µ1, µ2 ∈ R and λ, λ1, λ2 ∈ Rn one has,

a(y, s, µ, λ)(λ) ≥ α|λ|p (2.5)
(a(y, s, µ, λ1)− a(y, s, µ, λ2))(λ1 − λ2) > 0, ∀λ1 6= λ2 (2.6)

|a(y, s, µ, λ)| ≤ α−1(1 + |µ|p−1 + |λ|p−1) (2.7)
|a(y, s, µ1, λ)− a(y, s, µ2, λ)
≤ α−1|µ1 − µ2|r(1 + |µ1|p−1−r + |µ2|p−1−r + |λ|p−1−r) (2.8)

Also it is assumed that a(y, s, µ, λ) is Y −τ0 periodic in (y, s) for all (µ, λ).
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(A4) Assume g ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(ΩT ), ∂tg ∈ L1(0, T ;L∞(Ω)),
u0 ∈ L∞(Ω), and f ∈ Lp∗(ΩT ).

(A5) For all y, s, µ, λ1, λ2,

(a(y, s, µ, λ1)− a(y, s, µ, λ2))(λ1 − λ2) ≥ α|λ1 − λ2|p. (2.9)

Remark 2.1 It is to be noted that (A5) implies the conditions (2.5) and (2.6)
in (A3), which alone are sufficient to guarantee the existence of a solution to the
weak formulation of (Pε) and for its homogenization. (A5) will be used only in
proving the corrector result.

Remark 2.2 The prototype for b is a function of the form c(y)|s|k sgn(s) for
some positive real number k and continuous and Y -periodic function, c(.), which
is non-vanishing on Y .

We now state our main theorems.

Theorem 2.3 Let uε be a family of solutions of (Pε). Assume that there is a
constant C > 0, such that

sup
ε
‖uε‖L∞(ΩT ) ≤ C (2.10)

Under, the assumptions (A1)-(A4), there exists a subsequence of ε, still denoted
by ε, such that for all q with 0 < q <∞, we have,

uε → u strongly in Lq(ΩT ) (2.11)
∇uε ⇀ ∇u weakly in Lp(ΩT ) (2.12)

b(
x

ε
, uε)− b(

x

ε
, u) → 0 strongly in Lq(ΩT ) (2.13)

b(
x

ε
, uε) → b(u) weakly in Lq(ΩT ) for q > 1, (2.14)

and u solves,
∂tb(u)− divA(u,∇u) = f in ΩT ,

A(u,∇u).ν = 0 on Γ2,T ,
u = g on Γ1,T ,

u(x, 0) = u0 in Ω,

(2.15)

where b and A are defined below by (2.16)-(2.17).

Remark 2.4 Of course, the assumption (2.10) is true in special cases (see [12]
Ch. 5) and it is reasonable on physical grounds (see [10]).

The functions b and A are defined by

b(s) =
∫
Y

b(y, s) dy (2.16)
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A(µ, λ) =
1
τ0

∫ τ0

0

∫
Y

a(y, s, µ, λ+∇Φµ,λ(y, s)) dy ds (2.17)

where Φµ,λ ∈ Lp(0, τ0;W 1,p
per(Y )) solves the periodic boundary value problem∫ τ0

0

∫
Y

a(y, s, µ, λ+∇Φµ,λ(y, s)).∇φ(y, s) dy ds = 0 (2.18)

for all φ ∈ Lp(0, τ0;W 1,p
per(Y )). For the existence of solutions to (2.18), we refer

the reader to Corollary 1.8, Ch. 3 of [11]. It can be shown that A(µ, λ) :
R× Rn → R

n is continuous and satisfies

|A(µ, λ)| ≤ β−1(1 + |µ|p−1 + |λ|p−1) (2.19)
(A(µ, λ1)−A(µ, λ2)).(λ1 − λ2) > 0, ∀λ1 6= λ2, (2.20)

A(µ, λ).λ ≥ β|λ|p (2.21)

for a positive constant β which depends only on α, n, p, τ0(cf. Lemmas 2.4-2.6
in [8]).

Note that in (2.12) we only have weak convergence of ∇uε in Lp. We con-
struct some correctors for ∇uε which will improve the weak convergence (2.12)
to strong convergence. Such results are known as corrector results in the lit-
erature of homogenization and are very useful in numerical computations. Let
u(x, t) be as in Theorem 2.3 and let U1 ∈ Lp(ΩT × (0, τ0);W 1,p

per(Y )) be the
solution of the variational problem,∫

ΩT

∫
Y

∫ τ0

0

a(y, s, u,∇xu+∇yU1(x, t, y, s)).∇yΨ(x, t, y, s) = 0, (2.22)

for all Ψ ∈ Lp(ΩT×(0, τ0);W 1,p
per(Y )). It will be seen that there is such a function

U1. The statement of the corrector result is as follows.

Theorem 2.5 Let uε, u be as in Theorem 2.3 and let U1 be as defined above.
We assume all the assumptions in Theorem 2.3 and furthermore, the strong
monotonicity assumption (A5). Then, if u, U1 are sufficiently smooth, i.e. be-
long to C1(ΩT ) and C(ΩT ;Cper(0, τ0)× C1

per(Y )), then

uε − u− εU1(x, t,
x

ε
,
t

ε
) → 0 strongly in Lp(ΩT ) and, (2.23)

∇uε −∇u−∇yU1(x, t,
x

ε
,
t

ε
) → 0 strongly in Lp(ΩT ). (2.24)

Remark 2.6 Note that we are not claiming uε−u−εU1(x, t, xε ,
t
ε )→ 0 strongly

in Lp(0, T ;W 1,p(Ω)) as we do not have the full gradient of U1 with respect to x
in (2.24).

3 Preliminaries

We first obtain a priori bounds under the assumption (2.10). From now on, C
will denote a generic positive constant which is independent of ε.
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Lemma 3.1 Let uε be a family of solutions of (Pε) and assume that (2.10)
holds. Then,

sup
ε
‖∇uε‖Lp(ΩT ) ≤ C (3.1)

sup
ε
‖a(

x

ε
,
t

ε
, uε,∇uε)‖Lp∗ (ΩT ) ≤ C (3.2)

sup
ε
‖∂tb(

x

ε
, uε)‖E∗ ≤ C (3.3)

Proof: Define the function B(., .) : Rn × R→ R by

B(y, s) = b(y, s)s−
∫ s

0

b(y, τ) dτ (3.4)

The following identity can be deduced as in Lemma 1.5 of Alt and Luckhaus [2].∫
Ω

(B(
x

ε
, uε(x, T ))−B(

x

ε
, u0)) dx

=
∫ T

0

〈∂tb(
x

ε
, uε), (uε − g)〉dt−

∫
ΩT

(b(
x

ε
, uε)− b(

x

ε
, u0)) ∂tg dx dt

+
∫

Ω

(b(
x

ε
, uε(T ))− b(x

ε
, u0))g(T ) dx (3.5)

Therefore, using (2.3) we obtain,∫
Ω

B(
x

ε
, uε(x, T )) dx+

∫
ΩT

a(
x

ε
,
t

ε
, uε,∇uε).∇uε dx dt

=
∫

Ω

B(
x

ε
, u0) dx+

∫
ΩT

a(
x

ε
,
t

ε
, uε,∇uε).∇g dx dt

+
∫

ΩT

f(x, t)(uε − g) dx dt−
∫

ΩT

(b(
x

ε
, uε)− b(

x

ε
, u0)) ∂tg dx dt

+
∫

Ω

(b(
x

ε
, uε(T ))− b(x

ε
, u0))g(T ) dx. (3.6)

Notice that due to (2.10), (A1), (A3) and (A4) we obtain∫
Ω

B(
x

ε
, uε(x, T )) dx+

∫
ΩT

a(
x

ε
,
t

ε
, uε,∇uε).∇uε dx dt

≤ C + C‖∇uε‖p−1
p,ΩT
‖g‖p,ΩT (3.7)

Therefore, as B is non-negative from its definition, we get using (A3) again that,

α‖∇uε‖pp,ΩT ≤ C + C‖∇uε‖p−1
p,ΩT

(3.8)

for all ε. This implies (3.1). Then, (3.2) follows from (3.1) and (A3), while (3.3)
follows from (3.1), (3.2) and the weak formulation (2.3). ♦
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As a consequence of (2.10) and the above lemma, we immediately conclude
that, for a subsequence of ε( to be denoted by ε again),

uε ⇀ u weakly * in L∞(ΩT ), (3.9)
∇uε ⇀ ∇u weakly in Lp(ΩT ) (3.10)

b(
x

ε
, uε) ⇀ b∗ weakly * in L∞(ΩT ) (3.11)

∂tb(
x

ε
, uε) ⇀ w weakly * in E∗, (3.12)

a(
x

ε
,
t

ε
, uε,∇uε) ⇀ A∗(x, t) weakly in Lp

∗
(ΩT ) (3.13)

for some b∗ ∈ L∞(ΩT ), w ∈ E∗ and A∗ ∈ Lp∗(ΩT ). The task is to identify these
quantities and obtain the limit equation. We now prove that, for a subsequence,
uε converges a.e. to u in ΩT and this will form a crucial part of the present
analysis. This will be found useful in identifying b∗, w and A∗.

Lemma 3.2 There exists a continuous, increasing function ω on R+ with ω(0) =
0, such that, given any C > 0, δ > 0, if v1, v2 are any two functions in
W 1,p(Ω) ∩ L∞(Ω) with ‖vi‖∞,Ω ≤ C, i = 1, 2, satisfying∫

Ω

(b(
x

ε
, v1)− b(x

ε
, v2))(v1 − v2) dx ≤ δ ∀ε > 0

then ∫
Ω

|b(x
ε
, v1)− b(x

ε
, v2)| dx ≤ ω(δ) ∀ε > 0.

Proof: By the a priori bounds for v1, v2 in L∞, we can restrict b to the domain
Y × [−C,C], where it is uniformly continuous. Now,∫

Ω

|b(x
ε
, v1)− b(x

ε
, v2)| dx

=
∫

Ω∩{|v1−v2|<δ
1
2 }
|b(x
ε
, v1)− b(x

ε
, v2)| dx

+
∫

Ω∩{|v1−v2|≥δ
1
2 }
|b(x
ε
, v1)− b(x

ε
, v2)| dx

≤ ωb(δ
1
2 )m(Ω) + δ−

1
2

∫
Ω

(b(
x

ε
, v1)− b(x

ε
, v2))(v1 − v2) dx

≤ ωb(δ
1
2 )m(Ω) + δ

1
2

where ωb is the modulus of continuity function for b. Thus, we obtain the lemma
by taking ω(t) .= ωb(t

1
2 )m(Ω) + t

1
2 . ♦

Lemma 3.3 Let uε be the solution of (1.1). Then, the sequence {uε}ε>0 is
relatively compact in Lθ(ΩT ), where θ is as in (A2). As a result, there is a
subsequence of uε such that,

uε → u a. e. in ΩT (3.14)
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Proof: Step 1: Using the arguments from [10], it can be shown that

h−1

∫ T−h

0

∫
Ω

(b(
x

ε
, uε(t+ h))− b(x

ε
, uε(t)))(uε(t+ h)− uε(t)) dx dt ≤ C

for some constant C which is independent of ε and h.
Step 2: We show that∫ T−h

0

∫
Ω

|b(x
ε
, uε(t+ h))− b(x

ε
, uε(t))| dx dt→ 0

as h→ 0, uniformly with respect to ε. Set, for R > 0 and large,

Eε,R = {t ∈ (0, T − h) : ‖uε(t+ h)‖W 1,p(Ω) + ‖uε(t)‖W 1,p(Ω) + ‖g‖W 1,p(Ω)

+h−1

∫
Ω

(b(
x

ε
, uε(t+ h))− b(x

ε
, uε(t))).(uε(t+ h)− uε(t)) dx > R}

From the estimate in Step 1, it follows that m(Eε,R) ≤ C/R. Set E
′

ε,R to be
the complement of Eε,R in (0, T − h). Hence, for t ∈ E′ε,R, by Lemma 3.2, we
have ∫

Ω

|b(x
ε
, uε(t+ h))− b(x

ε
, uε(t))| dx < ω(hR). (3.15)

Therefore, ∫ T−h

0

∫
Ω

|b(x
ε
, uε(t+ h))− b(x

ε
, uε(t))|

=
∫
Eε,R

∫
Ω

|b(x
ε
, uε(t+ h))− b(x

ε
, uε(t))|

+
∫
E
′
ε,R

∫
Ω

|b(x
ε
, uε(t+ h))− b(x

ε
, uε(t))|

≤ C/R+ T ω(hR)

for all ε,R and h. Now, choose R large, fixed so that C/R is as small as we
please and then let h→ 0 to complete the proof of Step 2.
Step 3: By assumption (A2), it follows from Step 2 that∫ T−h

0

∫
Ω

|uε(t+ h)− uε(t)|θ dx dt→ 0 as h→ 0 (3.16)

uniformly with respect to ε.
Step 4: In this crucial step, we demonstrate the relative compactness of the
sequence {uε}ε>0 in Lθ(ΩT ). This is an argument to reduce it to the time
independent case. Set,

vε(x, t) =
{
uε(x, t) if t ∈ (0, T − h) \ Eε,R
0 if t ∈ Eε,R ∪ [T − h, T ] (3.17)
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Choose, h so that T is an integral multiple of h. We have,

1
h

∫ h

0

∫ T

0

∫
Ω

|uε(t)−
T/h∑
i=1

χ((i−1)h,ih)vε((i− 1)h+ s)|θ dx dt ds

=
1
h

T/h∑
i=1

∫ ih

(i−1)h

∫ ih

(i−1)h

∫
Ω

|uε(t)− vε(s)|θ dx dt ds

≤ 1
h

∫ h

−h

∫ min(T,T−s)

max(0,−s)

∫
Ω

|uε(t)− vε(s+ t)|θ dx dt ds

≤ Sup|s|≤h

∫ min(T,T−s)

max(0,−s)

∫
Ω

|uε(t)− uε(s+ t)|θ dx dt

+
∫
Eε,R∪(T−h,T )

∫
Ω

|uε(t)|θ dx dt

≤ T w(hR) + C/R

which can be taken small, say less than µ (for all ε), by fixing h small and
R = h−

1
2 . Therefore, there exists sε ∈ (0, h) such that∫

ΩT

|uε(t)−
T/h∑
i=1

χ((i−1)h,ih)vε((i− 1)h+ sε)|θ dx dt

is small uniformly in ε. Note that the sequences {vε((i − 1)h + sε)}ε>0 are
independent of time. Therefore, it is enough to show that {vε((i− h) + sε)}ε>0

are relatively compact sequences in Lθ(ΩT ) for i = 1, ..., T/h. But, this follows
from the compact inclusion of W 1,p(Ω) in Lp(Ω) as these sequences are bounded
in W 1,p(Ω) (by the definition of Eε,R) for each i. ♦

We end the section by recalling a fact which is quite useful in periodic ho-
mogenization. Let f be a function in Lqloc(R

n;Cper(Y )). Then we have the
following lemma.

Lemma 3.4 The oscillatory function f(xε , x) converges weakly in Lqloc(R
n) to∫

Y
f(y, x) dy, for all q > 1.

4 Homogenization and Correctors

First, we prove (2.11), (2.13) and (2.14) using Lemma 3.3 and Lemma 3.4.
Then, we identify b∗ and A∗ given by (3.13). Finally, we prove that u satisfies
the homogenized equation (2.15).

By the a priori bound (2.10) and (3.14), it follows by the Lebesgue dominated
convergence theorem that

uε → u strongly in Lq(ΩT ) , (4.1)

for all q with 0 < q <∞. Thus, we have shown (2.11) and we have the following
proposition.
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Proposition 4.1 We have,

b(
x

ε
, uε)− b(

x

ε
, u)→ 0 strongly in Lq(ΩT ) ∀ q, 0 < q <∞.

Proof: By the a priori bound (2.10), it is enough to consider the function b on
Y × [−M,M ] for a large M > 0. As b is continuous, it is uniformly continuous
on Y × [−M,M ]. Therefore, given h0 > 0, there exists a δ > 0 such that,

|b(y, s)− b(y′, s′)| < h0,

whenever |y − y′|+ |s− s′| < δ.
Now, since uε → u a.e in ΩT , by Egoroff’s theorem, given h1 > 0, there

exists E ⊂ ΩT such that its Lebesgue measure m(E) < h1 and uε converges
uniformly to u on ΩT \ E ≡ E′. Therefore, we can find ε1 > 0 such that

‖uε − u‖∞,E′ < δ ∀ε < ε1. (4.2)

Therefore, for ε < ε1 we have,∫
ΩT

|b(x
ε
, uε)− b(

x

ε
, u)|q dx dt

=
∫
E′
|b(x
ε
, uε)− b(

x

ε
, u)|q dx dt+

∫
E

|(b(x
ε
, uε)− b(

x

ε
, u))|q dx dt

≤ hq0m(ΩT ) + 2q sup(|b|q)m(E)
≤ hq0m(ΩT ) + 2q sup(|b|q)h1.

This completes the proof as h0 and h1 can be chosen arbitrarily small. ♦

Corollary 4.2 If b(xε , uε) = b(uε), then the above proposition shows that b(uε)→
b(u) strongly in Lq(ΩT ), the result of Jian [10].

Corollary 4.3 We have the following convergences:

(i) b(xε , uε) converges to b(u) weakly in Lq(ΩT ) for any q ∈ (1,∞) and hence
b∗ = b(u).

(ii) ∂tb(xε , uε) ⇀ ∂tb(u) weakly * in E∗ and thus w = ∂tb(u).

Proof: (i) We can write, b(xε , uε) = (b(xε , uε) − b(
x
ε , u)) + b(xε , u). The result

now follows from Proposition 4.1 and Lemma 3.4 and (ii) follows from (i) and
(3.12). ♦

Finally, we have to show that A∗ = A(u,∇u), which can be proved in a
manner similar to that in [10]. We present a different proof of this using the
method of two-scale convergence. Besides, some steps of the proof will be used
in proving the corrector result. First, we recall the definition and main results
concerning the method of two-scale convergence (cf. [1, 13, 14]). We set the
period τ0 in the time variable to be 1, for convenience of notation.
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Definition 4.4 Let 1 < q < ∞. A sequence of functions vε ∈ Lq(ΩT ) is said
to two-scale converge to a function v ∈ Lq(ΩT × Y × (0, 1)) if∫

ΩT

vε ψ(x, t,
x

ε
,
t

ε
) dx dt ε→0→

∫
ΩT

∫ 1

0

∫
Y

v(x, t, y, s)ψ(x, t, y, s) dy ds dx dt

for all ψ ∈ Lq∗(ΩT ;Cper(Y × (0, 1)). We write vε
2−s→ v.

Remark 4.5 From the definition of two-scale convergence, it is easy to see
that if vε is a sequence of functions in Lq(ΩT ) such that vε

2−s→ v(x, t, y, s), then
vε ⇀

∫ 1

0

∫
Y
v(x, t, y, s) dy ds weakly in Lq(ΩT ).

The following facts about two-scale convergence [1] will be used by us.

Theorem 4.6 If vε is a bounded sequence in Lq(ΩT ), then there exists a func-
tion v ∈ Lq(ΩT × Y × (0, 1)) such that, up to a subsequence, vε

2−s→ v(x, t, y, s).

Theorem 4.7 If vε,∇vε are bounded sequences in Lq(ΩT ), then there exist
v ∈ Lq((0, T ) × (0, 1);W 1,q(Ω)) and V1 ∈ Lq(ΩT × (0, 1);W 1,q

per(Y )) such that,
up to a subsequence,

vε
2−s→ v(x, t, s) ,

∇vε
2−s→ ∇xv(x, t, s) +∇yV1(x, t, y, s).

The following theorem [1] is useful in obtaining the limit of the product of
two two-scale convergent sequences. Let 1 < q <∞.

Theorem 4.8 Let vε be a sequence in Lq(ΩT ) and wε be a sequence in Lq
∗
(ΩT )

such that vε
2−s→ v and wε

2−s→ w. Further, assume that the sequence wε satisfies∫
ΩT

|wε|q
∗
(x, t) dx dt ε→0→

∫
ΩT

∫ 1

0

∫
Y

|w(x, t, y, s)|q
∗
dy ds dx dt. (4.3)

Then, ∫
ΩT

vεwε dx dt
ε→0→

∫
ΩT

∫ 1

0

∫
Y

v(x, t, y, s)w(x, t, y, s) dy ds dx dt.

Definition 4.9 A sequence wε which two-scale converges and satisfies (4.3) is
said to be strongly two-scale convergent.

Remark 4.10 An example of a strongly two-scale convergent sequence is the
sequence ψ(x, t, xε ,

t
ε ) for any ψ ∈ Lqper(Y × (0, 1);C(ΩT )).

We will now identify the homogenized problem corresponding to (Pε) using
the two-scale convergence method. To avoid the technicalities, we assume that
the Dirichlet boundary data g = 0.

Recalling that the solutions uε of the problem (Pε) converges to u strongly in
Lp(ΩT ) and observing that we have (3.1) and (3.2), we conclude using Theorem
4.7 and Theorem 4.6 that
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Proposition 4.11 There exist functions U1 ∈ Lp(ΩT × (0, 1);W 1,p
per(Y )) and

a0 ∈ Lp
∗
(ΩT × Y × (0, 1)) such that, up to a subsequence,

∇uε
2−s→ ∇xu(x, t) +∇yU1(x, t, y, s) , (4.4)

a(xε ,
t
ε , uε,∇uε)

2−s→ a0(x, t, y, s). (4.5)

Further, the pair (u, U1) satisfies the following two-scale homogenized problem∫ T

0

〈∂tb(u), φ〉 dt+
∫

ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).(∇xφ (4.6)

+∇yΦ(x, t, y, s)) dy ds dx dt =
∫

ΩT

f φ dx dt

for all φ ∈ C∞0 (ΩT ) and Φ ∈ C∞0 (ΩT ;C∞per(Y × (0, 1)).

Proof: Existence of U1, a0 and the convergence (4.4), (4.5) follow from the
previous two-scale convergence theorems and by the estimates (3.1) and (3.2).
Note that, we do not get the s dependence in the first term of right hand side
of (4.4) because of the strong convergence (4.1). Now, let φ ∈ C∞0 (ΩT ) and let
Φ ∈ C∞0 (ΩT ;C∞per(Y × (0, 1))). We take test functions as

φε = φ(x, t) + εΦ(x, t,
x

ε
,
t

ε
)

in (2.3). Note that,∫ T

0

〈∂tb(
x

ε
, uε), φε〉 dt

ε→0→
∫ T

0

〈∂tb(u), φ〉 dt,∫
ΩT

fφε dx dt
ε→0→

∫
ΩT

f φ dx dt

by Corollary 4.3, (ii) and the strong convergence of φε to φ in Lp(ΩT ). Also,
using (4.5) and Theorem 4.8 by two-scale convergence of ∇φε, we get∫

ΩT

a(
x

ε
,
t

ε
, uε,∇uε).∇φε dx dt

=
∫

ΩT

a(
x

ε
,
t

ε
, uε,∇uε).(∇xφ(x, t) +∇yΦ(x, t,

x

ε
,
t

ε
)) dx dt+ o(1)

ε→0→
∫

ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).(∇xφ(x, t) +∇yΦ(x, t, y, s)) dy ds dx dt.

Therefore, letting ε→ 0 in (2.3) with ξ = φε, we get (4.6). ♦

Remark 4.12 Note that by (4.5),

a(
x

ε
,
t

ε
, uε,∇uε) ⇀

∫
Y

∫ 1

0

a0(x, t, y, s) dy ds weakly in Lp
∗
(ΩT )
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Therefore, (3.13) implies that A∗(x, t) =
∫
Y

∫ 1

0
a0(x, t, y, s) dy ds a. e. in ΩT .

Thus, by setting Φ = 0 in (4.6) we get the homogenized equation

∂tb(u)− divA∗(x, t) = f in ΩT , (4.7)

The boundary condition can be shown to be, A∗(x, t).ν = 0 on Γ2,T , by choosing
smooth test functions which vanish only Γ1,T in the previous proposition. It
can be shown that u satisfies the initial condition, u(x, 0) = u0(x), by passing to
the limit in (2.2). Thus, in order to complete the homogenization it is enough
to show that A∗(x, t) = A(u,∇u) where A has been defined in (2.17).

We will first identify a0. In fact, we prove the following Proposition.

Proposition 4.13 Let a0 be given by (4.5) and let (u, U1) be as in Proposition
4.11. Then,

a0(x, t, y, s) = a(y, s, u,∇xu(x, t) +∇yU1(x, t, y, s)) a. e. in ΩT × Y × (0, 1).

Proof: Let φ,Φ be as before. Let λ > 0 and φ0 ∈ C∞0 (ΩT ;C∞per(Y × (0, 1)))n.
Set,

ηε
.= ∇xφ+ (∇yΦ)(x, t,

x

ε
,
t

ε
) + λφ0(x, t,

x

ε
,
t

ε
), (4.8)

aε
.= a(

x

ε
,
t

ε
, uε,∇uε) ,

dε
.= a(

x

ε
,
t

ε
, φ, ηε).

We have,

Jε
.=
∫

ΩT

(aε − dε).(∇uε − ηε)

=
∫

ΩT

aε.∇uε −
∫

ΩT

dε.∇uε −
∫

ΩT

aε.ηε +
∫

ΩT

dε.ηε

.= J1,ε − J2,ε − J3,ε + J4,ε (4.9)

where Ji,ε denotes the respective terms above for i = 1, · · · , 4. Now,

J1,ε =
∫

ΩT

aε.∇uε dx dt

= −
∫ T

0

〈∂tb(
x

ε
, uε), uε〉 dt+

∫
ΩT

f uε dx dt

ε→0→ −
∫ T

0

〈∂tb(u), u〉 dt+
∫

ΩT

f u dx dt

=
∫

ΩT

A∗(x, t).∇xu dx dt (4.10)
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where the last equality follows from (4.7). For obtaining the limit of the other
terms in the right hand side of (4.9) we will use Theorem 4.8. For this we
observe that the continuity assumptions on a and the choice of φ,Φ, φ0 imply
that the sequence

dε ≡ a(
x

ε
,
t

ε
, φ,∇xφ+ (∇yΦ)(x, t,

x

ε
,
t

ε
) + λφ0(x, t,

x

ε
,
t

ε
))

is of the form ψ(t, x, xε ,
t
ε ) for a ψ ∈ Lp∗per(Y × (0, 1);C(ΩT )). Thus, dε strongly

two-scale converges to a(y, s, φ,∇xφ + ∇yΦ + λφ0). Also, it can be seen that
ηε is strongly two-scale convergent to η(x, t, y, s) .= ∇xφ(x, t) +∇yΦ(x, t, y, s) +
λφ0(x, t, y, s). Thus, from these observations, Theorem 4.8 and (4.10), we obtain

Jε
ε→0→

∫
ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).∇xu dy ds dx dt

−
∫

ΩT

∫
Y

∫ 1

0

a(y, s, φ,∇xφ+∇yΦ + λφ0).(∇xu+∇yU1)

−
∫

ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).(∇xφ+∇yΦ + λφ0)

+
∫

ΩT

∫
Y

∫ 1

0

a(y, s, φ,∇xφ+∇yΦ + λφ0).(∇xφ+∇yΦ + λφ0)

Note that by setting φ = 0 in (4.6) we get,∫
ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).∇yΦ(x, t, y, s) dy ds dx dt = 0 (4.11)

for any Φ ∈ C∞0 (ΩT ;C∞per(Y × (0, 1))). Thus, the above limit can be rewritten
as

lim
ε→0

Jε =
∫

ΩT

∫
Y

∫ 1

0

a0(x, t, y, s).(∇xu−∇xφ− λφ0) dy ds dx dt

−
∫

ΩT

∫
Y

∫ 1

0

a(y, s, φ,∇xφ+∇yΦ + λφ0)

×(∇xu+∇yU1 −∇xφ−∇yΦ− λφ0).

Now, letting φ→ u strongly in Lp(0, T ;V ) and Φ→ U1 in
Lp(ΩT × (0, 1);W 1,p

per(Y )) strongly we get,

lim
φ→u

Φ→U1

lim
ε→0

Jε =
∫

ΩT

∫
Y

∫ 1

0

(a(y, s, u,∇xu+∇yU1 + λφ0)− a0(x, t, y, s)).λφ0,

(4.12)
where we have used the continuity properties of a. On the other hand,

Jε =
∫

ΩT

(aε − a(
x

ε
,
t

ε
, uε, ηε)).(∇uε − ηε) dx dt
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+
∫

ΩT

(a(
x

ε
,
t

ε
, uε, ηε)− a(

x

ε
,
t

ε
, φ, ηε)).(∇uε − ηε) dx dt

.= L1,ε + L2,ε,

where Li,ε, i = 1, 2 denotes the respective terms above. By the monotonicity
assumption (2.6), L1,ε ≥ 0. Therefore, Jε ≥ L2,ε. Now, by (2.8) and generalized
Hölder’s inequality,

|L2,ε| ≤
∫

ΩT

|a(
x

ε
,
t

ε
, uε, ηε)− a(

x

ε
,
t

ε
, φ, ηε)|.|∇uε − ηε| dx dt

≤ α−1‖uε − φ‖rp(m(ΩT )
p−1−r
p + ‖uε‖p−1−r

p + ‖φ‖p−1−r
p

+‖ηε‖p−1−r
p )‖∇uε − ηε‖p.

Therefore,

Jε ≥ L2,ε

≥ −α−1‖uε − φ‖rp(m(ΩT )
p−1−r
p + ‖uε‖p−1−r

p + ‖φ‖p−1−r
p

+‖ηε‖p−1−r
p )‖∇uε − ηε‖p

≥ −α−1‖uε − φ‖rp(C + ‖φ‖p−1−r
p + ‖ηε‖p−1−r

p )(C + ‖ηε‖p)

since uε,∇uε are bounded in Lp(ΩT ). We now use the fact that ηε is strongly
two-scale convergent to η, defined before, to obtain the limit as ε → 0 in the
above inequality and we get

lim
ε→0

Jε ≥ −α−1‖u− φ‖rp(C + ‖φ‖p−1−r
p + ‖η‖p−1−r

p )(C + ‖η‖p,ΩT×Y×(0,1)).

Now letting φ→ u and Φ→ U1 as before, we get

lim
φ→u

Φ→U1

lim
ε→0

Jε ≥ 0. (4.13)

Therefore, from (4.12) and (4.13), we get∫
ΩT

∫
Y

∫ 1

0

(a(y, s, u,∇xu+∇yU1 + λφ0)− a0(x, t, y, s)).λφ0 dy ds dx dt ≥ 0

(4.14)
for all λ > 0 and for all φ0 ∈ C∞0 (ΩT ;C∞per(Y × (0, 1)))n. Dividing the above
inequality and letting λ→ 0, we get using the continuity of a, that∫

ΩT

∫
Y

∫ 1

0

(a(y, s, u,∇xu+∇yU1)− a0(x, t, y, s)).φ0 dy ds dx dt ≥ 0 (4.15)

for all φ0 ∈ C∞0 (ΩT ;C∞per(Y × (0, 1)))n. By the density of these functions in
Lp(ΩT ×Y ×(0, 1))n, we get a0(x, t, y, s) = a(y, s, u,∇xu(x, t)+∇yU1(x, t, y, s))
a.e. in ΩT × Y × (0, 1). ♦
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Proof of Theorem 2.3: The proof follows from Proposition 4.11, Remark
4.12, Proposition 4.13, (2.17) and (4.11). ♦

We now prove corrector results. First, we prove a certain corrector result
without any smoothness assumption on (u, U1). Then we deduce Theorem 2.5
from this corrector result.

Let δ > 0 and choose φ ∈ C1
0 (ΩT ), Φ ∈ C0(ΩT ;Cper(0, 1) × C1

per(Y )) ap-
proximating u, U1 respectively, viz.

‖φ− u‖Lp(0,T ;W 1,p(Ω)) ≤ δ (4.16)
‖Φ− U1‖Lp(ΩT×(0,1);W 1,p

per(Y )) ≤ δ .. (4.17)

Define, ηε as in (4.8) with λ = 0. Then we have the following lemma.

Lemma 4.14 Let δ > 0 be fixed. Fix φ,Φ as above. Under the strong mono-
tonicity assumption (A5), we have

lim sup
ε→0

‖∇uε − ηε‖p,ΩT ≤ O(δ
r0
p ) (4.18)

where r0 = min(r, 1).

Proof: We will use some of the calculations from Proposition 4.13. For that
we observe that the regularity that we have now taken for φ,Φ would have been
sufficient in the proof of that proposition also. Let Jε be as in the proof of
Proposition 4.13. We have, by the strong monotonicity condition (A5),

α‖∇uε − ηε‖pp,ΩT ≤
∫

ΩT

(a(
x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, uε, ηε)).(∇uε − ηε) dx dt

.= Kε (4.19)

Now,

Kε =
∫

ΩT

([a(
x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, φ, ηε)]

+[a(
x

ε
,
t

ε
, φ, ηε)− a(

x

ε
,
t

ε
, u, ηε)]

+[a(
x

ε
,
t

ε
, u, ηε)− a(

x

ε
,
t

ε
, uε, ηε)]).(∇uε − ηε) dx dt

≤ Jε + α−1‖u− φ‖rp[(m(ΩT )
p−1−r
p + ‖u‖p−1−r

p + ‖φ‖p−1−r
p + ‖ηε‖p−1−r

p )
×(sup

ε
‖∇uε‖p + ‖ηε‖p)]

+α−1‖uε − u‖rp[(m(ΩT )
p−1−r
p + ‖uε‖p−1−r

p + ‖u‖p−1−r
p + ‖ηε‖p−1−r

p )
×(sup

ε
‖∇uε‖p + ‖ηε‖p)]

≤ Jε + Cδr(C + ‖ηε‖p−1−r
p )(C + ‖ηε‖p)

+C‖u− uε‖rp(C + ‖uε‖p−1−r
p + ‖ηε‖p−1−r

p )(C + ‖ηε‖p).
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Letting ε→ 0 we get,

lim sup
ε→0

Kε ≤ lim
ε→0

Jε + Cδr(C + ‖∇xφ+∇yΦ‖p−1−r
p ).(C + ‖∇xφ+∇yΦ‖p)

≤ lim
ε→0

Jε + Cδr,

where the last constant C is independent of δ for 0 < δ ≤ 1, as the norms of φ,
Φ are close to the norms of u, U1 respectively. Also, we know from the proof of
Proposition 4.13 that

lim
ε→0

Jε =
∫

ΩT

∫
Y

∫ 1

0

a(y, s, u,∇xu+∇yU1).(∇xu−∇xφ) dy ds dx dt

−
∫

ΩT

∫
Y

∫ 1

0

a(y, s, φ,∇xφ+∇yΦ).(∇xu−∇xφ+∇yU1 −∇yΦ)

≤ C‖∇xu−∇xφ‖p(1 + ‖u‖p−1
p + ‖∇xu‖p−1

p + ‖∇yU1‖p−1
p )

+C(‖∇xu−∇xφ‖p + ‖∇yU1 −∇yΦ‖p)
×(1 + ‖φ‖p−1

p + ‖∇xφ‖p−1
p + ‖∇yΦ‖p−1

p )

≤ Cδ

by the choice of φ,Φ. Thus,

lim sup
ε→0

‖∇uε − ηε‖pp ≤ lim
ε→0

Jε + Cδr ≤ C(δ + δr) ≤ Cδr0

for 0 < δ ≤ 1. Hence the lemma. ♦
Under the stronger continuity assumption on a, viz.

|a(y, s, µ, λ1)− a(y, s, µ, λ2)| ≤ |λ1 − λ2|r(1 + |µ|p−1−r + |λ1|p−1−r + |λ2|p−1−r)
(4.20)

for all (y, s, µ, λ1, λ2), we have the following corollary.

Corollary 4.15 Assume (4.20). Then, we have

lim
ε→0
‖a(

x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, u, ηε)‖p∗ ≤ δ

r20
p (4.21)

Proof: Note that,∫
ΩT

|a(
x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, u, ηε|p

∗
dx dt

≤ C

∫
ΩT

|a(
x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, u,∇uε)|p

∗
dx dt

+C
∫

ΩT

|a(
x

ε
,
t

ε
, u,∇uε)− a(

x

ε
,
t

ε
, u, ηε)|p

∗
dx dt

≤ C‖uε − u‖
r
p

p,ΩT
+ ‖∇uε − ηε‖

r
p

p,ΩT
(C + ‖ηε‖p−1−r

p,ΩT
)
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where in the last inequality we have used (2.8) and (4.20) and the fact that the
sequences uε, ∇uε are bounded. Letting ε→ 0, using Theorem 2.5, we get

lim
ε→0
‖a(

x

ε
,
t

ε
, uε,∇uε)− a(

x

ε
,
t

ε
, u, ηε)‖p∗ ≤ δ

r20
p (C + ‖∇xφ+∇yΦ‖p−1−r

p )

≤ Cδ
r20
p .

This completes the proof. ♦

Proof of Theorem 2.5: If u, U1 are sufficiently smooth we can take φ = u
and Φ = U1 in the proof of the previous lemma and (2.24) follows as we can
take δ ≡ 0. The convergence in (2.23) is obvious from the strong convergence
of uε to u in Lp(ΩT ). ♦
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