Local and global estimates for solutions of systems involving the p-Laplacian in unbounded domains *

A. Bechah

Abstract

In this paper, we study the local and global behavior of solutions of systems involving the p-Laplacian operator in unbounded domains. We extend some Serrin-type estimates which are known for simple equations to systems of equations.

1 Introduction

We consider the system

$$
\begin{gather*}
-\Delta_{p} u=f(x, u, v) \quad x \in \Omega \tag{1.1}\\
-\Delta_{q} v=g(x, u, v) \quad x \in \Omega \tag{1.2}\\
u=v=0 \quad x \in \partial \Omega . \tag{1.3}
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is an exterior domain, f, g are a given functions depending of the variables x, u, v and Δ_{p} is the p-Laplacian operator; for $1<p<+\infty \Delta_{p}$ is defined by $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. Here, we study the local and global behavior of solutions of System (1.1)-(1.3). we follow the work of Serrin [4] concerning the quasilinear equation

$$
\begin{equation*}
\operatorname{div} \mathcal{A}\left(x, u, u_{x}\right)=\mathcal{B}\left(x, u, u_{x}\right) \tag{1.4}
\end{equation*}
$$

where \mathcal{A} and \mathcal{B} are a given functions depending of the variables x, u, u_{x} and $u_{x}=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}\right)$. In particular, (1.4) generalizes the equation

$$
\begin{equation*}
-\Delta_{p} u=f(x, u) \quad x \in \Omega \tag{1.5}
\end{equation*}
$$

In [4], Serrin proves that if the function f is bounded by the term $a|u|^{p-1}+g$, where $p>1$ is a fixed exponent, a is a positive constant and g is a measurable function, then for each $y \in \Omega$ and $R>0$ we have the estimate

$$
\begin{equation*}
\sup _{B_{R}(y)} u(x) \leq c R^{-\frac{N}{p}}\left(\|u\|_{L^{p}\left(B_{2 R}(y)\right)}+R^{\frac{N}{p}}\left(R^{\epsilon}\|g\|_{L^{\frac{N}{p-\epsilon}}\left(B_{2 R}(y)\right)}\right)^{\frac{1}{p-1}}\right) \tag{1.6}
\end{equation*}
$$

[^0]for all $0<\epsilon \leq 1$.
In many cases, especially for unbounded domain, when we wish to show that the solution decay at infinity, the estimate (1.6) requires that the function f belongs to $L^{\alpha}(\Omega)$ with $\alpha>N / p$, which is not trivial to prove in some cases. To avoid this difficulty Yu [5], Egnell [1] and others have proved that the solution of (1.5) have a regularity $L^{q}(\Omega)$ for each $q \geq p^{*}$, and this for all function f bounded by a sublinear, superlinear or an homogeneous terms. We note that in the case of a mixed terms this last technique cannot be adapted. For the case of an homogeneous system see the paper of Fleckinger, Manàsevich, Stavrakakis and de Thélin [2].

The first part of this paper is devoted to the local behavior of solutions of System (1.1)-(1.3). We obtain an estimate of Serrin type in the following cases: 1) f and g are bounded by a sum of homogeneous and critical terms.
2) f and g are bounded by a sum of homogeneous and constant terms.

Thus, we extend the results of [5], [1] concerning Equation and those of [2] concerning System.

In the second part, we obtain a global estimates of solutions of System (1.1)(1.3) in the particular case $f=A|u|^{\alpha-1} u|v|^{\beta+1}$ and $g=B|u|^{\alpha+1}|v|^{\beta-1} v$ under some conditions on α, β, p and q. Also we obtain another global estimate when f and g satisfy 2).

We recall that $\mathcal{D}^{1, p}(\Omega)$ is the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{\mathcal{D}^{1, p}(\Omega)}=\|\nabla u\|_{L^{p}(\Omega)} .
$$

$p^{\prime}=\frac{p}{p-1}$ is the conjugate of $p, p *=\frac{N p}{N-p}$ is the Sobolev exponent and we define S_{p} by

$$
\frac{1}{S_{p}}=\inf \left\{\frac{\|\nabla u\|_{L^{p}(\Omega)}^{p}}{\|u\|_{L^{p}(\Omega)}^{p}} \quad u \in W^{1, p}(\Omega) \backslash\{0\}\right\}
$$

2 Local estimates for solutions of (1.1)-(1.3)

Theorem 2.1 Let $(u, v) \in \mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, q}\left(\mathbb{R}^{N}\right)$ be a solution of (1.1)-(1.3) and $\tau=\frac{N}{N-p}, \bar{\tau}=\frac{N}{N-q}$. Assume that $\max \{p, q\}<N, q \geq p$ and

$$
\begin{equation*}
|f(x, u, v)| \leq C\left(|u|^{p-1}+|u|^{p^{*}-1}+|v|^{q / p^{\prime}}+|v|^{\frac{\tau q}{(\tau p)^{\prime}}}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(x, u, v)| \leq C\left(|v|^{q-1}+|v|^{\tau q-1}+|u|^{p / q^{\prime}}+|u|^{\frac{\tau p}{(\tau q)^{\prime}}}\right) \tag{2.2}
\end{equation*}
$$

where m^{\prime} is the conjugate of m and C is a constant. Then 1) For any $R>0$ and $x \in \mathbb{R}^{N}$ satisfying

$$
\begin{align*}
C \max \{ & \left.2^{p} S_{p} \tau^{p-1}, 2^{2 q-p} S_{q}\left|B_{1}\right|^{\frac{q-p}{N}} R^{q-p} \tau^{q-1}\right\} \\
& \times\left(\|u\|_{L^{p^{*}\left(B_{2 R}(x)\right)}}^{p(\tau-1)}+\|v\|_{L^{q \tau}\left(B_{2 R}(x)\right)}^{q(\tau-1)}\right)<1 \tag{2.3}
\end{align*}
$$

where S_{p} and S_{q} are the Sobolev constants, we have

$$
\begin{aligned}
& \|u\|_{L^{\infty}\left(B_{\frac{R}{2}}(x)\right)} \\
& \quad \leq c\left(1+R^{q}\right)^{\frac{N(N-p)}{p^{3}}} \max \left\{R^{\frac{p-N}{p}}\|u\|_{L^{p^{*}}\left(B_{R}(x)\right)}, R^{\frac{q-N}{p}}\|v\|_{L^{q^{*}}\left(B_{R}(x)\right)}^{q / p}\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& \|v\|_{L^{\infty}\left(B_{\frac{R}{2}(x)}\right)} \\
& \quad \leq c\left(1+R^{q}\right)^{\frac{N(N-p)}{q p^{2}}} \max \left\{R^{\frac{q-N}{q}}\|v\|_{L^{q^{*}}\left(B_{R}(x)\right)}, R^{\frac{p-N}{q}}\|u\|_{L^{p^{*}}\left(B_{R}(x)\right)}^{\frac{p}{q}}\right\} .
\end{aligned}
$$

witch c independent of u, v, x and R.
2) Moreover,

$$
\lim _{|x| \rightarrow+\infty} u(x)=\lim _{|x| \rightarrow+\infty} v(x)=0
$$

Remark 2.2 There exists an R_{0} such that for all $R<R_{0}$, (2.3) is satisfied uniformly for all $x \in \Omega$. This follows from the absolute continuity of the functionals $A \mapsto \int_{A}|u|^{p^{*}} d x$ and $A \mapsto \int_{A}|v|^{q \tau} d x$. To be more specific, for each $\epsilon>0$ there exists $\eta>0$ such that for all $R>0$ and $x \in \mathbb{R}^{N}$ satisfying $\left|B_{R}(x)\right| \leq \eta$, we have $\int_{B_{R}(x)}|u|^{p^{*}} d x<\epsilon$ and $\int_{B_{R}(x)}|v|^{q \tau} d x<\epsilon$.

Proof Let $x \in \mathbb{R}^{N}$ be fixed. For $y \in B_{2 R}(x)$ and any function h defined on $B_{2 R}(x)$ we define

$$
\tilde{h}(t)=h(y), \quad t=\frac{y-x}{R} .
$$

Since (u, v) is a solution for (1.1)-(1.3), then (\tilde{u}, \tilde{v}) satisfies

$$
\begin{align*}
& -\Delta_{p} \tilde{u}=R^{p} f(y, \tilde{u}, \tilde{v}) \tag{2.4}\\
& -\Delta_{q} \tilde{v}=R^{q} g(y, \tilde{u}, \tilde{v}) \tag{2.5}
\end{align*}
$$

In this proof c denotes a positive constant independent of u, v, x and R. For any ball $B \subset B_{2}(0)$, we have

$$
\begin{gather*}
\forall w \in \mathcal{W}_{0}^{1, p}(B) \quad\|w\|_{L^{p \tau}(B)}^{p} \leq S_{p}\|\nabla w\|_{L^{p}(B)}^{p} \\
\forall w \in \mathcal{W}_{0}^{1, q}(B) \quad\|w\|_{L^{q \tau}(B)}^{q} \leq 2^{q-p}\left|B_{1}(0)\right|^{\frac{q-p}{N}} S_{q}\|\nabla w\|_{L^{q}(B)}^{q} . \tag{2.6}
\end{gather*}
$$

S_{p} and S_{q} are the Sobelev constants. Let $\left(m_{n}\right)_{n}$ be a sequence of positive numbers satisfying $\sigma<\infty$ where σ is defined below and $\left(r_{n}\right)_{n}$ a decreasing sequence defined by

$$
r_{0}=2, \quad r_{n}=2-\frac{1}{\sigma} \sum_{i=0}^{n-1}\left(\frac{m_{i}+p}{p}\right)^{-1 / p^{\prime}}
$$

where R is positive and $\sigma=\sum_{i=0}^{\infty}\left(\frac{m_{i}+p}{p}\right)^{-1 / p^{\prime}}$. We denote by $B_{n}=B\left(0, r_{n}\right)$ and we define $\eta \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ so that $0 \leq \eta \leq 1, \eta=1$ in $B_{n+1}, \operatorname{supp}(\eta) \subset B_{n}$ and

$$
\begin{equation*}
|\nabla \eta| \leq c\left(\frac{m_{n}+p}{p}\right)^{1 / p^{\prime}} \tag{2.7}
\end{equation*}
$$

We multiply (2.4) by $|\tilde{u}|^{m_{n}} \tilde{u} \eta^{q}$, and integrate over B_{n}. Using (2.1), we obtain

$$
\begin{equation*}
I_{1}+I_{2} \leq R^{p}\left(I_{3}+I_{4}+I_{5}+I_{6}\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\left(1+m_{n}\right) \int_{B_{n}} \eta^{q}|\tilde{u}|^{m_{n}}|\nabla \tilde{u}|^{p} d x, \\
& I_{2}=q \int_{B_{n}} \eta^{q-1} \nabla \eta \cdot \nabla \tilde{u}|\nabla \tilde{u}|^{p-2}|\tilde{u}|^{m_{n}} \tilde{u} d x, \\
& I_{3}=C \int_{B_{n}}|\tilde{u}|^{p+m_{n}} \eta^{q} d x, \\
& I_{4}=C \int_{B_{n}}|\tilde{u}|^{p^{*}+m_{n}} \eta^{q} d x, \\
& I_{5}=C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u}|\tilde{v}|^{q / p^{\prime}} \eta^{q} d x, \\
& I_{6}=C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u}|\tilde{v}|^{\frac{\tau q}{(\tau p)^{\prime}}} \eta^{q} d x .
\end{aligned}
$$

Since $1+m_{n}=\frac{(p-1) m_{n}}{p}+\frac{m_{n}+p}{p}$, we deduce from Young inequality and the facts $p \leq q,|\eta| \leq 1$, that for any $s>0$

$$
\begin{aligned}
\left|I_{2}\right| \leq & \frac{q s^{p^{\prime}}}{p^{\prime}}\left(\frac{m_{n}+p}{p}\right) \int_{B_{n}} \eta^{q}|\nabla \tilde{u}|^{p}|\tilde{u}|^{m_{n}} d x \\
& +\frac{q}{p s^{p}}\left(\frac{m_{n}+p}{p}\right)^{-\frac{p}{p^{\prime}}} \int_{B_{n}}|\nabla \eta|^{p}|\tilde{u}|^{m_{n}+p} d x
\end{aligned}
$$

Choosing s such that $\frac{q s^{p^{\prime}}}{p^{\prime}} \leq \frac{1}{2}$, and using (2.7), we have

$$
\begin{equation*}
\left|I_{2}\right| \leq \frac{1}{2} I_{1}+c \int_{B_{n}}|\tilde{u}|^{m_{n}+p} d x \tag{2.9}
\end{equation*}
$$

We deduce from (2.8) and (2.9)

$$
\begin{equation*}
I_{1} \leq 2 R^{p} \sum_{i=3}^{6} I_{i}+c \int_{B_{n}}|\tilde{u}|^{m_{n}+p} d x \tag{2.10}
\end{equation*}
$$

Using Sobolev inequality and observing that for any $a \geq 0$ and $b \geq 0(a+b)^{p} \leq$ $2^{p-1}\left(a^{p}+b^{p}\right)$, we have

$$
\begin{equation*}
\left\|\eta^{q / p} \tilde{u}^{\frac{m_{n}+p}{p}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} \leq 2^{p-1} S_{p}\left(I_{7}+I_{8}\right) \tag{2.11}
\end{equation*}
$$

where

$$
I_{7}=\left(\frac{q}{p}\right)^{p} \int_{B_{n}} \eta^{q-p}|\nabla \eta|^{p}|\tilde{u}|^{m_{n}+p} d x \leq c\left(\frac{m_{n}+p}{p}\right)^{p-1} \int_{B_{n}}|\tilde{u}|^{m_{n}+p} d x
$$

and

$$
I_{8}=\left(\frac{m_{n}+p}{p}\right)^{p} \int_{B_{n}} \eta^{q}|\tilde{u}|^{m_{n}}|\nabla \tilde{u}|^{p} d x \leq\left(\frac{m_{n}+p}{p}\right)^{p-1} I_{1},
$$

thus we deduce from (2.10) that

$$
\begin{equation*}
\left\|\eta^{q / p} \tilde{u}^{\frac{m_{n}+p}{p}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} \leq\left(\frac{m_{n}+p}{p}\right)^{p-1}\left(c \int_{B_{n}}|\tilde{u}|^{m_{n}+p} d x+2^{p} S_{p} R^{p} \sum_{i=3}^{6} I_{i}\right) . \tag{2.12}
\end{equation*}
$$

First step. We construct the sequences $\left(p_{n}\right)_{n}$ and $\left(q_{n}\right)_{n}$ by

$$
p_{n}=p \tau^{n}, \quad q_{n}=q \tau^{n}
$$

and we set

$$
m_{n}=p\left(\tau^{n}-1\right), \text { and } \quad l_{n}=q\left(\tau^{n}-1\right) .
$$

We show that if the condition

$$
\begin{aligned}
C \max \left\{2^{p} S_{p} R^{p} \tau^{n(p-1)}, 2^{2 q-p}\left|B_{1}\right|^{\frac{q-p}{N}} S_{q} R^{q} \tau^{n(q-1)}\right\} \\
\times\left(\|\tilde{u}\|_{L^{p^{*}\left(B_{2}\right)}}^{p(\tau-1)}+\|\tilde{v}\|_{L^{q \tau}\left(B_{2}\right)}^{q(\tau-1)}\right)<1,
\end{aligned}
$$

is satisfied, the solution (\tilde{u}, \tilde{v}) belongs to $L^{p_{n+1}}\left(B_{n+1}\right) \times L^{q_{n+1}}\left(B_{n+1}\right)$.
First, we start by estimating the integrals $\left(I_{i}\right), i=3, \ldots, 6$. We have

$$
\begin{equation*}
I_{3}=C \int_{B_{n}}|\tilde{u}|^{p+m_{n}} \eta^{q} d x \leq c\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}} \tag{2.13}
\end{equation*}
$$

Remarking that $\frac{m_{n}+1}{p_{n}}+\frac{\frac{q}{p^{T}}}{q_{n}}=1$, we deduce from Hölder inequality that

$$
\begin{equation*}
I_{5}=C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u}|\tilde{v}|^{q / p^{\prime}} \eta^{q} d x \leq c\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q / p^{\prime}} . \tag{2.14}
\end{equation*}
$$

We write $m_{n}+p^{*}=p(\tau-1)+m_{n}+p \quad, q=\tau q\left(\frac{m_{n}+p}{p_{n+1}}\right)$. Observing that $\frac{m_{n}+p}{p_{n+1}}+\frac{p(\tau-1)}{p^{*}}=1$, we deduce from Hölder inequality

$$
\begin{align*}
I_{4} & =C \int_{B_{n}}|\tilde{u}|^{p^{*}+m_{n}} \eta^{q} d x \leq C \int_{B_{n}}|\tilde{u}|^{p(\tau-1)}|\tilde{u}|^{p+m_{n}} \eta^{\tau q\left(\frac{m_{n}+p}{p_{n+1}}\right)} d x \tag{2.15}\\
& \leq C\|\tilde{u}\|_{L^{p+}\left(B_{n}\right)}^{p(\tau-1)}\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} .
\end{align*}
$$

Remark that

$$
\begin{equation*}
\frac{\tau q}{(\tau p)^{\prime}}-\frac{q}{p^{\prime}}=q(\tau-1), \quad \frac{q(\tau-1)}{\tau q}+\frac{m_{n}+1}{p_{n+1}}+\frac{\frac{q}{p^{\prime}}}{q_{n+1}}=1 \tag{2.16}
\end{equation*}
$$

and

$$
\tau \frac{m_{n}+1}{p_{n+1}}+\tau \frac{\frac{q}{p^{\prime}}}{q_{n+1}}=1
$$

then from Hölder inequality, we have

$$
\begin{align*}
I_{6} & =C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u}|\tilde{v}|^{\frac{\tau q}{(\tau)^{\prime}}} \eta^{q} d x \\
& \left.\leq C \int_{B_{n}}|\tilde{v}|^{q(\tau-1)} \eta^{\tau q\left(\frac{m_{n}+1}{p_{n+1}}\right)}|\tilde{u}|^{m_{n}+1} \eta^{\tau q\left(\frac{q}{p^{\tau}}\right.} \bar{q}_{n+1}\right) \tag{2.17}\\
v & \left.\right|^{q / p^{\prime}} d x \\
& \left.\leq C\|\tilde{v}\|_{L^{\tau q}\left(B_{n}\right)}^{q(\tau-1)}\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p\left(\frac{1+m_{n}}{p_{n}}\right)}\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{\frac{q}{p^{\prime}} \bar{p}_{n}}\right)
\end{align*}
$$

Substituting m_{n} by $p\left(\tau^{n}-1\right)$ in (2.12), we obtain

$$
\begin{align*}
& \left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p}-\tau^{n(p-1)} 2^{p} S_{p} R^{p}\left(I_{4}+I_{6}\right) \\
\leq & \tau^{n(p-1)}\left(c \int_{B_{n}}|\tilde{u}|^{p_{n}} d x+2^{p} S_{p} R^{p}\left(I_{3}+I_{5}\right)\right) . \tag{2.18}
\end{align*}
$$

It follows from (2.13) - (2.17) and the fact $p \leq q$ that

$$
\begin{align*}
& \left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p}-C 2^{p} S_{p} R^{p} \tau^{n(p-1)}\left(\|\tilde{u}\|_{L^{p^{*}}\left(B_{n}\right)}^{p(\tau-1)}\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p}\right. \\
& \left.+\|\tilde{v}\|_{L^{\tau q}\left(B_{n}\right)}^{q(\tau-1)}\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p \frac{\left(1+m_{n}\right)}{p_{n}}}\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q\left(\frac{q}{p^{\tau}}\right)}\right) \tag{2.19}\\
& \leq c\left(1+R^{q}\right) \tau^{n(q-1)}\left(\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}}+\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q / p^{\prime}}\right) .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q}-C 2^{2 q-p} S_{q}\left|B_{1}\right|^{\frac{q-p}{N}} R^{q} \tau^{n(q-1)}\left(\|\tilde{v}\|_{L^{q \tau}\left(B_{n}\right)}^{q(\tau-1)}\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q}\right. \\
& \left.+\|\tilde{u}\|_{L^{\tau p}\left(B_{n}\right)}^{p(\tau-1)}\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q\left(\frac{\left(1+l_{n}\right)}{q q_{n}}\right.}\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau\left(B_{n}\right)}}^{p\left(\frac{p}{p^{\prime}}\right)}\right) \tag{2.20}\\
& \leq c\left(1+R^{q}\right) \tau^{n(q-1)}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q_{n}}+c R^{q} \tau^{n(q-1)}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{l_{n}+1}\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p / q^{\prime}} .
\end{align*}
$$

Next, we define $\theta_{n+1}=\max \left\{\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p},\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q}\right\}$, and $E_{n}=\max \left\{\|\tilde{u}\|_{L^{p_{n}\left(B_{n}\right)}}^{p_{n}},\|\tilde{v}\|_{L^{q_{n}\left(B_{n}\right)}}^{q_{n}}\right\}^{1 / p_{n}}$. Simple computations using Hölder inequality and the definition of E_{n} and θ_{n}, show that

$$
\begin{align*}
& \theta_{n+1}-C \max \left\{2^{p} S_{p} R^{p} \tau^{n(p-1)}, 2^{2 q-p}\left|B_{1}\right|^{\frac{q-p}{N}} S_{q} R^{q} \tau^{n(q-1)}\right\} \\
& \times\left(\|\tilde{u}\|_{L^{p^{*}\left(B_{n}\right)}}^{p(-1)}+\|\tilde{v}\|_{L^{q \tau}\left(B_{n}\right)}^{q(\tau-1)}\right) \theta_{n+1} \leq c\left(1+R^{q}\right) \tau^{n(q-1)} E_{n}^{p_{n}} \tag{2.21}
\end{align*}
$$

We know that there exists $R_{0}>0$ such that for any $R<R_{0}$

$$
\begin{align*}
C \max \left\{2^{p} S_{p} R^{p} \tau^{n(p-1)}, 2^{2 q-p}\left|B_{2}\right|^{\frac{q-p}{N}} S_{q} R^{q} \tau^{n(q-1)}\right\} \\
\times\left(\|\tilde{u}\|_{L^{p^{*}\left(B_{2}\right)}}^{p(\tau-1)}+\|\tilde{v}\|_{L^{q \tau}\left(B_{2}\right)}^{q(\tau-1)}\right)<1 \tag{2.22}
\end{align*}
$$

Also, remark that

$$
\begin{align*}
\theta_{n+1} & \geq \max \left\{\|\tilde{u}\|_{L^{p_{n+1}}\left(B_{n+1}\right)}^{p_{n}},\|\tilde{v}\|_{L^{q_{n+1}}\left(B_{n+1}\right)}^{q_{n}}\right\} \\
& \geq \max \left\{\|\tilde{u}\|_{L^{p_{n+1}\left(B_{n+1}\right)}}^{p_{n+1}},\|\tilde{v}\|_{L^{q_{n+1}\left(B_{n+1}\right)}}^{q_{n+1}}\right\}^{1 / \tau} \tag{2.23}\\
& =E_{n+1}^{p_{n}} .
\end{align*}
$$

Therefore, from (2.21) - (2.23), and the fact $p \leq q$

$$
E_{n+1}^{p_{n}} \leq c\left(1+R^{q}\right) \tau^{n(q-1)} E_{n}^{p_{n}}
$$

So

$$
E_{n+1} \leq\left(c\left(1+R^{q}\right)\right)^{1 / p_{n}} \tau^{\frac{n(q-1)}{p_{n}}} E_{n}
$$

This implies that

$$
\|\tilde{u}\|_{L^{p_{n+1}}\left(B_{n+1}\right)} \leq E_{n+1} \leq\left(c\left(1+R^{q}\right)\right)^{\sum_{i=0}^{\infty} \frac{1}{p \tau^{i}}} \tau^{\sum_{i=0}^{\infty} \frac{i(q-1)}{p \tau^{i}}} E_{0}
$$

Since $\sum_{i=0}^{\infty} \frac{1}{p \tau^{i}}=\frac{N}{p^{2}}$ and $\sum_{i=0}^{\infty} \frac{i(q-1)}{p \tau^{i}}<\infty$, we deduce that $\tilde{u} \in L^{p_{n+1}}\left(B_{n+1}\right)$. Similarly, we have
$\|\tilde{v}\|_{L^{q_{n+1}}\left(B_{n+1}\right)}^{q / p} \leq\|\tilde{v}\|_{L^{q_{n+1}}\left(B_{n+1}\right)}^{\frac{q_{n+1}}{p_{n+1}}} \leq E_{n+1} \leq\left(c\left(1+R^{q}\right)\right)^{\sum_{i=0}^{\infty} \frac{1}{p \tau^{i} i}} \tau^{\sum_{i=0}^{\infty} \frac{i(q-1)}{p \tau^{i}}} E_{0}$,
therefore $v \in L^{q_{n+1}}\left(B_{n+1}\right)$.
Second step We remark that hypothesis (2.3) is equivalent to

$$
C \max \left\{2^{p} S_{p} R^{p} \tau^{p-1}, 2^{2 q-p}\left|B_{1}\right|^{\frac{q-p}{N}} S_{q} R^{q} \tau^{q-1}\right\}\left(\|\tilde{u}\|_{L^{p^{*}}\left(B_{2}\right)}^{p(\tau-1)}+\|\tilde{v}\|_{L^{q^{*}}\left(B_{2}\right)}^{q(\tau-1)}\right)<1
$$

We assume that R, u and v satisfy (2.3), which by the first step implies that $(\tilde{u}, \tilde{v}) \in L^{p \tau^{2}}\left(B_{1}\right) \times L^{q \tau^{2}}\left(B_{1}\right)$. We let $\delta=\frac{\tau^{2}}{\tau^{2}-\tau+1}$ and $\chi=\frac{\tau}{\delta}$. It is clear that $1<\delta<\tau$, and so $\chi>1$. We construct a sequences $\left(s_{n}\right)_{n}$ and $\left(t_{n}\right)_{n}$ by

$$
s_{n}=p \chi^{n}, \quad t_{n}=q \chi^{n}
$$

In this step m_{n} and r_{n} are defined by

$$
m_{n}=p\left(\frac{\chi^{n}}{\delta}-1\right)
$$

and

$$
r_{0}=1, \quad r_{n}=1-\frac{1}{2 \sigma} \sum_{i=0}^{n-1}\left(\frac{m_{i}+p}{p}\right)^{-1 / p^{\prime}}
$$

which implies $m_{n}+p=s_{n} / \delta$. Now, we estimate the integrals $\left(I_{i}\right)_{i=3, \ldots, 6}$. We have

$$
\begin{equation*}
I_{3} \leq c\|\tilde{u}\|_{L^{\frac{s_{n}}{\delta}\left(B_{n}\right)}}^{s_{n} / \delta} \leq c\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n} / \delta} \tag{2.24}
\end{equation*}
$$

Remarking that $\frac{m_{n}+1}{s_{n} / \delta}+\frac{q / p^{\prime}}{t_{n} / \delta}=1$, it follows from Hölder inequality that

$$
\begin{equation*}
I_{5} \leq c\|\tilde{u}\|_{L^{\frac{s_{n}}{\delta}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{\frac{t_{n}}{o}}\left(B_{n}\right)}^{q / p^{\prime}} \leq\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{s_{n}}\left(B_{n}\right)}^{q / p^{\prime}} \tag{2.25}
\end{equation*}
$$

We have $\frac{p(\tau-1)}{p \tau^{2}}+\frac{m_{n}+p}{s_{n}}=1$, thus from Hölder inequality we have

$$
\begin{equation*}
I_{4} \leq c\|\tilde{u}\|_{L^{p \tau^{2}}\left(B_{n}\right)}^{p(\tau-1)}\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n} / \delta} \leq c\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n} / \delta} . \tag{2.26}
\end{equation*}
$$

Observing that $\frac{q(\tau-1)}{q \tau^{2}}+\frac{m_{n}+1}{s_{n}}+\frac{q / p^{\prime}}{t_{n}}=1$, it follows from Hölder inequality that

$$
\begin{align*}
I_{6} & \leq c \int_{B_{n}}|\tilde{v}|^{q(\tau-1)}|\tilde{u}|^{m_{n}+1}|\tilde{v}|^{q / p^{\prime}} d x \\
& \leq c\|\tilde{v}\|_{L^{q \tau^{2}\left(B_{n}\right)}}^{q(\tau-1)}\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{q / p^{\prime}} \tag{2.27}\\
& \leq c\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{q p^{\prime}} .
\end{align*}
$$

We deduce from (2.12), (2.24)-(2.27) and the fact $p \leq q$ that

$$
\begin{equation*}
\left\|\eta^{q / p} \tilde{u}^{n} / \delta\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} \leq c \chi^{n(q-1)}\left(1+R^{q}\right)\left(\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n} / \delta}+\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{q / p^{\prime}}\right) \tag{2.28}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|\eta \tilde{v}^{\chi^{n} / \delta}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q} \leq c \chi^{n(q-1)}\left(1+R^{q}\right)\left(\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{t_{n} / \delta}+\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{l_{n}+1}\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{p / q^{\prime}}\right) \tag{2.29}
\end{equation*}
$$

As in the first step, we let $\Lambda_{n}=\max \left\{\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n}},\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{t_{n}}\right\}^{1 / s_{n}}$
$\Gamma_{n}=\max \left\{\left\|\eta^{q / p} \tilde{u}^{n} / \delta\right\|_{L^{p \tau}\left(B_{n}\right)}^{p},\left\|\eta \tilde{v}^{n} / \delta\right\|_{L^{q \tau}\left(B_{n}\right)}^{q}\right\}$ and
$\Upsilon_{n}=\max \left\{\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{s_{n}},\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{t_{n}}\right\}^{\frac{1}{t_{n}}}$. Simple computations show that

$$
\begin{equation*}
\|\tilde{u}\|_{L^{s s_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)}^{q / p^{\prime}} \leq \min \left\{\Lambda_{n}^{s_{n} / \delta}, \Upsilon_{n}^{t_{n} / \delta}\right\} \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\tilde{v}\|_{L^{t_{n}\left(B_{n}\right)}}^{l_{n}+1}\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)}^{p / q^{\prime}} \leq \min \left\{\Lambda_{n}^{s_{n} / \delta}, \Upsilon_{n}^{t_{n} / \delta}\right\} . \tag{2.31}
\end{equation*}
$$

Also, remark that

$$
\begin{equation*}
\Gamma_{n} \geq \max \left\{\|\tilde{u}\|_{L^{s_{n+1}\left(B_{n+1}\right)}}^{s_{n} / \delta},\|\tilde{v}\|_{L^{t_{n+1}}\left(B_{n+1}\right)}^{t_{n} / \delta}\right\}=\Lambda_{n+1}^{s_{n} / \delta}=\Upsilon_{n}^{t_{n} / \delta} \tag{2.32}
\end{equation*}
$$

Thus, we deduce from (2.28)-(2.32) that

$$
\Lambda_{n+1}^{s_{n} / \delta} \leq c \chi^{n(q-1)}\left(1+R^{q}\right) \Lambda_{n}^{s_{n} / \delta}
$$

and so

$$
\Lambda_{n+1} \leq c^{\delta / s_{n}} \chi^{\frac{n(q-1) \delta}{s_{n}}}\left(1+R^{q}\right)^{\delta / s_{n}} \Lambda_{n}
$$

Which implies that

$$
\|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)} \leq \Lambda_{n} \leq c^{\sum_{i=0}^{\infty} \frac{\delta}{s_{i}}} \chi^{\sum_{i=0}^{\infty} \frac{i(q-1) \delta}{s_{i}}}\left(1+R^{q}\right)^{\sum_{i=0}^{\infty} \frac{\delta}{s_{i}}} \Lambda_{0}
$$

Since $\sum_{i=0}^{\infty} \frac{\delta}{s_{i}}=\frac{\delta \tau}{p(\tau-\delta)}$, and $\sum_{i=0}^{\infty} \frac{i(q-1) \delta}{s_{i}}<\infty$, then

$$
\begin{aligned}
\|\tilde{u}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} & \leq \lim _{n \rightarrow+\infty} \sup \|\tilde{u}\|_{L^{s_{n}}\left(B_{n}\right)} \\
& \leq c\left(1+R^{q}\right)^{\frac{\delta \tau}{p(\tau-\delta)}} \max \left\{\|\tilde{u}\|_{L^{p}\left(B_{1}\right)},\|\tilde{v}\|_{L^{q}\left(B_{1}\right)}^{q / p}\right\} .
\end{aligned}
$$

Similarly, we have

$$
\Upsilon_{n+1} \leq c^{\frac{\delta}{t_{n}}} \chi^{\frac{n(q-1) \delta}{t_{n}}}\left(1+R^{q}\right)^{\frac{\delta}{t_{n}}} \Upsilon_{n}
$$

As n tends to infinity, we obtain

$$
\begin{aligned}
\|\tilde{v}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} & \leq \lim _{n \rightarrow+\infty} \sup \|\tilde{v}\|_{L^{t_{n}}\left(B_{n}\right)} \\
& \leq c\left(1+R^{q}\right)^{\frac{\delta \tau}{q(\tau-\delta)}} \max \left\{\|\tilde{v}\|_{L^{p}\left(B_{1}\right)},\|\tilde{u}\|_{L^{q}\left(B_{1}\right)}^{\frac{p}{q}}\right\} .
\end{aligned}
$$

By the imbeddings

$$
L^{p^{*}}\left(B_{1}\right) \subset L^{p}\left(B_{1}\right) \quad \text { and } \quad L^{q^{*}}\left(B_{1}\right) \subset L^{q}\left(B_{1}\right)
$$

and the fact

$$
\frac{\delta \tau}{\tau-\delta}=\frac{\tau}{(\tau-1)^{2}}=\frac{N(N-p)}{p^{2}}
$$

we have

$$
\|\tilde{u}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leq c\left(1+R^{q}\right)^{\frac{N(N-p)}{p^{3}}} \max \left\{\|\tilde{u}\|_{L^{p^{*}}\left(B_{1}\right)},\|\tilde{v}\|_{L^{q^{*}}\left(B_{1}\right)}^{q / p}\right\}
$$

and

$$
\|\tilde{v}\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leq c\left(1+R^{q}\right)^{\frac{N(N-p)}{q p^{2}}} \max \left\{\|\tilde{v}\|_{L^{p^{*}\left(B_{1}\right)}},\|\tilde{u}\|_{L^{q^{*}}\left(B_{1}\right)}^{\frac{p}{q}}\right\}
$$

Coming back to (u, v) by a simple change of variables, we find

$$
\begin{aligned}
& \|u\|_{L^{\infty}\left(B_{\frac{R}{2}(x)}\right)} \\
& \quad \leq c\left(1+R^{q}\right)^{\frac{N(N-p)}{p^{3}}} \max \left\{R^{\frac{p-N}{p}}\|u\|_{L^{p^{*}}\left(B_{R}(x)\right)}, R^{\frac{q-N}{p}}\|v\|_{L^{q^{*}}\left(B_{R}(x)\right)}^{q / p}\right\} .
\end{aligned}
$$

and

$$
\begin{align*}
& \|v\|_{L^{\infty}\left(B_{\frac{R}{2}(x)}\right)} \\
& \quad \leq \quad c\left(1+R^{q}\right)^{\frac{N(N-p)}{q p^{2}}} \max \left(R^{\frac{q-N}{q}}\|v\|_{L^{q^{*}}\left(B_{R}(x)\right)}, R^{\frac{p-N}{q}}\|u\|_{L^{p^{*}}\left(B_{R}(x)\right)}^{\frac{p}{q}}\right\} .
\end{align*}
$$

The proof of 2) follows from 1) and Remark 2.2
Proposition 2.3 Let $(u, v) \in \mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right) \times \mathcal{D}^{1, q}\left(\mathbb{R}^{N}\right)$ a solution of (1.1)-(1.3). We assume $q \geq p$,

$$
\begin{equation*}
|f(x, u, v)| \leq C\left(|u|^{p-1}+|v|^{q / p^{\prime}}+1\right) \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(x, u, v)| \leq C\left(|v|^{q-1}+|u|^{p / q^{\prime}}+1\right) \tag{2.34}
\end{equation*}
$$

where m^{\prime} is the conjugate of m. Then

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(B_{1}\right)} \leq c\left(1+R^{q}\right)^{\frac{N}{p^{2}}} \max \left\{1, R^{\frac{p-N}{p}}\|u\|_{L^{p^{*}}\left(B_{2}\right)}, R^{\frac{q-N}{p}}\|v\|_{L^{q^{*}}\left(B_{2}\right)}^{q / p}\right\} \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\|v\|_{L^{\infty}\left(B_{1}\right)} \leq c\left(1+R^{q}\right)^{\frac{N}{p q}} \max \left\{1, R^{\frac{p-N}{q}}\|u\|_{L^{p^{*}}\left(B_{2}\right)}^{\frac{p}{q}}, R^{\frac{q-N}{q}}\|v\|_{L^{q^{*}}\left(B_{2}\right)}\right\} . \tag{2.36}
\end{equation*}
$$

Proof We use the same change of variables as in the proof of Theorem 2.1. Thus, we obtain that (\tilde{u}, \tilde{v}) satisfies (2.4) and (2.5). Also we keep the same sequences $\left(m_{n}\right)_{n},\left(r_{n}\right)_{n},\left(B_{n}\right)_{n}$ and the same function η. We multiply Equation (2.4) by $|\tilde{u}|^{m_{n}} \tilde{u} \eta^{q}$, and integrate over B_{n}. Using (2.33), we have

$$
\begin{equation*}
I_{1}+I_{2} \leq R^{p}\left(I_{3}+I_{4}+I_{5}\right) \tag{2.37}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\left(1+m_{n}\right) \int_{B_{n}} \eta^{q}|\tilde{u}|^{m_{n}}|\nabla \tilde{u}|^{p} d x \\
& I_{2}=q \int_{B_{n}} \eta^{q-1} \nabla \eta \cdot \nabla \tilde{u}|\nabla \tilde{u}|^{p-2}|\tilde{u}|^{m_{n}} \tilde{u} d x \\
& I_{3}=C \int_{B_{n}}|\tilde{u}|^{p+m_{n}} \eta^{q} d x \\
& I_{4}=C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u}|\tilde{v}|^{q / p^{\prime}} \eta^{q} d x \\
& I_{5}=C \int_{B_{n}}|\tilde{u}|^{m_{n}} \tilde{u} \eta^{q} d x .
\end{aligned}
$$

The integrals I_{1}, I_{2}, I_{3} and I_{4} are the same to those obtained in Theorem 2.1. Simple computations used before show that

$$
\begin{equation*}
\left\|\eta^{q / p} \tilde{u}^{\frac{m_{n}+p}{p}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} \leq\left(\frac{m_{n}+p}{p}\right)^{p-1}\left(c \int_{B_{n}}|\tilde{u}|^{m_{n}+p} d x+2^{p} S_{p} R^{p} \sum_{i=3}^{5} I_{i}\right) \tag{2.38}
\end{equation*}
$$

Now, we define $\left(p_{n}\right)_{n}$ and $\left(q_{n}\right)_{n}$ by

$$
p_{n}=p \tau^{n}, \quad q_{n}=q \tau^{n},
$$

and let $m_{n}=p\left(\tau^{n}-1\right)$, and, $l_{n}=q\left(\tau^{n}-1\right)$. Then we estimate the integrals $I_{i}, i=3, \ldots, 5$. It is clear from (2.13) and (2.14) that

$$
\begin{equation*}
I_{3} \leq c\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}} \quad \text { and } \quad I_{4} \leq c\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q / p^{\prime}} \tag{2.39}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
I_{5} & \leq C \int_{B_{n}}|\tilde{u}|^{m_{n}+1} d x=c\|\tilde{u}\|_{L^{m_{n}+1}\left(B_{n}\right)}^{m_{n}+1} \leq c\left|B_{n}\right|^{\left(\frac{1}{m_{n}}-\frac{1}{p_{n}}\right)\left(m_{n}+1\right)}\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1} \\
& \leq c\left|B_{2}\right|^{\frac{p-1}{p \tau^{n}}}\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1} \\
& \leq c\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1} \tag{2.40}
\end{align*}
$$

We deduce from (2.38)-(2.40) that

$$
\begin{align*}
\|\tilde{u}\|_{L^{p_{n+1}\left(B_{n+1}\right)}}^{p_{n}} & \leq\left\|\eta^{q / p} \tilde{u}^{\tau^{n}}\right\|_{L^{p \tau}\left(B_{n}\right)}^{p} \\
& \leq c \tau^{n(p-1)}\left(\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}}\right. \\
& \left.+R^{p}\left(\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}}+\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1}\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q / p^{\prime}}+\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{m_{n}+1}\right)\right) . \tag{2.41}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\|\tilde{v}\|_{L^{q_{n+1}}\left(B_{n+1}\right)}^{q_{n}} & \leq\left\|\eta \tilde{v}^{\tau^{n}}\right\|_{L^{q \tau}\left(B_{n}\right)}^{q} \\
& \leq c \tau^{n(q-1)}\left(\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q_{n}}\right. \\
& \left.+R^{q}\left(\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{q_{n}}+\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{l_{n}+1}\|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)}^{p / q^{\prime}}+\|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)}^{l_{n}+1}\right)\right) . \tag{2.42}
\end{align*}
$$

Following the proof of Theorem 2.1 we let
$E_{n}=\max \left\{1,\left\|\tilde{u}_{n}\right\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}},\left\|\tilde{v}_{n}\right\|_{L^{q_{n}}\left(B_{n}\right)}^{q_{n}}\right\}^{1 / p_{n}}$ and
$F_{n}=\left\{1,\left\|\tilde{u}_{n}\right\|_{L^{p_{n}}\left(B_{n}\right)}^{p_{n}},\left\|\tilde{v}_{n}\right\|_{L^{q_{n}}\left(B_{n}\right)}^{q_{n}}\right\}^{\frac{1}{q_{n}}}$. We obtain

$$
\begin{align*}
\|\tilde{u}\|_{L^{\infty}\left(B_{1}\right)} & \leq \lim _{n \rightarrow+\infty} \sup \|\tilde{u}\|_{L^{p_{n}}\left(B_{n}\right)} \leq E_{n} \\
& \leq c\left(1+R^{q}\right)^{\frac{N}{p^{2}}} E_{0} \tag{2.43}\\
& =c\left(1+R^{q}\right)^{\frac{N}{p^{2}}} \max \left\{1,\|\tilde{u}\|_{L^{p}\left(B_{2}\right)},\|\tilde{v}\|_{L^{q}\left(B_{2}\right)}^{q / p}\right\} .
\end{align*}
$$

$$
\begin{align*}
\|\tilde{v}\|_{L^{\infty}\left(B_{1}\right)} & \leq \lim _{n \rightarrow+\infty} \sup \|\tilde{v}\|_{L^{q_{n}}\left(B_{n}\right)} \leq F_{n} \\
& \leq c\left(1+R^{q}\right)^{\frac{N}{p q}} F_{0} \tag{2.44}\\
& =c\left(1+R^{q}\right)^{\frac{N}{p q}} \max \left\{1,\|\tilde{u}\|_{L^{p}\left(B_{2}\right)}^{\frac{p}{q}},\|\tilde{v}\|_{L^{q}\left(B_{2}\right)}\right\} .
\end{align*}
$$

Using a simple change of variables in (2.43) and (2.44) we obtain (2.35) and (2.36).

3 Global estimates for solutions of (1.1)-(1.3)

Proposition 3.1 Let $(u, v) \in \mathcal{D}^{1, p}(\Omega) \times \mathcal{D}^{1, q}(\Omega)$ a solution of (1.1)-(1.3). We assume that there exist a functions $a, b \in L^{1}(\Omega) \cap L^{\infty}(\Omega)$ and a constant C such that

$$
\begin{align*}
|f(x, u, v)| & \leq a(x)+C\left(|u|^{p-1}+|v|^{q / p^{\prime}}\right) \tag{3.1}\\
|g(x, u, v)| & \leq b(x)+C\left(|v|^{q-1}+|v|^{p / q^{\prime}}\right) \tag{3.2}
\end{align*}
$$

where $p>1, q>1$. Then

1) $(u, v) \in L^{\sigma}(\Omega) \times L^{\eta}(\Omega)$ for all $(\sigma, \eta) \in\left[p^{*},+\infty\right) \times\left[q^{*},+\infty\right)$.
2) $\lim _{|x| \rightarrow+\infty} u(x)=\lim _{|x| \rightarrow+\infty} v(x)=0$.

Proof 1) Let $p_{n}=p \tau^{n}, q_{n}=q \tau^{n}, m_{n}=\tau^{n}-1, t_{n}=\tau^{n}-1, T_{k}(u)=$ $\max \{-k, \min \{k, u\}\}$ and $w=\left|T_{k}(u)\right|^{p m_{n}} T_{k}(u)$, with $k>0$. Multiplying the equation (1.1) by w and integrating over Ω, we obtain

$$
\left(p m_{n}+1\right) \int_{\Omega}\left|\nabla T_{k}(u)\right|^{p}\left|T_{k}(u)\right|^{p m_{n}} d x=\int_{\Omega} f(x, u, v) w d x
$$

Observing that

$$
\begin{equation*}
\left(\frac{1}{m_{n}+1}\right)^{p}\left|\nabla\left(T_{k}(u)\right)^{m_{n}+1}\right|^{p}=T_{k}(u)^{p m_{n}}\left|\nabla T_{k}(u)\right|^{p}, \tag{3.3}
\end{equation*}
$$

we deduce from Hölder and Sobolev inequalities that for any $0<\gamma<1$, we have

$$
\begin{align*}
& \left.\int_{\Omega}\left|T_{k}(u)\right|^{\tau\left(p m_{n}+p\right)}\right)^{1 / \tau} \tag{3.4}\\
& \leq c\left(\|a\|_{\infty}^{1-\gamma}\|a\|_{L^{1}(\Omega)}^{\gamma}\|u\|_{L^{p_{n}}(\Omega)}^{p m_{n}+1}+\|u\|_{L^{p_{n}}(\Omega)}^{p_{n}}+\|v\|_{L^{q_{n}}(\Omega)}^{q / p^{\prime}}\|u\|_{L^{p_{n}}(\Omega)}^{m_{n}+1}\right) .
\end{align*}
$$

with c depending from n. Letting k tend to infinity in (3.4), we obtain

$$
\begin{equation*}
\|u\|_{L^{p_{n+1}}(\Omega)}^{p_{n}} \leq c\left(\|u\|_{L^{p_{n}}(\Omega)}^{p m_{n}+1}+\|u\|_{L^{p_{n}}(\Omega)}^{p_{n}}+\|v\|_{L^{q_{n}}(\Omega)}^{q / p^{\prime}}\|u\|_{L^{p_{n}}(\Omega)}^{m_{n}+1}\right) . \tag{3.5}
\end{equation*}
$$

We derive from (3.5) that $u \in L^{p_{n}}(\Omega)$ for all $n \in \mathbb{N}$. Similarly, we prove that $v \in L^{q_{n}}(\Omega)$ for all $n \in \mathbb{N}$. By interpolation inequality (see [3]) we prove that
$(u, v) \in L^{\sigma}(\Omega) \times L^{\eta}(\Omega)$, for all $(\sigma, \eta) \in\left[p^{*},+\infty\right) \times\left[q^{*},+\infty\right)$. The proof of 2$)$ follows from Serrin inequality [4] and 1).

Next, we study the sub-homogeneous system

$$
\begin{align*}
& -\Delta_{p} u=B(x)|u|^{\alpha-1} u|v|^{\beta+1}, \tag{3.6}\\
& -\Delta_{q} v=C(x)|u|^{\alpha+1}|v|^{\beta-1} v, \tag{3.7}
\end{align*}
$$

in Ω an exterior domain or \mathbb{R}^{N}.
Proposition 3.2 Assume that $B, C \in L^{\infty}(\Omega)$ and

$$
\frac{\alpha+1}{p^{*}}+\frac{\beta+1}{q^{*}}<1, \quad p>1, \quad q>1 .
$$

Then each solution $(u, v) \in \mathcal{D}^{1, p}(\Omega) \times \mathcal{D}^{1, q}(\Omega)$ of the system (3.6), (3.7) satisfies 1. $(u, v) \in L^{\sigma}(\Omega) \times L^{\eta}(\Omega)$ for all $(\sigma, \eta) \in\left[p^{*},+\infty\left[\times\left[q^{*},+\infty[\right.\right.\right.$.
2. $\lim _{|x| \rightarrow+\infty} u(x)=0$ and $\lim _{|x| \rightarrow+\infty} v(x)=0$.

Proof Let $\tau=\frac{N}{N-p}, \bar{\tau}=\frac{N}{N-q}$ and $L=1-\frac{\alpha+1}{p^{*}}-\frac{\beta+1}{q^{*}}$. Assume $q \geq p$, which implies that $\bar{\tau} \geq \tau$. We define the sequences $\left(p_{n}\right)_{n},\left(q_{n}\right)_{n}$ and $\left(f_{n}\right)_{n}$ by

$$
\begin{aligned}
& f_{n+1}=\tau\left(f_{n}+L-1\right)+1, \quad f_{0}=1 \\
& p_{n}=p^{*} f_{n}, \quad q_{n}=q^{*} f_{n}
\end{aligned}
$$

Let $T_{k}(u)=\max \{-k, \min \{k, u\}\}$ for $k>0$ and $\omega=\left|T_{k}(u)\right|^{p m_{n}} T_{k}(u)$, with

$$
\begin{equation*}
m_{n}=\left(1-\frac{\alpha+1}{p_{n}}-\frac{\beta+1}{q_{n}}\right) \frac{p_{n}}{p}=f_{n+1}-1 \tag{3.8}
\end{equation*}
$$

Multiplying (3.6) by ω and integrating over Ω, we obtain from (3.3) and Sobolev inequality

$$
\frac{1}{S_{p}}\left(p m_{n}+1\right)\left(\frac{1}{m_{n}+1}\right)^{p}\left(\int_{\Omega}\left|T_{k}(u)\right|^{\tau\left(p m_{n}+p\right)}\right)^{1 / \tau} \leq\|B\|_{L^{\infty}(\Omega)} \int_{\Omega}|u|^{\alpha}|v|^{\beta+1} \omega d x
$$

From the definition of m_{n} and Hölder inequality, we deduce that

$$
\left(\int_{\Omega}\left|T_{k}(u)\right|^{p^{*}\left(m_{n}+1\right)}\right)^{1 / \tau} \leq S_{p} \frac{\left(m_{n}+1\right)^{p}}{\left(p m_{n}+1\right)}\|B\|_{L^{\infty}(\Omega)}\|u\|_{L^{p_{n}}(\Omega)}^{\alpha+1+p m_{n}}\|v\|_{L^{q_{n}}(\Omega)}^{\beta+1}
$$

Let k tends to infinity, we have

$$
\left(\int_{\Omega}|u|^{p^{*}\left(m_{n}+1\right)}\right)^{1 / \tau} \leq S_{p} \frac{\left(m_{n}+1\right)^{p}}{\left(p m_{n}+1\right)}\|B\|_{L^{\infty}(\Omega)}\|u\|_{L^{p_{n}}(\Omega)}^{\alpha+1+p m_{n}}\|v\|_{L^{q_{n}}(\Omega)}^{\beta+1} .
$$

$p^{*}\left(m_{n}+1\right)=p^{*}\left(f_{n+1}\right)=p_{n+1}$, therefore $u \in L^{p_{n+1}}(\Omega)$. To show that $v \in$ $L^{q_{n+1}}(\Omega)$, We consider $\bar{w}=\left|T_{k}(v)\right|^{q t_{n}} T_{k}(v)$, with

$$
\begin{align*}
t_{n} & =\left(1-\frac{\alpha+1}{p_{n}}-\frac{\beta+1}{q_{n}}\right) \frac{q_{n}}{q} \tag{3.9}\\
& =\bar{\tau}\left(f_{n}+L-1\right) .
\end{align*}
$$

Proceeding as above, we obtain

$$
\left(\int_{\Omega}|v|^{q^{*}\left(t_{n}+1\right)}\right)^{\frac{1}{\tau}} \leq S_{q} \frac{\left(t_{n}+1\right)^{q}}{\left(q t_{n}+1\right)}\|C\|_{L^{\infty}(\Omega)}\|u\|_{L^{p_{n}}(\Omega)}^{\alpha+1}\|v\|_{L^{q_{n}}(\Omega)}^{\beta+1+q t_{n}} .
$$

Let $\bar{q}_{n}=q^{*}\left(t_{n}+1\right)$. It is clear that $v \in L^{\bar{q}_{n}}$, and since

$$
\begin{aligned}
\bar{q}_{n} & =q^{*}\left(t_{n}+1\right) \\
& =q^{*}\left(\bar{\tau}\left(f_{n}+L-1\right)+1\right) \\
& \geq q_{n+1}
\end{aligned}
$$

then $q_{n} \leq q_{n+1} \leq \bar{q}_{n}$. By interpolation inequality (see [3]), we deduce that $v \in L^{q_{n+1}}(\Omega)$. 2) follows from Serrin inequality [4] and 1).

References

[1] E. Egnell. Existence results for some quasilinear elliptic equations. Nonlinear. Anal, 1989.
[2] J. Fleckinger, R.F. Manasevich, N.M. Stavrakakis, and F. de TheLIN. Principal eigenvalues for some quasilinear elliptic equations on \mathcal{R}^{n}. Adv. Differential Equations, 2(6):981-1003, 1996.
[3] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 1983.
[4] J. Serrin. Local behavior of solutions of quasilinear equations. Acta. Math, 111:247-302, 1964.
[5] L.S. Yu. Nonlinear p-Laplacian problem on unbounded domains. Proc. Amer. Math. Soc, 115(4):1037-1045, 1992.

Abdelhak Bechah

Laoratoire MIP
UFR MIG, Université Paul Sabatier Toulouse 3
118 route de Narbonne, 31062
Toulouse cedex 4, France
e-mail: bechah@mip.ups-tlse.fr or abechah@free.fr web page: http://mip.ups-tlse.fr/~bechah

[^0]: *Mathematics Subject Classifications: 35J20, 35J45, 35J50, 35J70.
 Key words: quasilinear systems, p-Laplacian operator, unbounded domain, Serrin estimate. (C)2001 Southwest Texas State University.

 Submitted November 23, 2001. Published March 23, 2001.

