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Recent results and open problems on parabolic

equations with gradient nonlinearities ∗

Philippe Souplet

Abstract

We survey recent results and present a number of open problems con-
cerning the large-time behavior of solutions of semilinear parabolic equa-
tions with gradient nonlinearities. We focus on the model equation with
a dissipative gradient term

ut −∆u = up − b|∇u|q,

where p, q > 1, b > 0, with homogeneous Dirichlet boundary conditions.
Numerous papers were devoted to this equation in the last ten years, and
we compare the results with those known for the case of the pure power
reaction-diffusion equation (b = 0). In presence of the dissipative gradient
term a number of new phenomena appear which do not occur when b = 0.
The questions treated concern: sufficient conditions for blowup, behavior
of blowing up solutions, global existence and stability, unbounded global
solutions, critical exponents, and stationary states.

1 Introduction

The large-time behavior of solutions of nonlinear reaction-diffusion equations
has received considerable interest since the 60’s. A model case of such equation
is

ut −∆u = |u|p−1u. (1.1)

Various sufficient conditions for blowup and global existence were provided and
qualitative properties were investigated, such as: nature of the blowup set, rate
and profile of blowup, maximum existence time and continuation after blowup,
boundedness of global solutions and convergence to a stationary state. We refer
for these to the books and survey articles [6, 41, 33, 57, 54, 14].

More recently, a number of works have addressed the same type of questions
for semilinear parabolic equations where the nonlinearity also depends on the
spatial derivatives of u. A rough and partial classification of such equation
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can be made according to two criteria. The first one is the nature the gradient
dependence of the nonlinearity, namely, through a convective term, like a·∇(uq),
or through a term of Hamilton-Jacobi type b|∇u|q. The second criterion is the
presence (or not) of a reaction term, like up. Typical equations resulting from
the combination of these criteria are

ut −∆u = a.∇(uq), (1.2)
ut −∆u = up + a.∇(uq), (1.3)

ut −∆u = b|∇u|q, (1.4)
ut −∆u = up − b|∇u|q. (1.5)

(Here up ≡ |u|p−1u, a ∈ RN , b ∈ R.) Each of these equations has been rather
well studied in the past ten years. However, reviewing all of them would be
somehow too dispersive, and we prefer to focus on one particular equation,
which already provides a rich variety of aspects. The purpose of this article
is thus to survey the existing literature on the equation (CW). We refer the
interested reader to [15] for (1.2), [2] for (1.3), [8] for (1.4), and to the references
in these papers. Outside of this classification, let us also mention the equation

ut − uxx = f(u)|ux|q−1ux,

which exhibits interesting phenomena (related to derivative blowup – see e.g.
[4, 49]).

We will consider the associated initial-boundary value problem of Dirichlet
type:

ut −∆u = |u|p−1u− b|∇u|q, t > 0, x ∈ Ω,
u(t, x) = 0, t > 0, x ∈ ∂Ω, (1.6)
u(0, x) = φ(x) ≥ 0, x ∈ Ω.

In what follows, we assume that p > 1, q ≥ 1, and Ω is a domain of RN ,
bounded or unbounded, sufficiently regular (say, uniformly regular of class C2).
Also, unless otherwise stated, we assume b > 0. (A few results will however
concern the case b < 0.)

It is known that (1.6) admits a unique, maximal in time, classical solution
u ≥ 0, for all φ ≥ 0 sufficiently regular, e.g., φ ∈ C1

(
Ω
)

with φ
∣∣
∂Ω

= 0 if Ω
is bounded, or φ ∈ W 1,s

0 (Ω) with s > N max(p, q) if Ω is unbounded. This
regularity of φ will be assumed throughout the paper, unless otherwise stated.
We denote by T ∗ = T ∗(φ) the maximum existence time of u, and we say that
u blows up in finite time if T ∗(φ) < ∞. When φ ≥ 0 and b > 0, it is known
[37, 53] that gradient blowup cannot occur for (1.6), that is: T ∗(φ) <∞ implies
lim supt→T∗ ‖u(t)‖∞ =∞.

Since we only consider nonnegative solutions of (1.6), it is clear that the
gradient term here represents a dissipation when b > 0. In fact, the dynamics of
this equation can be partially understood as a competition between the reaction
term up, which may cause blowup as in the equation (1.1), and the gradient
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term, which fights against blowup. The solutions will exhibit different large-
time behaviors, according to the issue of this competition. Similar mechanisms
of competition have been studied in the case of nonlinear wave equations of the
type

utt −∆u = |u|p−1u− |ut|q−1ut ,

where p > 1, q ≥ 1 (see [23]).
Equation (1.6) was first introduced in [10] in order to investigate the possible

effect of a damping gradient term on global existence or nonexistence. On the
other hand, a model in population dynamics was proposed in [46], where (1.6)
describes the evolution of the population density of a biological species, under
the effect of certain natural mechanisms. In particular, the dissipative gradient
term represents the action of a predator which destroys the individuals during
their displacements (it is assumed that the preys are not vulnerable at rest). A
further discussion of this model can be found in [1], where the related degenerate
equation

ut −∆(um) = up − |∇(uα)|q

with m > 1, α > 0 was studied.
As it will turn out, the large-time behavior of the solution of problem (1.6)

will generally depend on all the values of the parameters, on the initial data,
and on the domain Ω. However, of particular importance will be the fact that
p > q or q ≥ p. These cases are respectively reviewed in § 2 and 3. Finally,
§ 4 is devoted to stationary solutions of (1.6). Throughout the paper, we will
indicate a number of open problems related to the results we will review.

2 The case p > q

2.1 Existence of blowup: the general result

The following result [52] states that finite-time blowup occurs for large data
whenever p > q.

Theorem 2.1 Assume p > q, Ω ⊂ R
N (bounded or unbounded) and ψ 6≡ 0

(ψ ≥ 0). Then there exists λ0 = λ0(ψ) > 0 such that for all λ > λ0, the
solution of (1.6) with initial data φ = λψ blows-up in finite time.

We will see in § 3 that this result is optimal, in the sense that blowup never
occurs if q ≥ p, at least in bounded domains.

The basic idea of the proof is to compare u with a subsolution that blows up
in finite time. In fact, one constructs a self-similar subsolution, whose profile
is compactly supported. Interestingly, it is possible to find blowing-up self-
similar subsolutions, whether or not (1.6) has the invariance properties normally
associated with self-similar solutions. The similarity exponents depend on p and
q, and can be chosen within a certain range of values.

The result of Theorem 2.1 actually extends to more general nonlinearities
F (u, ∇u) and also to some degenerate problems.
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We mention that the conclusion of Theorem 2.1 was obtained earlier, by
completely different methods, in [29] in the special case q = 2, and in [36] in the
special case N = 1, b small.

2.2 Other conditions for blowup

Besides the preceding general blowup result, various blowup conditions of more
specific type are known, often under the restriction q ≤ 2p/(p + 1). Some of
them concern non-decreasing solutions. A sufficient condition on the initial data
for having ut ≥ 0 is ∆φ+φp− b|∇φ|q ≥ 0 (see [10, 50]). The following theorem
[10, 3] establishes blowup under an additional assumption of negative initial
energy, in the spirit of the results of [32] and [5] for equation (1.1).

Theorem 2.2 Assume q ≤ 2p/(p + 1) and Ω ⊂ RN (bounded or unbounded).
Assume that φ (sufficiently regular) satisfies

E(φ) =
1
2
‖∇φ‖22 −

1
p+ 1

‖φ‖p+1
p+1 < 0

and is such that ut ≥ 0. Moreover, suppose that −E(φ)/‖φ‖22 is large enough if
q < 2p/(p+ 1), or that b is sufficiently small if q = 2p/(p+ 1). Then T ∗ <∞.

In some situations, the energy assumption can be relaxed, leading to blowup
of all nontrivial non-decreasing solutions [45, 46].

Theorem 2.3 Assume q = 2p/(p+1), Ω = R
N , (N−2)p < N+2, and b small

enough. Suppose also that φ is such that ut ≥ 0. Then T ∗ <∞.

We note that initial data φ satisfying the requirements of Theorems 2.2 and
2.3 are shown to exist. Moreover, in case of Theorem 2.3, it is possible to find
suitable φ such that E(φ) > 0 (so that the result is not covered by Theorem
2.2).

For equation (1.1) in Ω = R
N a classical result, essentially due to Fujita

(see [20, 33]), asserts that no nonnegative nontrivial global solutions exist for
p ≤ 1 + 2/N , whereas both blowing-up and global positive solutions do exist
if p > 1 + 2/N . The value pc = 1 + 2/N is thus said to be the Fujita critical
exponent of the problem.

Open problem 1. Is there a Fujita critical exponent for equation (1.6) in RN

when q = 2p/(p+ 1) and b is small?

Partial facts are known about this problem. First, if p > 1 + 2/N , for any
b > 0 (and any q actually), there always exist positive global solutions. This
follows from a straightforward comparison argument with the global solutions
of the case b = 0. When q = 2p/(p + 1) and b is large, both blowing-up and
stationary positive solutions do exist. Therefore no Fujita-like result can hold
in this case.
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On the contrary, when q = 2p/(p + 1), p ≤ 1 + 2/N and b is small, the
existence of positive global solutions is unknown (at least it is known that no
positive stationary solutions exist). On account of the similarity of scaling
properties between equations (1.1) and (1.6) when q = 2p/(p+ 1), the authors
of [3] conjectured the nonexistence of positive global solutions.

In one space dimension on a bounded interval, when q ≤ 2p/(p + 1), with
b small if q = 2p/(p + 1), it is known [10] that (1.6) admits a unique positive
stationary solution v. In this case, a very simple blowup condition, which does
not require the monotonicity of u, was obtained in [16].

Theorem 2.4 Assume Ω = (a, b), −∞ < a < b < ∞, q ≤ 2p/(p + 1) with
b small if q = 2p/(p + 1). Suppose that φ ≥ v, φ 6≡ v, where v is the unique
positive stationary solution. Then T ∗ <∞.

For equation (1.1) in RN , a criterion for blowup in terms of the growth of φ
as |x| → ∞ was found in [31]. The following theorem [53] improves the result
of [31] by allowing any domain containing a cone, and imposing the growth
condition on φ only in that cone. The result holds for (1.1) and for (1.6) as well.

Theorem 2.5 Assume that 2p/(p+ 1) ≤ q < p and that Ω contains a cone Ω′.
There exists a constant C = C(Ω′) > 0 such that if φ satisfies

lim inf
|x|→∞, x∈Ω′

|x|2/(p−1)φ(x) > C, (2.1)

then T ∗ <∞.

It can be proved that the decay condition (2.1) is optimal: there exist global
solutions for initial data which decay like ε|x|−2/(p−1) when ε > 0 is small.
Recently, a similar optimal result was obtained in [40] for a very general class
of “smaller” unbounded domains, of paraboloid type. The corresponding decay
condition on the initial data is related in a precise way to the growth of the
domain at infinity.

Open problem 2. Does the result of Theorem 2.5 remain valid when 1 ≤
q < 2p/(p+ 1) ?

Let us remark that all the results in §2.2 involve the limiting value q =
2p/(p + 1). The origin of this number can be easily understood from scaling
considerations. Indeed, for q = 2p/(p+ 1), the equation (1.6) exhibits the same
scale invariance as the equation (1.1). Namely, if u solves (1.6), say, in RN , then
so does uα(t, x) ≡ α2/(p−1)u(α2t, αx). This property will play an important role
in § 2.3 (self-similar solutions), and in §2.4 and §3.

2.3 Description of blowup

Several results on the blowup behavior of non-global solutions of (1.6) have been
recently obtained, although still relatively little is known in comparison with the
most studied case of (1.1).
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The estimates of the blowup rates were proved in [11, 50, 12, 18] in the case
q < 2p/(p+ 1). We summarize the results in the following theorem.

Theorem 2.6 Assume q < 2p/(p+1) and let u ≥ 0 be a solution of (1.6), such
that T <∞. The estimate

C1(T − t)1/(p−1) ≤ ‖u(t)‖∞ ≤ C2(T − t)1/(p−1), as t→ T (2.2)

holds in each of the following cases:

(i) [11] Ω = R
N , p ≤ 1 + 2/N ;

(ii) [50] Ω = R
N or Ω = BR, u radially symmetric, ur ≤ 0, ut ≥ 0, p <

(N + 2)/(N − 2)+. Moreover this remains valid for q = 2p/(p+ 1) and b
small;

(iii) [12] Ω convex bounded and (ut ≥ 0 or p ≤ 1 + 2/N);

(iv) [18] Ω arbitrary, p ≤ 1 + 2/(N + 1).

This theorem shows that for q < 2p/(p + 1) (or =), the blowup rate is the
same as for (1.1). Recall that for (1.1), the upper bound in (upper) holds for
all subcritical p, i.e. p < (N + 2)/(N − 2)+, (see [58, 19, 25], and also [34] for
further recent results), whereas it may fail for large supercritical p (see [26]).
Also, the lower bound in (2.2) holds for (1.1) for all p > 1 (see, e.g., [19]).

There are basically four different techniques to prove the upper blowup es-
timate in (2.2) for (1.1) (the lower bound is much easier). Three of them use
some re-scaling arguments, either of elliptic or parabolic type, which means that
one re-scales, respectively, only space or both space and time variables, so that
the limiting equation obtained is either elliptic or parabolic. The technique of
[58], which relies on elliptic re-scaling (for monotone symmetric solutions) was
used (and improved) in [50]. That of [25], relying on elliptic re-scaling and en-
ergy methods, does not seem applicable here, because the equation (1.6) has
no variational structure. The technique in [19], relying on maximum principle
arguments, was successfully adapted in [12]. The method of [27], which relies on
parabolic re-scaling and Fujita-type theorems (and was designed for problems
with nonlinear boundary conditions), was used in [11, 18].

Concerning the blowup set and profile of solutions of (1.6), the following
very interesting result was proved in [12].

Theorem 2.7 Assume that Ω is a ball, u is radially symmetric and ur ≤ 0,
r = |x|. Then 0 is the only blowup point and

u(t, r) ≤ Cαr−α for all α > α0, (2.3)

where

α0 =

{
2/(p− 1), if q < 2p/(p+ 1),
q/(p− q), if q ≥ 2p/(p+ 1).

Furthermore, this estimate is optimal in the sense that, if in addition N = 1
and ut ≥ 0, then (2.3) holds for no α < α0.
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The proof relies in particular on nontrivial modifications of the maximum
principle arguments of [19]. Recall that for (1.1), under the assumptions of
Theorem 2.7, (2.3) holds for all α > 2/(p − 1) (see [19]). Actually, the final
profile is given by

u(T, r) ∼ C(log r)1/(p−1)r−2/(p−1), as r → 0 (2.4)

(for radially symmetric decreasing solutions, this is known in R
N or on a

bounded interval – see [56]). Also, observe that q/(p − q) > 2/(p − 1) for
q > 2p/(p+ 1). Theorem 2.7 thus indicates that the blowup profile of solutions
of (1.6) is basically similar to that in (1.1) as long as q < 2p/(p+1), whereas for
q greater than this critical value, the gradient term induces an important effect
on the profile, which becomes more singular.

Under the assumptions of case (ii) of Theorem 2.6, the following information
on the blowup profile is also obtained in [50]: there exists a constant C > 0
(independent of u) such that

u(t, |y|
√
T − t)

u(t, 0)
≥ 1− C|y|

for t close to T . However, this estimate is only of interest for |y| small.
As for the blowup set of non-global solutions, it is proved in [12] that when

q < 2p/(p+ 1) and Ω is convex and bounded, the blowup set of any solution of
(1.6) is a compact subset of Ω.

In some special cases, a further insight into the description of blowup can
be gained by studying the existence of backward self-similar solutions, that is,
solutions of the form

u(t, x) = (T − t)−1/(p−1)W (x/(T − t)m), −∞ < t < T, x ∈ RN , (2.5)

with m = 1/2. From the scaling considerations of § 2.2, it is easily seen that
such solutions can exist only if q = 2p/(p + 1). The following result is proved
in [51].

Theorem 2.8 Assume Ω = R
N , q = 2p

p+1 , and 0 < b < 2. There exists
p0 = p0(b, n) > 1, such that for all p with 1 < p < p0, the equation (1.6) has
a solution of the form (2.5) with m = 1/2, where W is positive, C2, radially
symmetric and radially decreasing in RN .

Moreover, for all such solution, there exists a constant C > 0 such that the
corresponding function W satisfies lim|x|→∞ |x|2/(p−1)W (x) = C.

In particular, u blows up at the single point x = 0, and it holds

u(T, x) = C|x|−2/(p−1), for all x 6= 0 .

It is to be noted that no nontrivial, backward, self-similar solutions exist
for b = 0 and p subcritical. Also the blowup profile above is different from all
the profiles known for (1.1). Namely, it is slightly less singular, by a logarith-
mic factor, than the corresponding profile for (1.1) (see formula (2.4) above).
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Comparison of Theorems 2.7 and 2.8 yields the interesting and a bit surpris-
ing observation that the gradient term can have different effects on the blowup
profile: when the perturbation is mild (q = 2p/(p+ 1) in Theorem 2.8), slightly
less singular profile; when the perturbation is strong (2p/(p + 1) < q < p in
Theorem 2.7), more singular profile.

Different kinds of self-similar blowup behaviors, and a description of the
blowup set as well, were obtained in the case b < 0, q = 2. Note that the gradient
term now has a positive sign, enhancing blowup. Also, the transformation
v = eu − 1 changes the first equation in (1.6) into the equation vt − ∆v =
(1 + v) logp(1 + v). One has single-point blowup if 1 < p < 2, regional blowup
if p = 2, and global blowup if p > 2 (see [30, 29, 21, 22]).

The authors of [29] interpret the above result in the following way. While
the term up alone would force the solution to develop a spike at the maximum
point, hence causing single point blowup, the gradient term tends to push up
the steeper parts of the profile u(t, .). This enhances regional or even global
blowup, the influence of the gradient term becoming more important as the
value of p decreases.

Concerning self-similar profiles, in the case b < 0, q = 2, for radial solu-
tions in RN it is proved in [21, 22] that blowup solutions behave asymptotically
like a self-similar solution w of the following Hamilton-Jacobi equation without
diffusion:

wt = |∇w|2 + wp,

with w having the form (2.5), for m = (2 − p)/2(p − 1). Note that this kind
of self-similar behavior is quite different from that in Theorem 2.8 above (or
from those known for b = 0 and p super-critical); indeed, m describes the range
(−∞, 1/2) for p ∈ (1,∞).

Let us mention that for the related equation with exponential source

ut −∆u = eu − |∇u|2, (2.6)

some results on blowup sets and profiles where obtained in [7]. The analysis
therein is strongly based on the observation that the transformation v = 1−e−u
changes (2.6) into the linear equation vt −∆v = 1.

Open problem 3. The value of p0 in Theorem 2.8 is not explicitly known
(because the proof involves a limiting argument). Can one specify the allowable
values of p, or even extend the result to all p > 1, and also to all b > 0? On the
other hand, is the self-similar solution unique for each value of the parameters?
Is the self-similar profile of Theorem 2.8 representative of all blowup behaviors
when q = 2p/(p+ 1), or do there exist different profiles?

Open problem 4. What is the blowup rate when 2p/(p + 1) < q < p ? On
the basis of the blowup profiles found in [12] in that range of parameters, and
of the parabolicity of the problem, one could conjecture a rate of the order
(T − t)−q/2(p−q), but there no evidence that this guess is true.
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2.4 Behavior of global solutions

An obvious property of equation (1.6) in bounded domains is the stability of
the solution u ≡ 0: for all (nonnegative) data of sufficiently small L∞ norm,
the solution is global, bounded, and decays exponentially to 0. This follows, via
the comparison principle, from the same well-known property for equation (1.1)
(see, e.g., [28]).

Even for Ω = R
N , some kind of stability was found in [44] in the case

q = 2p/(p+ 1), regardless of the sign and of the size of b. It is shown there that
the solution of (1.6) is global, decays to 0, and is asymptotically self-similar,
whenever the initial data is small with respect to a special norm related to the
heat semigroup. On the other hand, exact self-similar global solutions, of the
form

u(t, x) = (t+ 1)−1/(p−1)U(|x|(t+ 1)−1/2)

are constructed in [55] by different methods (shooting arguments for the corre-
sponding ODE).

The next natural question concerning global solutions is whether they are
bounded or not and, if they are, whether they satisfy a priori estimates for all
t ≥ 0. This question has received much attention in the case of (1.1): roughly
speaking, the answer is yes for sub-critical p ((N − 2)p < N + 2), and no
otherwise. For problem (1.6), the following result was recently obtained in [39].

Theorem 2.9 Assume q < 2p/(p+ 1) and either

1 < p ≤ 1 +
2

n+ 1
, or Ω = R

n and 1 < p ≤ 1 +
2
n
.

Suppose that φ ∈ C1
b (Ω), φ ≥ 0, φ|∂Ω = 0 and that T ∗ =∞. Then u is uniformly

bounded for t ≥ 0 and satisfies the a priori estimate

sup
t≥0
‖u(t)‖C1 ≤ C(‖φ‖C1),

where C(‖φ‖C1) remains bounded for ‖φ‖C1 bounded.

In the case of (1.1), the known techniques for proving boundedness and
a priori estimates of global solutions make essential use of the existence of a
Liapunov functional, namely the energy

E(t) =
1
2
‖∇u(t)‖22 −

1
p+ 1

‖u(t)‖p+1
p+1,

and no Liapunov functional is known for problem (1.6) in general. The proof of
Theorem 2.9 thus relies on a different method based on re-scaling and Fujita-
type theorems, in the spirit of [27] and [18]. We refer to [38] and [39] for related
questions for other gradient-depending nonlinearities. Due to the method of
proof, the result of Theorem 2.9 is restricted to p ≤ 1 + (2/N). In the special
case of time-increasing solutions however, the energy functional decreases along
the trajectories, which enables one to obtain the following result [16, 45, 46].
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Theorem 2.10 Assume (N − 2)p < N + 2, and either q < 2p/(p + 1) and Ω
bounded, or q = 2p/(p + 1) and b small. Suppose that φ is such that ut ≥ 0
and T ∗ =∞. Then u is uniformly bounded for t ≥ 0 and converges in L∞ to a
stationary solution.

The scaling properties of the equation (1.6) (see §2.2) suggest that both re-
scaling and energy arguments require q ≤ 2p/(p + 1). It turns out that this
is a genuine restriction. Indeed, the following result (see [13], Theorem 3.3
(iv) and its proof) shows that, even in 1 dimension on a bounded interval, there
exist unbounded non-decreasing global solutions for certain values of b, whenever
p > q = 2. (Note that 2p/(p+ 1)→ 2 as p→∞.)

Theorem 2.11 Assume Ω = (0, L), 0 < L < ∞, p > q = 2. For some
b = b0(L) > 0, there exist (infinitely many) φ such that ut ≥ 0, T ∗ = ∞, and
limt→∞ ‖u(t)‖∞ =∞.

More precisely, it is proved in [13] that u(t) approaches the (unique) sin-
gular stationary solution vs as t → ∞, whenever φ lies between the maximal
regular stationary solution and vs. Further sharp stability/instability results for
equilibria of (1.6) are given in [13] for q = 2 and N = 1.

Open problem 5. What can be said about boundedness of global solutions
for 2p/(p+ 1) < q < p, q 6= 2?

The results in the next section for q ≥ p will confirm that, unlike the sit-
uation for (1.1), the existence of unbounded global solutions is a quite general
phenomenon in presence of a dissipative gradient term.

3 The case q ≥ p

3.1 Geometry of Ω and existence of unbounded solutions

When q ≥ p, it was proved in [16, 37] that for bounded domains, blowup cannot
occur, neither in finite nor in infinite time. Starting from this result, the study
of the case q ≥ p in arbitrary unbounded domains was undertaken in [53]. It
turns out that the geometry of Ω at infinity plays a determinant role in the
problem. The relevant concept is the inradius of Ω:

ρ(Ω) = sup
{
r > 0; Ω contains a ball of radius r

}
= sup
x∈Ω

dist(x, ∂Ω).

The following result [53, 47] gives a characterization in terms of ρ(Ω) of the
domains Ω in which all solutions of (1.6) are global and bounded for q ≥ p.

Theorem 3.1 Assume q ≥ p.

(i) If ρ(Ω) <∞, then for all φ, the solution u of (1.6) is global and bounded.
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(ii) If ρ(Ω) = ∞, then there exists φ such that the solution u of (1.6) is
unbounded (with either T ∗ < ∞ and lim supt→T∗ ‖u(t)‖∞ = ∞, or T ∗ =
∞ and limt→∞ ‖u(t)‖∞ =∞).

(See paragraph after Theorem 3.6 below for some ideas on the proof.) One
important property of the inradius, is that its finiteness is also equivalent to the
validity of the Poincaré inequality in W 1,k

0 (Ω), 1 ≤ k <∞:

‖v‖k ≤ Ck(Ω)‖∇v‖k, ∀v ∈W 1,k
0 (Ω). (3.1)

(The equivalence is true under mild regularity assumptions on Ω, for instance if
Ω satisfies a uniform exterior cone condition – see [47] and the references therein
for details.)

As an illustration, we have ρ(Ω) < ∞ if Ω is contained in a strip, and
ρ(Ω) =∞ if Ω contains a cone. A typical example of ”largest” possible domains
satisfying ρ(Ω) <∞ is the complement of a periodic net of balls

Ω = R
N \

⋃
z∈ZN

B(Rz, ε), 0 < ε < R/2.

In the opposite direction, the “smallest” possible kind of unbounded domain for
which ρ(Ω) = ∞ is the reunion of a sequence of disjoint balls of growing up
radii, connected by thin bridges.

Using the above relation between ρ(Ω) and the Poincaré inequality, it is
proved in [53] that in case (i) of Theorem 3.1, u(t, .) decays exponentially to 0
in Lk(Ω), for large k ≤ ∞, as t → ∞. This happens in each of the following
situations:

(a) b > b0(Ω) > 0 large enough and φ is any initial data;

(b) b > 0 and ‖φ‖k is sufficiently small (independent of b).

By the way, let us mention that the stability of the 0 solution for equation
(1.1) in unbounded domains is also strongly related to ρ(Ω) (see [47, 48]).

Theorem 3.1 (ii) does not conclude whether blowup occurs in finite of infinite
time. Some cases of global unbounded solutions – i.e. ‖u(t)‖∞ →∞ as t→∞
– will be described in §3.3. One of the more interesting questions on equation
(1.6) then remains the following:

Open problem 6. Can finite time blowup occur when q ≥ p ? This is
unknown even for Ω = R

N (note that the existence of a blowing-up solution
in some domain Ω would imply the same conclusion in RN by comparison).

However, the following result [53] shows that in any domain, finite time
blowup cannot occur if q ≥ p and φ is compactly supported.

Theorem 3.2 Assume q ≥ p and Ω ⊂ RN (bounded or unbounded). If φ is
compactly supported in RN , then T ∗ =∞.

Actually, the conclusion of Theorem 3.2 remains valid whenever φ decays
exponentially in at least one direction [53].
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3.2 Critical blowup exponents

As a consequence of Theorems 2.1 and 3.1, it follows that the critical blowup
exponent for problem (1.6) is given by q = p, whenever ρ(Ω) <∞.

For bounded domains, this was conjectured in [36], where the conjecture was
verified in the case when Ω is a bounded interval and b is small.

Corollary 3.3 Assume ρ(Ω) <∞.

(i) If p > q, then there exists φ such that u blows up in finite time.

(ii) If q ≥ p, then for all φ, u is global and bounded.

If one restricts to compactly supported initial data, it follows from Theorems
2.1 and 3.2 that the critical blowup exponent is still given by q = p for any
domain, including RN .

Corollary 3.4 Assume Ω ⊂ RN (bounded or unbounded).

(i) If p > q, then there exists φ, compactly supported, such that u blows up in
finite time.

(ii) If q ≥ p, then for all φ compactly supported, u is global (possibly un-
bounded).

3.3 Unbounded global solutions

Under additional assumptions on Ω, one can prove that some unbounded global
solutions do actually exist [53].

Theorem 3.5 Assume that q ≥ p and that Ω contains a cone. Then there
exists φ, compactly supported, such that the solution u of (1.6) satisfies T ∗ =∞
and

lim
t→∞

‖u(t)‖∞ =∞.

If Ω = R
N , one further obtains solutions which blow up everywhere in infinite

time [53].

Theorem 3.6 Assume q ≥ p and Ω = R
N . Then there exists φ, compactly

supported, such that the solution u of (1.6) satisfies T ∗ =∞ and

∀x ∈ RN , lim
t→∞

u(t, x) =∞.

Note that the conclusions of Theorems 3.5 and 3.6 remain true for large sets
of initial data, namely for any compactly supported initial data lying above φ
(this follows from Theorem 3.2 and the comparison principle).

The proofs of Theorems 3.5 and 3.6 rely on the construction of ordered,
global, unbounded sub- and supersolutions. The main difficulty in constructing
the subsolution comes from the gradient term, whose power is larger than that of
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the source term. The idea is to build a radial expanding wave, whose maximum
at the origin grows up to ∞ as t → ∞, while its gradient remains uniformly
bounded. As for supersolutions, a pair of them is constructed under the form of
traveling waves, propagating in two opposite directions. These supersolutions
prevent u from blowing up in finite time.

The subsolutions above are also an essential ingredient for proving the exis-
tence of unbounded global solutions when ρ(Ω) = ∞ (see Theorem 3.1 (ii)).
More precisely, one superposes a sequence of expanding wave subsolutions,
whose supports eventually fill a collection of balls of arbitrary large radii, in-
cluded in Ω.

Open problem 7. Does there exist unbounded global solutions whenever
ρ(Ω) =∞ and q ≥ p ?

Open problem 8. What is the precise grow-up rate of ‖u(t)‖∞ for unbounded
global solutions of (1.6) ? For the solutions constructed in the proof of Theorem
3.6, we only have the rough estimate C1t ≤ ‖u(t)‖∞ ≤ C2e

C3t, as t→∞.

Global blowup, as described in Theorem 3.6, can occur only for Ω = R
N .

Indeed, define the blowup set of u as

E =
{
x0 ∈ Ω ∪ {∞}; ∃xn → x0, ∃tn → T ∗, u(tn, xn)→∞

}
.

The blowup set then satisfies the following alternative [53].

Theorem 3.7 Assume q ≥ p and Ω ⊂ RN (unbounded). Assume that φ is such
that u is unbounded, with either T ∗ <∞ or T ∗ =∞.

(i) If Ω 6= R
N , then E = {∞}.

(ii) If Ω = R
N , then either E = R

N ∪ {∞} or E = {∞}.

Open problem 9. Does there exist φ such that E = {∞} when q ≥ p and
Ω = R

N ? Theorem 3.6 provides some φ such that Ω = R
N and E = R

N ∪{∞}.

Finally, we have the analogue of Theorem 2.5 when q ≥ p, except that it is
not known whether T ∗ =∞ or T ∗ <∞ [53].

Proposition 3.8 Assume that q ≥ p and that Ω contains a cone Ω′. There
exists a constant C = C(Ω′) > 0 such that if φ satisfies

lim inf
|x|→∞, x∈Ω′

|x|2/(p−1)φ(x) > C,

then the solution u of (1.6) is unbounded (with T ∗ ≤ ∞).
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4 Stationary states

The stationary states of (1.6) were thoroughly investigated in [10, 3, 9, 17, 13,
57, 43, 35]. We conclude this survey by a brief account of results on (positive
classical) stationary solutions of (1.6), i.e. solutions of the elliptic problem

∆u+ up − b|∇u|q = 0, x ∈ Ω (4.1)
u(x) = 0, x ∈ ∂Ω .

The best results available concern the case when Ω = R
N or Ω is a ball

BR. By the results of [24], any positive solution to (4.1) on RN or on a ball
must be radial. Searching solutions of (4.1) thus leads to an ODE. Let pS =
(N+2)/(N−2), with pS =∞ if N ≤ 2. For the elliptic problem associated with
(1.1) ((4.1) with b = 0), which is classically known as Lane-Emden’s equation,
it is well-known that positive solutions exist on a ball (resp. on RN ) if and only
if p < pS (resp. p ≥ pS).

The existence and non-existence properties of solutions to (4.1) in a given
domain Ω exhibit an interesting and sharp dependence on the parameters p,
q, b. This dependence is even more crucial than that of the blowup properties
for the evolution equation. As a consequence, the picture is already somehow
complicated, even though some ranges of the parameters are not yet completely
explored and several questions remain open.

Without getting into too much detail, we here attempt to summarize the
situation. In what follows, by “existence” (or “nonexistence”), we understand
the existence of at least one classical positive solution of (4.1) on Ω.

First consider the case Ω = R
N .

(i) If p > pS : existence (for all q > 1) [43];

(ii) If p = pS : existence if and only if q < p [43];

(iii) If p < pS :

(iii1) existence if q < 2p/(p+ 1) or q = 2p/(p+ 1) and b is large enough
[10];

(iii2) nonexistence if p ≤ N/(N − 2)+ and q > 2p/(p+ 1) [43];

(iii3) nonexistence if p < N/(N − 2)+ and q = 2p/(p + 1) with b small
[10, 17, 57];

(iii4) nonexistence if N ≥ 3, N/(N − 2) < p < pS and q > q, for some
(explicitly determined) q ∈ (2p/(p+ 1), p) [43].

Moreover, there is numerical evidence that solutions exist for some values of
q between 2p/(p+ 1) and q [42].

Next we turn to the case when Ω is a ball BR in RN . Contrary to the case
Ω = R

N , the super-critical range p > pS is hardly explored. We thus classify
the results in terms of the value of q as a function of p.

(i) If 1 < q < 2p/(p+ 1) and p < pS : existence [10];
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(ii) If q = 2p/(p+ 1);

(ii1) if p ≥ pS [43] or if p < pS and b is large [10]: nonexistence;
(ii2) if p ≤ N/(N − 2)+ and b is small: nonexistence [10, 17, 57];

(iii) If 2p/(p+1) < q < p and p < pS : existence for b small [10] and nonexistence
for b large [9];

(iv) If q ≥ p > 1: existence if and only if b ≤ b0, for some b0 = b0(p,N) > 0
[37, 57];

Some partial results are known when Ω is an arbitrary bounded domain with
smooth boundary (these results are obtained via topological degree theory).

(i) If p < pS : existence for b small enough [57];

(ii) If q ≥ p > 1: existence if and only if b ≤ b0, for some b0 = b0(p,N) [37, 57];

Last, we mention that some results on the number of stationary states can
be found in [10, 9, 13, 57, 35, 43].

If we analyze the results above, we find several “critical” values of the param-
eters with respect to the existence of positive stationary solutions. The value
p = pS is critical in the case of the whole space, as it is for the equation without
gradient term. Concerning q, there are at least two critical values q = 2p/(p+1)
and q = p. There might possibly exist a third critical value q ∈ (2p/(p+ 1), p),
in which case N/(N − 2) would also be critical for p when N ≥ 3. (Inciden-
tally, when q = 2p/(p+ 1), it happens that p ≥ N/(N − 2)+ is a necessary and
sufficient condition for the existence of singular stationary solutions of the form
C|x|−r for all b > 0.) Moreover, the size of b can also be determinant when
q ≥ 2p/(p+ 1).

In comparison with these properties, it is interesting to recall from § 3.2 that
q = p is the only critical blowup exponent for the evolution problem (at least in
bounded domains), and that the values of p > 1 and b (> 0) do not play much
role in global existence or nonexistence.
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