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On the solvability of nonlocal pluriparabolic
problems *

Abdelfatah Bouziani

Abstract

The aim of this paper is to prove existence, uniqueness, and continu-
ous dependence upon the data of solutions to mixed problems for pluri-
parabolic equations with nonlocal boundary conditions. The proofs are
based on a priori estimates established in non-classical function spaces
and on the density of the range of the operator generated by the studied
problems.

1 Introduction

In this paper, we study a class of second order pluriparabolic equations with
nonlocal conditions. The aim is to proof existence, uniqueness, and continuous
dependence of generalized solutions.

Evolution problems with nonlocal boundary conditions have received at-
tention in several papers. Most of the papers were directed to second order
parabolic equations, particularly to heat conduction equations; see, for instance,
Cannon et al. [16]-[19], Kamynin [21], Tonkin [20], Yurchuk [27], Benouar-
Yurchuk [1], Bouziani-Benouar [9], Bouziani [2]-[4] and Mesloub-Bouziani [22]-
[23]. For similar problems, related to other equations, we refer the reader to
Bouziani [5]-[8], Bouziani-Benouar [10] and Pulkina [24]-[25]. Mixed problems
with nonlocal boundary conditions or with nonlocal initial conditions were stud-
ied in Yurchuk [28], Byszewski et al. [11]-[ 16], and Bouziani [7]-[8].

The presence of integral terms in the boundary conditions can greatly com-
plicate the application of standard functional and numerical techniques. The
main tool used in this paper is the introduction of a new function space in which
we can establish an a priori estimate.

This paper is outlined as follows: In Section 2, we give notation, the state-
ment of two problems, and the basic assumptions. Section 3 is devoted to the
introduction of the function spaces to be used in the rest of the paper. In Sec-
tion 3, we present abstract formulations of the posed problems and make precise
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the concept of solution of the problems. In Section 4, we establish a priori esti-
mates which are derived to show the uniqueness and continuous dependence of
the solutions upon the data. Finally, we prove the existence of the solutions in
Section 5.

2 Notation and statement of problems
Throughout this paper we use the following notation:

t=(tr, . stn), T=(T1,--,7n), t°0=(t1,..  ti1,0,tir1,. .. tn),

ti’T = (tl, e 7t’i—1a7—’iati+1; . ,tn), ti’T = (tl, . 7ti—17,1—‘1';ti+1a . ,tn),

dtiZdtl...dti_ldti_i_l...dtn (i:l,...,n),
Q = (a,b) C R, with a,b < oo, I; = (0,T;), where T; < oo (i = 1,...,n),
I= H?:l I,
Aiifl X ... XIz'_l XIi—i—l X oo, XIn,
Qi:QXIl X...XIi_l XIi+1 X...XI,L,

Qi’ozllx...XIz‘,lX{O}XIZ‘+1><...><In

We consider the following problem: Given the data o, p, ®; (i=1,...,n), E,G
and H, find a function v(z,t) satisfying the pluriparabolic equation

"L v 1
(Lv)(z,t) := 2 5 @P(t)v =g(z,t), for (z,t) € QA x1, (1)
where 5 5
P(t)o = = (p(Js0,t) 5)

with J,o the primitive of o, satisfying the conditions

(Liv)(z,t) i= v(x, t"0) = ®;(x, 1), for (z,t) € Qip (i=1,...,n), (2)

/ o(x)v(z,t)de = E(t) for tel, (3)
Q
and satisfying one of the conditions
/ zo(z)v(z,t)de = G(t) for tel, 4)
Q
dv(a,t) ,
5 =H(t) fortel. (4"

If o(xg) = 0 for all 2y in Q, then (1) is called a singular pluriparabolic
equation.

Next we formulate the main assumptions:
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A1: There are positive constants ¢;, (¢ = 0,1,2,3) such that

COSp(Jwa,t)SCb ‘%‘SCQ (i:l,...,n),
‘%ﬁ;’ﬂ’ <e¢g for (x,t) e QA xI.

A2: © — o(x) is a positive continuous function on €2, such that o(z) < ¢4,
where ¢4 is a positive constant.

A3: g€ C(QAx LR), ;€ CY(QuR) (i =1,...,n), B,G, H € C(I,R),

/ o(z)®;(z,t)dx = E(t"°), fort*®c Ay (i=1,...,n),
Q

/ xo(x)®;(x, t")dx = G(t*°), for t"° € A; (i=1,...,n),
Q

0%i(a,t') 0,0 - i\0 ,

—or H(t""), respectively| fort"" e A; (i=1,...,n)

x

and ®; =@, (1 #j;4,7=1,...,n).

Problem (1)-(3) and (4’) can be viewed as a generalization of that in Bouziani
[8], where the author studied a similar problem for the case of a second order
pluriparabolic equation with n =2, o(x) = 1, Q = (0,b) and with the function
p satisfying, in addition of Assumption Al, other supplementary assumptions.
The proof in [8] is based on an a priori estimate, which is established by tak-
ing the inner product in L?-space of the considered equation by the integro-
differential operator

0 0 0
Y +%w—u) _p(x7t17t2)a_z7

o ooy Y%
(Mu)(z,t1,t2) = 2(b— )(3, oL, oty

where the definition of &, is similar to the definition of &, from Section 3.1.
The results of this paper are also continuations of those obtained by the author
et al. in [2]-[7], [9]-[10] and [22]-[23].

Let us, now, reformulate problem (1)-(4) [respectively, (1)-(3) and (47)] with
non-homogeneous boundary conditions (3), (4) [respectively, (3), (4’)] as a prob-
lem with homogeneous boundary conditions, by introducing a new unknown
function wu(z,t) defined as follows:

u(z,t) =v(z,t) — U(x,t), for (x,t) € A x 1,

where
E(t) N 6(2G(t) — (b+a)E(t))
b= a)o(a) (b= a)io(z)
x(3(x —a)®> —2(b—a)(x —a)) for (x,t) € QxI;

U(z,t) =
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respectively
(z —a)?
Jo(z —a)?o(z)dx

x (E(t) — H(t) /Q(x —a)o(zr)dx) for (z,t) € QA xI.

U(z,t) = (x—a)H(t)+

Then, we have to find a function u(z,t), such that

(Lu)(x,t) = g(x,t) — (LU)(x,t) =: f(z,t) for (z,t) € A x I, (5)
(Cu)(z,t) = ®i(x,t)) — (GU)(x,t) (6)
= iz, t)(i=1,...,n)for (z,t) € Qio,
/ o(z)u(z,t)de =0 for tel, (7)
Q
/ zo(z)u(z,t)de =0 for tel, (8)
Q
[% =0, respectively| for ¢ e I. (8"

3 Preliminaries

Function spaces

In this subsection, we introduce and study certain fundamental function spaces.
For this purpose, let us denote by Cy(€2) the space of the continuous functions
with compact support in 2. We define on Cy(€2) the bilinear form ((.,.)),, given
by

(1, 0))y = /Q S, (ou) - Sy (00)da, )
where z
%azn = / 77(57 )df

The bilinear form, defined by (9), is a scalar product in Cy(€2) for which Cy(2)
is not complete. Thus we are led to introduce its completion.
Definition 3.1 We denote by B; () a completion of Cy(€2) for the scalar
product defined by (9), called the weighted Bouziani space.

Thus, we have the following result:

Proposition 3.1 The space B%,U(Q) is a Hilbert space for the scalar product
(u, Q)Béyg(ﬂ) = ((u,0))s,
with the associated norm

”wHBQ{U(Q) = ”%I(U’w)HLZ(Q)‘
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Remark 3.11f o(x) = 1, then the space Bj () coincides with B3 (€2), which
was firstly introduced by the author in [4] and [5].

Definition 3.2 Let m be a nonnegative integer and let 1 < p < co. We define
the space B (£2) to be a completion of Cp(2) in the norm

Hw”Bg}g(Q) = ||%;n(0'w)||Lp(Q)’

and for p = 2, we define an inner product by

m

(u,0) By () = (87 (ow), 37 (00)) L2(0)-

Definition 3.3 We denote by L2(Q), the Hilbert space of weighted square
integrable functions with the inner product

(u,0) L2 () = (ou,0)2(q),

and with the associated norm
||wHLg(Q) = ||\/Ew||L2(Q)'

Let X be a Hilbert space with a norm |||y .
Definition 3.4 i) We denote by L?(I, X) the set of all measurable abstract
functions
Ist—u(,t)eX

such that
2 2
lula x, = / (., )]1% dt < oc.

ii) Let C(I;,X)(i =1,...,n) be the set of all continuous functions

IiStiHu(...,ti,...)EX (i:l,...,n),
with

lulle@, x) = fneaTXHu( ot )|l <oo(i=1,...,n).

Proposition 3.2 i) L*(I, X) is a Hilbert space.
it) C(1;,X) (i=1,...,n) are Banach spaces.

Abstract formulation

Let us reformulate problem (5)-(8) [(5)-(7) and (8’), respectively] as the problem
of solving the abstract equation

Lu:{f}@l?"'a@n}7

where L is the operator given by the formula

Lu :={Lu, lu, ..., lyu}.
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We consider L as an unbounded operator with the domain D(L) consisting of
all functions u belonging to L(I, B} (1)), such that & € L*(I, B ,(2))
(i=1,...,n), 2, gi’; € L*(I, B; ,()) and such that u satisfies conditions (7)
and (8) [(7) and (8’), respectively].

Let B be the Hilbert space obtained by completing of the domain D(L) in
the norm

n 1/2
2 2
[ull g = { ”P(t)uHL?(I,B%,G(Q)) + Z Hu||c(7i,L2(Ai,Lg(Q))) } .
i=1

By completing of the set D(L) with respect to the norm

n 1/2
2 2
lull s = { Il 0y + 2 IlEq caacczn | o

i=1

we obtain a Banach space B’. The elements u € B [B’, respectively] are continu-
ous functionson I; (i = 1,...,n) with the values in L?(A;, L2(2)) (i = 1,...,n).
Hence, the mappings

Ui B3u— liu=up,_g € L*(A;, L2(Q) (i=1,...,n),

are defined and continuous on B [B’, respectively] .

We denote by F the Hilbert space L*(I, B; ,(Q)) x [T/, L*(A, L2(R)). The
elements of F' are of the form {f, ¢1,...,¢n}, where f € L*(I, B} ,(Q)), ¢; €
L?(A;, L2(Q)) (i=1,...,n), and the norm is defined by:

2 - 2 1/2
I{f, »1,-- -,@n}HF = { ||f||L2(I,B%TU(Q)) + Z ||90i||L2(A7;,L§(Q)) } :
i=1

If the operator L is closable then we denote by L the closure of L and by

D(L) its domain.
Definition 3.5 A solution of the abstract equation

zu:{f7 3017"'73077,}

is called a strongly generalized solution of problem (5)-(8) [(5)-(7) and (8’),
respectively].

In concluding this section, we shall state the following lemma, which can be
applied to obtain a priori estimates for the solutions.
Lemma 3.1 If f, (k= 1,2,3) are nonnegative functions on I; f1 and fo are
integrable on I; T — f3(7) is non-decreasing with respect to 7; (i = 1,...,n)
and

/ fl(t)dt+f2(7') SCZ/ ifg(Tl,...,Tifl,ti,TiJrl,..an)-l-fg(T),
1T i=1 70
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where ¢ 1s a positive constant, then
n
fi(t)dt + fo(1) < exp {ncz n} - f3(7),
I i=1

where I™ :=T["_,(0,7), 0< 7, <T; (i=1,...,n).
The proof of this lemma is analogous to the proof of Lemma 1 in [8].
4 Uniqueness and continuous dependence

In this section we will establish a priori estimates. Thus we will deduce the
uniqueness and continuous dependence of the solutions upon the data.

Theorem 4.1 If Assumptions A1 and A2 are satisfied then there is a constant
¢ > 0, independent of u such that

lull g < el Lullp (10)
lullgr < ¢llLull g, respectively] (107)
forw e D(L).
Proof. Taking the square of the norm in the space L*(I7, Bj ,()) of Lu, we
get
"L Ou |2 2
— dt +/ P(t)u|| g1y dt
/ > 5oy o+ [, 1P O
2 [ spOu st = [ 1y e
— Jaxir ot I 2o
respectively
" gul|” 0
/ o dt+/ PA(Jo0, 1) (=) da
I ||i=1 i QxIT ox

B3 ,(9)

~ ou ou 9
-2 / p(Jpo,t)— - Sp(o=—)dx = / flls: dt .
S, Pt Sl 17130

Observe that
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— Z/ p(Jpo, t" T u? (z, t47)dadt’

,Z/ a(x)MUdedt
QxIT ot;

" op(Jyo,t) ou
2 E 0 - S (0=—
+ /pr o(x) 070 u Jl(aati Ydxdt,

it yields

2
n
ou

2
dt + . [P (t)ullpy (o dt (11)

J.

n

,7 )
=1 B%YG(Q)

/U(x)p(Jmmti’T)uQ(x,ti’T)dxdti
Qi

1
n 2
R %=
I =1 8t Bl ()
Z/ p(Jpo, t97 u? (x ,ti’T)dxdtl}
= / 11 )dt+Z/ p(Ju0, t°0)? (2, t")dadt!

Z / M Eddt
Q><IT i

l

+2 Z/ U(x)%u : %m(o%)dzdt.

In light of the Cauchy inequality, the last sum of integrals on the right-hand
side of (11) are dominated as follows

- op(Jo,t) ou
23 IPV0 Y,
/QXIT o(x) 07,0 u- (o ot —)dxdt

N

ou
dt+/ p?(Jpo,t)(=—)3dx
[ PO

n
ou ||2

)

3p(JwU,t) 2 2
< o (2) (=222 2 dadt +
IR 1

2,0(2)

where the second term will be absorbed in the left-hand side of (11).
By virtue of Assumptions A1-A2 and the Poincarré inequality [26]:

/ab 2o, )z < (b;a)2 /ab(aug;,-))zdz+ bia {/abu(x,.)dx}2
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we obtain

[ 1P@uly0 @+ [t g (12)

n i 2 i
< 65{/1 1135 o dt+Z/A i (- tD)][2 g 4t } +c6/I ull 72 (q dt
T ’ i=17A7 7 "

respectively

/p ull3 ) dt+ /A ||“('»t”)||ig(m dt (12)
=1 i

n
NI i
< {/I ||f||23;5(9) dH‘Z/A [[i (.t )HLz(Q) dt }4'6%/[ ”“H%?,(Q) dt,
3 ’ i—1 VAT 7 v

where

max(l, ¢ max(1, c

Cr = y lcg = — XC(2 s C1 , respectively] R
min(1, co) min(co, =, (bg)a)z)
ek +ney | a2 + nes .
- m = 2 o vy respectively
’ min(co, 3, (3%7)

and

A: = (0,7’1) X ... X (0,7‘1‘_1) X (O,Ti+1) X ... X (O,Tn) (221,77’),)

To eliminate the last term on the right-hand side of the above inequality, we
apply Lemma 3.1 by denoting the first integral of the left-hand side by fi(7),
the sum of the last integrals on the same side by f>(7), and the first integral
and the sum of integrals on AT by f5(7). Consequently, we get

2 2
IP@)ullZz (e ma gy + DMl Tis e M2 (ar 22 @) (13)
i=1

n
2 2
< er{ I aemcapy + 2 Ieillieca, sz |
=1

respectively

2 2 )
el 72 rr ey + D MU -5 7o M 2ar 2 ) (13)
=1

n
2 2
< ey, o + 2 IeillEaca, 200 |
=1

where ¢7 := c5 exp {ncg Y1y T; } [¢h = ckexp {nct >, T; }, respectively].
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The right-hand side of (13) [(13’), respectively] is independent of 7; (i =
1,...,n). Hence replacing the left-hand side by its upper bound with respect
to 7; from 0 to T; (i = 1,...,n), we obtain (10) [(10’), respectively] with ¢ =

1

c? [e= 0/7%, respectively]. The proof of Theorem 4.1 is complete. &
Remark 4.1 We can obtain such estimate for a special case of problem (1)-
(3) and (4’), for which P(t) is the Bessel operator, i.e., for which o(z) :=
z, p(Jeo,t) ==z, Q := (0,b), if we take the inner product in L?(2 x I) of
the considered equation with the following integro-differential operator: Mu =
xZ?zl%g—i”QZ?:lg—Z—x%- %

It follows from estimation (10) [(10’), respectively] that there is a bounded
inverse operator L~! on the range R(L) of L. However, since we have no
information concerning R(L), except that R(L) C F', we must extend L so that
the estimation (10) [(10’), respectively] holds for the extension and its range
is the whole space. We first show that L : B [B’, respectively]— F, with the
domain D(L), has a closure, i.e., the closure of the graph I'(L) C Bx F [B' x F,

respectively] of L is the graph I'(L) = I'(L) of the new linear operator L.

Proposition 4.1 If the assumptions of Theorem 4.1 are satisfied, then the op-
erator L with domain D(L) is closable.

Proof. The proof of this proposition is similar to the proof of Proposition 1 in
Bouziani [8]. &

The following corollaries are immediate consequences of Theorem 4.1 and of
Proposition 4.1.

Corollary 4.1 Suppose that the assumptions of Theorem 4.1 are satisfied. Then
there is a constant ¢ > 0 such that

lullg < ¢ HquF forw e D(L) (14)

respectively

ull g < ¢||Zul forw e D(L). (14"

F

Corollary 4.2 If the assumptions of Theorem 4.1 are fulfilled and problem (5)-
(8) [(5)-(7) and (8’) respectively] has a strongly generalized solution then this
solution is unique and depends continuously on {f, ©1,...,¢n}-

Corollary 4.3 If the assumptions of Theorem 4.1 are satisfied then R(L) =

R(L) and = L=, where R(L) and R(L) denote the set of values taken by
L and L, respectively, and L= is the continuous extension of L=' from R(L)

to R(L).

5 Existence of a solution

We are, now, in a position to state and to prove the main result of this paper:
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Theorem 5.1 If the assumptions of Theorem 4.1 are fulfilled then, for any
feL*I,B;,(Q) and p; € L*(A;, L2(Q)) (i = 1,...,n), problem (5)-(8) [(5)-
(7) and (8°), respectively] admits a unique strongly generalized solution u =
! {fye1,...,0n} such that

u e ﬁC(TZ-,B(Ai,L?,(Q))L P(t) € L*(I, B3(%))
i=1
uwe LI, HY(Q) N f[C’(Ti,IP(Ai,Lg(Q))), respectively | .

i=1

Proof. Corollary 4.3 states that to prove the existence of the solution, in the
sense of Definition 3.5, for any {f, ¢1,...,¢n}, it is sufficient to prove that
R(L) does not have an orthogonal complement in F. For this purpose we need:

Proposition 5.1 If, for some functionw € L*(I, B} ,()) and for allu € D(L)
with L;u=0(i=1,...,n), we have

(Lu, w2183 (0)) =0 (15)
then w = 0 almost everywhere in  x I.

Assume for the moment that Proposition 5.1 has been proved and return to
the proof of Theorem 5.1.
Let W = (w,w1,...,w,) € F be orthogonal to the set R(L). Consequently,

(Lu,w)a(rmy (o)) + (it wi)r2(a, r2(0)) = 0, Yu € D(L). (16)
i=1

Assume in (16) that u is any element of D(L) such that {u =0 (¢ =1,...,n).
We then conclude, by Proposition 5.1, that w = 0 almost everywhere in € x I.
Thus, (16) implies that

n

> (liv,wi)p2(a,r2(0)) =0, Yu € D(L).

i=1

Since f;u (i = 1,...,n) are independent and the ranges of the operators ¢; (i =
1,...,n) are dense in L?(A;, L2(Q))(i = 1,...,n) , it follows that w; = 0 (i =
1,...,n) almost everywhere in Q@ x A; (i =1,...,n). &

To complete the proof of Theorem 5.1, it remains to prove Proposition 5.1.
Proof of Proposition 5.1. Equality (15) can be written in the form

- ou /
—,Ww)p1 dt = | (P(t)u,ow) g1 dt.
S [ Gt it = [ (POwoag
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In the above formula, we put

n n ti
u= g Sy, (eF710) = g / e*Tifdr;
i=1 i=170

where k is a constant such that
1
k> C—(Cz + c3ea), (17)
0

0 satisfies conditions
0 € L*(I,B; (),

> Sy, (eF710) € L2 (1, B} ,(Q)),

i=1

0y, (eF7i0
(o )20

P(t)3¢,(€"70) € L*(1, By (),
(

) € L2 (1, L*(Q)),

and wu verifies conditions (7), (8) [(7), (8), respectively]. Consequently, we get
i /I M (0,0) 5y (et = Zj; /1 (P30, (¢470), 00) gyt (18)
The left-hand side of (18) shows that the mapping
L*(I1,B3 ,(2)) 260 — Xn: /1 (P(t)S¢, (€°70), 0w) g1 o dt
i=1

is a linear continuous functional if the function w, on the right-hand side of (22),
satisfies the following properties:

w e L*(I,B; (), (19)
32 (ow) € L*(I, L3 (D)), (20)
(9\(\9; (p(ng;t)%I(Uw)) c L2(I7L2(Q))7 (21)
ekt 0 20, 1) (ow
(S I S0, ¢ g, ), 22)
and
32 (0w) b =0, (23)
C\\yx(aw)\w:b =0, (24)
where
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[Here properties (20) and (23) are specific to problem (5)-(8)].
By replacing w by € in equality (18), the standard integration by parts of
the right-hand side of the obtained equality leads to

Z/Ie (25)
=1
= Y [ o) e ) (R0
2 . QxXA;
33 [ et pon - PRy, (6o) s
2= Jaxi ot;

n

-3 / (@) U205 (ko) (o) dudt.
QxT 8Jm0

Applying the Cauchy inequality to the last integral on the right-hand side of
(25), we obtain

. 2
S [ oy, o
=1

1 — , A
= 52 / o(@)e *ip(Jeo, t77) (S, (10))*dadt’
i=1 QAXA;

! En —kt: Op p o N
9 ’ — = —20 S, (ki .
2 i_l/ngo(x)e {k:p oL, (z )(aJN) (Sy, (€°710))2dadt

Since the integrals on Q x A; (,...,n) are negative then it follows, by Assump-
tions A1-A2, that

Z / H O3 o dt

< —(kco — ca — 2¢3cy) Z/ (S, (eF7i0))2da dt.

Q><I

The above inequality and (17) imply that

and thus w = 0 almost everywhere in 2 x I. The proof of Theorem 5.1 is
complete. o

Remark 5.1 Applying a similar argumentation to those given above, our results
can be generalized to the following nonlocal pluriparabolic problem:

dv 1
(Lv)(x,t) == 815 @) SlgnH — NP P = g(z,1)
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for (x,t) e QA x I,
(Cv)(z,t) == v(z, t°0) — Nju(z, t5T) = ®;(x, )
for (z,t) € Qio (i=1,...,n),
/ o(x)v(x,t)de = E(t) for t e,
Q
/ zo(x)v(x,t)de = G(t) fortel,
Q
0 t
[ vla,?) = H(¢t) for t € I, respectively| .
ox
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