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Approximate equivalence transformations and

invariant solutions of a perturbed nonlinear wave

equation ∗

R. N. Ibragimov

Abstract

We discuss the properties of a perturbed nonlinear wave equation
whose coefficients depend on the first-order spatial derivatives. In partic-
ular, we obtain a group of transformations which are stable with respect
to the given perturbation, and derive the principal Lie algebra and its
approximate equivalence transformation. The extension of the principal
Lie algebra by one is obtained by means of a well-known classification of
low dimensional Lie algebras. We also obtain some invariant solutions
and classification of the perturbed equation.

1 Introduction

We consider the nonlinear wave equation

H(u) ≡ D 〈u〉 − εf(
∂u

∂x
) = 0, (1)

where D = ∂2
t2 − a exp {∂xu} ∂2

x is a nonlinear operator, a is constant and εf is
an infinitesimal perturbation imposed on the principal part D 〈u〉 = 0. For the
sake of simplicity and without loss of generality, we put a = 1.

The classification problem of a family of equations involves the determination
of the principal algebra L℘, the equivalence algebra E℘ and extension of L℘ by
subalgebras of E℘ to divide the family into disjoint classes. In a recent paper
[11], the nonlinear wave equation utt = f(x, ux)uxx + g(x, ux) was partially
classified into thirty-three classes of equations and one of them is given there as
the family of the form of (1).

The main goal of this paper is to find invariant solutions to (1). Since the
perturbation destroys the group of transformations admitted by the principal
part, the analysis is rather difficult. However we shall construct symmetries
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which are stable with respect to the perturbation. More specifically, we shall
find a mapping F : (x, t;u)→ (x, t;u′) which transforms (1) into

∂2u′

∂t2
− ∂2u′

∂x′2
exp

{
∂u′

∂x′

}
− εf ′(∂u

′

∂x′
) + o(ε) = 0, (2)

i.e., the form of (1) is unchanged. Further we construct the principal Lie algebra
which enables us to classify (1). As the result of Lie group classification, we
determine the unknown function f and, thus, find invariant solutions admitted
by (1).

The approximate method of group analysis, used in this paper, was devel-
oped first by Ovsyannikov [7] while the problem of group classification of partial
differential equations according to their symmetries was first considered by So-
phus Lie [4]. The general approach to finding the symmetry group of differential
equations can be found, for example, in [2], [5], [8].

Recently, several papers, which are closely related to the present work, were
published. To name a few, Ames et al [1] investigated the group properties
of quasilinear hyperbolic equation of the form utt = f(ux)uxx. The inves-
tigation was later generalized by Torrisi at [9], [10] to equation of the form
utt = f(x, ux)uxx.

2 Group Classification

We wish to find the approximate equivalence transformations for (1). In this
case, a natural modification of equivalence transformation that involves approx-
imate transformations (as in [3]) is used. Since an equivalence transform is a
nongenerate change of variables x, t and u which transform (1) to the same form
as (2) (generally with different function f(ux)), we apply the Lie infinitesimal
method to calculate the group of equivalence transformations of the system

D 〈u〉 − εf = o(ε), (3)
fx = ft = fu = fut = ε−1o(ε)

and suppose that the operator for approximate transformation groups be given
in the form

X = (ξ0 + εξ1)∂x + (τ0 + ετ1)∂t + (η0 + εη1)∂u + ϕ∂f ,

where ξν , τν , ην (ν = 0, 1) are functions of t, x and u while ϕ depends on
variables t, x, u, ux, ut and f . Thus we rewrite the generator of the group as
X = X0 + εX1, where X0 is a stable symmetry if it is admitted by unperturbed
equation D 〈u〉 = 0. According to [3], we call the corresponding symmetry gen-
erator X a deformation of the operator X0 which generates the elements of the
principal Lie algebra L℘ for D 〈u〉 = 0.
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In the extended space with variables (x, t, u, ux, ut, . . . ), the second prolon-
gation of operator X is

X[2] = X+(ζ(x)
0 + ζ

(x)
1 )∂ux + (ζ(t)

0 + ζ
(t)
1 )∂ut + (ζ(xx)

0 + ζ
(xx)
1 )∂uxx

+(ζ(tt)
0 + ζ

(tt)
1 )∂utt + ψx∂fx + ψt∂ft + ψu∂fu + ψut∂fut + . . .

Here the following notation is used (ν = 0, 1 and θ ∈ {x, t, u, ut}):

ζ(x)
ν = ηνx + ux(ηνu − ∂xξν − ux∂uξν)− ut(∂xτν + ux∂uτ

ν),

ζ(t)
ν = ηνt + ut(ηνu − ∂tτν − ut∂uτν)− ux(∂tξν + ut∂uξ

ν), (4)

ζ(xx)
ν = ηνxx + (2ηνxu − ξνxx)ux − τνxxut + (ηνu − 2ξνx)uxx

−2τνxuxt + (ηνuu − 2ξνxu)u2
x − 2τνxuutux − ξνuuu3

x − τνuuutu2
x

−3ξνuuxuxx − τνuutuxx − 2τνuuxuxt,

ζ(tt)
ν = ηνtt + (2ηνtu − τνtt)ut − ξνttux + (ηνu − 2τξνt )utt

−2ξνt uxt + (ηνuu − 2τνtu)u2
t − 2ξνtuutux − τνuuu3

t − ξνuuu2
tux

−3τνuututt − ξνuuxutt − 2ξνuutuxt,

ψθ = d∗θ 〈ϕ〉 − ftd∗θ
〈
τ0 + ετ1

〉
− fxd∗θ

〈
ξ0 + εξ1

〉
− fud∗θ

〈
η0 + εη1

〉
+futd

∗
θ

〈
ζ

(t)
0 + εζ

(t)
1

〉
+ fuxd

∗
θ

〈
ζ

(x)
0 + εζ

(x)
1

〉
,

where

d∗θ = ∂θ + fθ∂f + fθt∂ft + fθx∂fx + fθu∂fu + fθut∂fut + . . . .

Since fθ = 0 ∀θ ∈ {x, t, u, ut} , i.e., d∗θ = ∂θ, the infinitesimal invariance criterion
for system (3) becomes

X[2] [H(u)] |(M)= o(ε), (5)

X[2](εfθ) = o(ε), (6)

where the symbol |(M)means evaluated on the manifold M , defined by (1).
In zero-order approximation (ε = 0), system (5)–(6) yields the system of

determining equations in the form

ζ
(tt)
0 − exp {ux} (ζ(x)

0 uxx + ζ
(xx)
0 ) = 0, εψθ = 0 (7)

which gives ϕθ = 0 and (ζ(x)
0 )θ = 0 (∀θ ∈ {x, t, u, ut}) since f is a differential

variable which is algebraically independent from fux . Thus ϕ is the function
of ux and f only. Consequently, differentiation of (4) with respect to x and
splitting it into independent parts, yields

η0
xx = τ0

xx = τ0
xu = η0

xu − ξ0
xx = ξ0

xu = 0.



4 Approximate equivalence transformations EJDE–2001/23

In a way similar to the above, we derive the following equations

η0
xt = τ0

xt = τ0
tu = η0

tu − ξ0
xt = ξ0

tu = 0,
η0
xu = η0

uu − ξ0
xu = τ0

xu = τ0
uu = ξ0

uu = 0,
τ0
x = τ0

u = 0

from which we find

ξ0 = a1u+ α1(t)x+ α2(t),
τ0 = τ0(t),

η0 = β1(t)u+ a2x+ β2(t),

where a1and a2 are constant coefficients. Similarly, splitting the first of (7) we
obtain

ξ0 = (c5 + c6)x+ c2,

τ0 = c5t+ c1,

η0 = 2c6x+ (c5 + c6)u+ c4t+ c3

with constants c1, . . . , c6. Thus the unperturbed equation (1) is stable with
respect to the group G0 of the transformations defined by the following gener-
ators:

X0
1 = ∂t, X0

2 = ∂x, X0
3 = ∂u, X0

4 = t∂u,

X0
5 = t∂t + x∂x + u∂u, X0

6 = x∂x + (u+ 2x)∂u.

So equation D 〈u〉 = 0 is invariant with respect to a group G0, i.e., the un-
perturbed nonlinear wave equation admits G0 whenever u solves that equation.
Note that if one rewrites (5) in the form (ξ · ∇H) |(M)= 0, it becomes evident
that (5) is the condition for the vector field ξ = (ξ, τ) to be tangent to the
manifold M .

In a way similar to the above, we write the invariance condition for (1) up
to the first order where M =

{
u : ∂2

t u = exp {∂xu} ∂2
xu+ εf

}
. After splitting

of the determinant equation

Z(u)− εϕ = 0,

where we denote

Z(u) = (ζ(tt)
0 + εζ

(tt)
1 )− (ζ(x)

0 + εζ
(x)
1 )uxx exp {ux} − (ζ(xx)

0 + εζ
(xx)
1 ) exp {ux}

into independent parts and solving the resulting equations, we obtain

τ1 = a1t+ a2, ξ1 = a3x+ a4,

η1 = a3u+ 2(a1 − a3)x+
a5t

2

2
+ a6t+ a7,

ϕ = (c1 − 2c3)f + a5
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with constants a1, . . . , a7. The last equations together with the group G0 gener-
ate 13 dimensional approximate Lie algebra of approximate equivalence trans-
formations G1spanned by generators

X1
1 = ∂t, X1

2 = ∂x, X1
3 = ∂u, X1

4 = t∂u,

X1
5 = t∂t + x∂x + u∂u − f∂f , X1

6 = x∂x + (u+ 2x)∂u + f∂f ,

X1
7 = ε∂t, X1

8 = ε∂x, X1
9 = ε∂u, X1

10 = εt∂u,

X1
11 = ε(t∂t + 2x∂x), X1

12 = ε(x∂x + [u− 2x] ∂u), X1
13 = ε(t2∂u + 2∂f ).

It is sufficient, for group classification, to consider the point approximate equiv-
alence transformations corresponding to nontrivial generators X1

5,X
1
6 and X1

13.
These transformations are given by

x′ = a1a2x, t′ = a1t, f ′ = ε(2a1a2a3 + a1a2f),
u′ = ε(a1a2a3t

2 − 2a1(a2 − 1)x+ a1a2u).

To find the principal Lie algebra L℘ for (1) and to find those functions f for
which L℘ is extended, we seek the admitted operator in the form Y = X−ϕ∂f .
The invariance condition for (1)

Y(2) [H(u)] |(M)= 0

yields the determining equation as

Z(u)− εf ′(ζ(x)
0 + εζ

(x)
1 ) = 0.

For the zero order approximation we obtain a similar result as above whereas
for the first order approximation the determining equation takes the form

(η0
u − 2τ0

t )f + ζ
(tt)
1 − exp {ux} (uxx1ζ

(xx)
1 + ζ

(x)
1 )− f ′ζ0

x = 0. (8)

Substituting utt = exp {ux}uxx and considering arbitrary f we split (8) into
independent parts to obtain

ξ1 = a1x+ a2, τ1 = a3t+ a4,

η1 = a1u+ 2(a1 − a2)x+ a5t+ a6.

Thus the principal 10 dimensional Lie algebra L℘ has the basis

Y1 = ∂u, Y2 = ∂x, Y3 = ∂t, Y4 = t∂u,

Y5 = εY1, Y6 = εY2, Y7 = εY3, Y8 = εY4, (9)
Y9 = ε(t∂t − 2x∂u), Y10 = ε(x∂x + [2x+ u] ∂u).

We show that these symmetries are admitted by (1) in Appendix 1. If we
consider the function f not arbitrary, then (8) reduces to

(η0
u − 2τ0

t )f + η1
tt − f ′η0

x = 0
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which is equivalent to relation

δ + (c6 − c5)f − 2c6f ′ = 0, (10)

where δ is a constant.
We further analyze the classifying relation (10) to obtain non-equivalent

forms of f . To this end we consider two different cases (see Appendix 2 for
more details).

Case 1 . If δ = 0, then for γ = c6−c5
2c6

(c6 6= 0) we obtain the eleventh
symmetry, namely

Y11 = 2(1− γ)x∂x + (1− 2γ)t∂t + (2x1 + 2 [1− γ]u)∂u.

In other words, the equation

∂2u

∂t2
− exp

{
∂u

∂x

}
∂2u

∂x2
− εA exp

{
∂u

∂x

}
= 0, A > 0, γ ∈ R (11)

admits 11 dimensional Lie algebra.
In particular, for γ = 1

2 , we have Y11 = 1
εY10.

Case 2 . If δ 6= 0, the eleventh symmetry is given by

Y11 = 2(1− γ)x∂x + (1− 2γ)t∂t + (2x+ 2 [1− γ]u− δ

2c6
t2)∂u.

3 The adjoint group and invariant solutions

Now we are ready to construct the adjoint group of the algebra L10 and thus
find some approximate invariant solutions. We start by giving the definition of
inner automorphism. See [3] or [7] for more details.

Definition 1 Let X1, . . . , Xr be the selected basis of the vector space Lr.
Accordingly, the structure constants cλµν are known and any X ∈ L is writ-
ten as X = eµXµ. Hence, the elements of Lr are represented by vectors
e = (e1, . . . , er). Let LAr be a Lie algebra spanned by the following operators

Eµ = cλµνe
ν∂eλ , µ = 1, . . . , r. (12)

with the Lie Bracket defined by formula [X1, X2] = X1X2 − X2X1. The al-
gebra LAr generates the group GA of linear transformations of {eµ}. These
transformations determine the automorphism of the algebra Lr known as inner
automorphism. The group GA is called group of automorphism of Lr, or the
adjoint group of Lr.

We now consider the commutators of L10 given in the follwiong table
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[XiXj ] X1 X2 X3 X4 X5

X1 0 −ε(2X6 −X2) 0 0 εX5

X2 ε(2X6 −X2) 0 2εX6 0 0
X3 0 −2εX6 0 εX4 0
X4 0 0 −εX4 0 −εX6

X5 −εX5 0 0 εX6 0
X6 −εX6 0 0 0 0
X7 2X6 −X2 0 2X6 0 0
X8 0 0 −X4 0 −X6

X9 −X5 0 X5 X6 0
X10 −X6 0 0 0 0

[XiXj ] X6 X7 X8 X9 X10

X1 εX6 −(2X6 −X2) 0 X5 X6

X2 0 0 0 0 0
X3 0 −2X6 X4 −X5 0
X4 0 0 0 −X6 0
X5 0 0 X6 0 0
X6 0 0 0 0 0
X7 0 0 0 0 0
X8 0 0 0 −X10 0
X9 0 0 X10 0 0
X10 0 0 0 0 0

To find the transformations that give rise to the adjoint group of L10, we seek
the generators of the adjoint algebra LA10 in the form (12), i.e., Eµ = cλµνe

ν∂eλ ,
µ = 1, . . . , 10,where the structure constants are given by [Xµ, Xν ] = cλµνXλ. We
find (see Appendix 3)

E1 = (εe2 + e7)∂e2 + (εe5 + e9)∂e5 + (εe6 − 2e7 − 2εe2 + e10)∂e6 ,
E2 = 2εe1∂e6 − εe1∂e2 + 2εe3∂e6 ,

E3 = −εe2∂e6 + εe4∂e4 − 2e7∂e6 + e8∂e4 − e9∂e5 ,

E4 = εe3∂e4 − εe5∂e6 − e9∂e6 ,

E5 = −εe1∂e5 + εe4∂e6 + e8∂e6 ,

E6 = −εe1∂e6 ,

E7 = 2e1∂e6 − e1∂e2 + 2e3∂e6 ,

E8 = −e3∂e4 − e5∂e6 + e9∂e10 ,

E9 = −e1∂e5 + e3∂e5 + e4∂e6 + e8∂e10 ,

E10 = −e1∂e6 .

We further solve Lie equations for these operators to obtain the following
adjoint transformations which give rise to the adjoint group elements of the
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algebra L10:

e′1 = e1,

e‘2 = 2(a2 − aε1a3a7)e1 − 2εaε1a3e
2 + (

aε1
ε
− 1)e7,

e′3 = e3,

e′4 = (ε+ 1)a3e
4 − ([ε+ 1] a3)(a8 + a4ε)e3,

e′5 = −εa5e
1 + aε1e

5 + (
aε1
ε
− 1)e9,

e′6 = aε1(2ε
[
e1 + e3

]
a2 − 2a3

[
εe2 + e7

]
+ a4

[
εe5 + e10

]
) + a5(εe4 + e8)−

εa6e
1 + 2a7(e1 + e3)− a8e

5 + a9e
4 − a10e

1 − 2e7 + e10 + e6,

e′7 = e7,

e′8 = e8,

e′9 = e9,

e′10 = a9e
8 − a8e

9 + e10.

We now construct some regular invariant approximate solutions for (11). To
this end we seek the approximate invariants for operator X in the form

J(x, t, u, ε) = J0(x, t, u) + εJ1(x, t, u)

which are determined by equation

XJ = o(ε). (13)

Thus (13) splits into

X0J0 = 0 and X0J1 = −X1J0.

Among other generators, (11) admits the generators

Z1 = ε(t∂t − 2x∂u), (14)
Z2 = (∂t + t∂u) + Z1, (15)

Z3 = (∂x + t∂u) + ε(x∂x + (u+ 2x)∂u). (16)

Operators (14)–(16) are linear combination of generators Y2,Y3,Y7,Y8 and
Y9 given in (9).

The operator (14) has the following functionally independent invariants:

h1 = x quad h2 = t exp
{ u

2x

}
and the corresponding approximate invariant solution is given by

u = 2x ln(
y

t
),
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where y satisfies the equation

y′′ +
2
x
y′ − (y′)2

y
=

exp
{
−2xy

′

y

}
y

+
εAy

2x
.

The functionally independent invariants

h1 = x+ εy1(x,
t2

2
− u) and h2 = (

t2

2
− u) + εy2(x,

t2

2
− u)

are determined by operator (15). Consequently, assuming that y1 and y2 are
equal to zero, the corresponding approximate invariant solution is given by

u =
t2

2
− y(x),

where y satisfies the equation

y′′(x) = exp {y′(x)} − εA.

Similarly, we find functionally independent invariants

h1 = t+ εg1(t, tx− u),
h2 = (xt− u) + ε([xt− u+ 2x] + g2 [t, xt− u])

for the last operator (16) and thus, assuming the function g1 and g2 to be zero,
find the corresponding approximate invariant solution

u =
2ε

1 + ε
− xt+ 4εA exp

{
− t

2
}

+ t+ c,

where A and c are arbitrary constants.

4 Conclusion

In this paper a nonlinear wave equation with an infinitesimal perturbation has
been considered. The construction of the principal Lie algebra, the equiva-
lence transformation, the approximate principal Lie algebra, the approximate
equivalence transformation and the approximate invariant solutions have been
obtained. We have determined the function f from which the approximate
principal Lie algebra extends by one and also we constructed some approximate
invariant solutions for (1).

The problem of finding the optimal system of one-dimensional subalgebras
of L10 and the invariant solutions still remain open questions as well as finding
the Lagrangians and conservation laws for (1). We hope to return to these
questions in a forthcoming paper.
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Appendix 1

As an example, we show that approximate symmetries (9) leave (1) invariant.
Let us consider the last two generators

Y9 = ε(t∂t − 2x∂u) quad Y10 = ε(x∂x + [2x+ u] ∂u)

We have

Y[2]
9 (utt − exp {ux}uxx − εf(ux) = 0) |(utt=exp{ux}uxx)

= ζ
(tt)
1 − exp {ux} (ζ(x)

1 uxx + ζ
(xx)
1 ), (A 1)

where we compute

ζ
(tt)
1 = utt, ζ

(x)
1 = 2, ζ

(xx)
1 = −uxx.

Hence the right hand side of (A1) becomes

utt − 2 exp {ux}uxx + exp {ux}uxx |(utt=exp{ux}uxx)= 0.

Similarly,

Y[2]
10 (utt − exp {ux}uxx − εf(ux) = 0) |(utt=exp{ux}uxx)

= ζ
(tt)
1 − exp {ux} (ζ(x)

1 uxx + ζ
(xx)
1 ), (A 2)

where
ζ

(tt)
1 = −2utt, ζ

(x)
1 = −2, ζ

(xx)
1 = 0.

Hence the right hand side of (A2) becomes

−2utt + 2 exp {ux}uxx |(utt=exp{ux}uxx)= 0.

Thus the generators Y9 and Y10 leave (1) invariant.

Appendix 2

We use the relation (10) to determine non-equivalent forms of f .
Case 1. If δ = 0, solution of (10) is given by

f = A exp {γ}ux,
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where γ = c6−c5
2c6

. Since (1− 2γ)c6 = c5, we obtain

τ0 = (1− 2γ)c6t+ c1, ξ0 = 2(1− γ)c6x+ c2,

η0 = 2c6x+ 2(1− γ)c6u+ c4t+ c3,

ξ1 = a1x+ a2, τ1 = a3t+ a4,

η1 = a1u+ 2(a1 − a3) + a5t+ a6.

Thus for any γ ∈ R (c6 6= 0) the extended symmetry is given by

Y11 = 2(1− γ)x∂x + (1− 2γ)t∂t + (2x+ 2 [1− γ]u)∂u.

Case 2. If δ 6= 0, (10) yields

f =
δ

2c6γ
+ 2c6 exp {γ}ux.

Then

η0 = 2c6x+ 2c6(1− γ)u− γc6t2 + c4t+ c3,

ξ0 = 2(1− γ)c6x+ c2, τ0 = (1− 2γ)c6t+ c1.

Thus the eleventh symmetry is

Y11 = 2(1− γ)x∂x + (1− 2γ)t∂t + (2x+ 2 [1− γ]u− δ

2c6
t2)∂u.

Appendix 3

As an example, we determine the generator E1. The rest follow in the similar
manner. Let µ = 1 and λ, ν = 1, . . . , 10. We write the Lie brackets as

[X1, Xν ] = cλ1νXλ.

For ν = 2, we have

[X1, X2] = cλ12Xλ = c112X1 + c212X2 + · · ·+ c10
12X10

and so we obtain
c512 = ε quad c612 = −2ε.

Further we find

c515 = ε (for ν = 5),
c616 = ε (for ν = 6),

c617 = −2 quad c217 = 1 (for ν = 7),
c519 = 1 (for ν = 9),

and finally c61,10 = 1 (for ν = 10) . Thus generator (12) has the form

E1 = (εe2 + e7)∂e2 + (εe5 + e9)∂e5 + (εe6 − 2e7 − 2εe2 + e10)∂e6 .
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