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Existence results for a class of semi-linear

evolution equations ∗

Eduardo Hernández M.

Abstract

We prove the existence of regular solutions for the quasi-linear evolu-
tion

d

dt
(x(t) + g(t, x(t)) = Ax(t) + f(t, x(t)),

where A is the infinitesimal generator of an analytic semigroup of bounded
linear operators defined on a Banach space and the functions f, g are
continuous.

1 Introduction

The class of equations considered in this paper have the form

d
dt (x(t) + g(t, x(t)) = Ax(t) + f(t, x(t)), t > 0,

x(0) = x0 .
(1.1)

We consider this system as a Cauchy problem on a Banach space X, where A is
the infinitesimal generator of an analytic semigroup of bounded linear operators
(T (t))t≥0; f, g : [0, T ] × Ω → X are appropriate continuous functions and Ω is
an open subset of X. The case g ≡ 0 has an extensive literature. The books of
Pazy [12], Krein [8], Goldstein [2] and the references contained therein, give a
good account of important results.

Throughout this paper X will be a Banach space equipped with the norm
‖ · ‖ and the operator A : D(A) ⊂ X → X will be the infinitesimal generator
of an analytic semigroup of bounded linear operators (T (t))t≥0 on X. For the
theory of strongly continuous semigroups, refer to [12] and [2]. We mention here
only some notation and properties essential to our purpose. In particular, it is
well known that there exist M̃ ≥ 1 and a real number w such that

‖T (t)‖ ≤ M̃ewt, t ≥ 0 .
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In what follows we assume that ‖T (t)‖ is uniformly bounded by M̃ and that
0 ∈ ρ(A). In this case it is possible to define the fractional power (−A)α, for
0 < α < 1, as a closed linear operator with domain D((−A)α). Furthermore,
the subspace D((−A)α) is dense in X and the expression

‖x‖α = ‖(−A)αx‖

defines a norm on D((−A)α). Hereafter we represent by Xα the space D((−A)α)
endowed with the norm ‖·‖α. The following properties are well known (see [12]).

Lemma 1 Under the above conditions we have

1. If 0 < α ≤ 1, then Xα is a Banach space.

2. If 0 < β ≤ α, then Xα → Xβ is continuous and compact when the resolvent
operator of A is compact.

3. For every constant a > 0, there exists Ca > 0 such that

‖(−A)αT (t)‖ ≤ Ca

tα
, 0 < t ≤ a.

4. For every a > 0 there exists a positive constant C ′
a such that

‖(T (t)− I)(−A)−α‖ ≤ C ′
atα, 0 < t ≤ a.

By analogy with the abstract Cauchy problem

u̇(t) = Au(t) + h(t) (1.2)

we adopt the following definitions.

Definition 1 A function x ∈ C([0, r) : X) is a mild solution of the abstract
Cauchy problem (1.1) if the following holds: x(0) = x0; for each 0 ≤ t < r and
s ∈ [0, t), the function AT (t− s)g(s, x(s)) is integrable and

x(t) = T (t)(x0 + g(0, x0))− g(t, x(t))−
∫ t

0

AT (t− s)g(s, x(s))ds

+
∫ t

0

T (t− s)f(s, x(s))ds .

Definition 2 A function x ∈ C([0, r) : X) is a classical solution of the abstract
Cauchy problem (1.1) if x(0) = x0, x(t) ∈ D(A) for all t ∈ (0, r), ẋ is continuous
on (0, r), and x(·) satisfies (1.1) on (0, r).

Definition 3 A function x ∈ C([0, r) : X) is an S-classical (Semi-classical)
solution of the abstract Cauchy problem (1.1) if x(0) = x0, d

dt (x(t) + g(t, x(t)))
is continuous on (0, r), x(t) ∈ D(A) for all t ∈ (0, r), and x(·) satisfies (1.1) on
(0, r).
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This paper is organized as follows. In section 2 we discuss the existence of
S-classical and classical solutions to the initial value problem (1.1). Our results
are based on the properties of analytic semigroups and the ideas used in [12,
chapter 5]. In section 3, some applications are considered.

Throughout this paper we assume that X is an abstract Banach space. The
terminology and notations are those generally used in operator theory. In par-
ticular, if X, Y are Banach spaces, we indicate by L (X : Y ) the Banach space
of the bounded linear operator of X into Y and we abbreviate to L (X) when-
ever X = Y . In addition Br(x : X) will denote the closed ball in space X with
center at x and radius r.

For a bounded function ξ : [0, a] → X and 0 < t < a we will employ the
notation

‖ξ(·)‖t = sup{‖ξ(s)‖ : s ∈ [0, t]}.

Finally for x0 ∈ X, we will use the notation x(·, x0) for the mild solution of
(1.1).

2 Regular Solutions

The existence of mild solutions for the abstract Cauchy problem (1.1) follows
from [5, Theorems 2.1, 2.2]; for this reason we omit the proofs of the next two
results.

Theorem 1 Let x0 ∈ X and assume that the following conditions hold

a) There exist β ∈ (0, 1) and L ≥ 0 such that the function g is Xβ-valued and
satisfies the Lipschitz condition

‖(−A)βg(t, x)− (−A)βg(s, y)‖ ≤ L(|t− s|+ ‖x− y‖)

for every 0 ≤ s, t ≤ T and x, y ∈ Ω, and ‖(−A)−β‖L < 1.

b) The function f is continuous and takes bounded sets into bounded sets.

c) The semigroup (T (t))t≥0 is compact.

Then there exists a mild solution x(·, x0) of the abstract Cauchy problem (1.1)
defined on [0, r] for some 0 < r < T .

Theorem 2 Let x0 ∈ X and assume that the following conditions hold:

a) There exist β ∈ (0, 1) and L ≥ 0 such that the function g is Xβ-valued and
satisfies the Lipschitz condition

‖(−A)βg(t, x)− (−A)βg(s, y)‖ ≤ L(|t− s|+ ‖x− y‖)

for every 0 ≤ s, t ≤ T and x, y ∈ Ω and ‖(−A)−β‖L < 1.
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b) The function f is continuous and there exists N > 0 such that

‖f(t, x)− f(s, y)‖ ≤ N(|t− s|+ ‖x− y‖)

for every 0 ≤ s, t ≤ T and x, y ∈ Ω.

Then there exists a unique mild solution x(·, x0) of the abstract Cauchy prob-
lem (1.1) defined on [0, r] for some 0 < r ≤ T .

The existence of S-classical and classical solutions, requires some additional
assumptions on the functions g, f . In particular, in the next result we assume
that the following assumption hold.

Assumptions on f and g: There exist 0 < α < β < 1 and an open set
Ωα ⊂ Xα such that the functions f and (−A)βg are continuous on [0, T ]× Ωα,
and there exist L > 0 and 0 < γ1, γ2 < 1 such that for every (t, x1), (s, x2) ∈
[0, T ]× Ωα we have

‖(−A)βg(t, x1)− (−A)βg(s, x2)‖ ≤ L{|t− s|γ1 + ‖x1 − x2‖α},
‖f(t, x1)− f(s, x2)‖ ≤ N{|t− s|γ2 + ‖x1 − x2‖α},

L‖(−A)α−β‖ < 1 .

Theorem 3 Let x0 ∈ Ωα and assume that f and g satisfy the above assump-
tions, that g is D(A)-valued continuous and that 1 − β < min{β − α, γ1, γ2}.
Then there exists a unique S-classical solution x(·, x0) ∈ C([0, r] : X) for some
0 < r < T .

Proof. Let 0 < r1 < T and δ > 0 such that

V = {(t, x) ∈ [0, r1]×Xα : ‖(−A)αx− (−A)αx0‖ < δ} ⊂ [0, T )× Ωα.

Assuming that the functions f and (−A)βg are bounded on V by C1 > 0, we
choose 0 < r < r1 such that

‖(T (·)− I)(−A)αx0‖r ≤
(1− µ)δ

6
,

‖(T (·)− I)(−A)αg(0, x0)‖r ≤
(1− µ)δ

6
,

‖(−A)α−β‖Lrγ1 + C1−β+αC1
rβ−α

β − α
+ CαC1

r1−α

1− α
<

(1− µ)δ
6

,

LC1−β+α
rβ−α

β − α
+ NCα

r1−α

1− α
< 1− µ,

where µ = ‖(−A)α−β‖L and Cα, C1−β+α are the constants in Lemma 1.
On the set

S = {y ∈ C([0, r] : X) : y(0) = (−A)αx0, ‖y(t)− (−A)αx0‖ ≤ δ, t ∈ [0, r]}
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we define the operator

Ψ(y)(t) = T (t)(−A)α(x0 + g(0, x0))− (−A)αg(t, (−A)−αy(t))

+
∫ t

0

(−A)1−β+αT (t− s)(−A)βg(s, (−A)−αy(s))ds (2.1)

+
∫ t

0

(−A)αT (t− s)f(s, (−A)−αy(s)) ds.

For the mapping Ψ we consider the decomposition Ψ = Ψ1 + Ψ2, where

Ψ1(y)(t) = T (t)(−A)α(x0 + g(0, x0))− (−A)αg(t, (−A)−αy(t))

+
∫ t

0

(−A)1−β+αT (t− s)(−A)βg(s, (−A)−αy(s))ds,

Ψ2(y)(t) =
∫ t

0

(−A)αT (t− s)f(s, (−A)−αy(s))ds.

Next we prove that Ψ1 and Ψ2 are well defined, that Ψ satisfies a Lipschitz
condition and that the ranges of Ψ is contained in S.

Since T (·) is analytic, the function s → AT (t−s) is continuous in the uniform
operator topology on [0, t), consequently the function AT (t−s)g(s, (−A)−αy(s))
is continuous on [0, t). Moreover from lemma 1 we have

‖(−A)1−β+αT (t− s)(−A)βg(s, (−A)−αy(s))‖ ≤ C1−β+αC1

(t− s)1−β+α
,

s ∈ [0, t), which implies that ‖(−A)1−β+αT (t−s)g(s, (−A)−αy(s))‖ is integrable
on [0, t). We thus conclude that Ψ2 is well defined and with values in C([0, r] :
X). It’s clear from the previous remark that Ψ1 is also well defined and with
values in C([0, r] : X).

It remain to show that the operator Ψ is a contraction on S. Firstly we
prove that the range of Ψ is contained in S. Let y be a function in S. Then for
t ∈ [0, r] we get

‖Ψ(y)(t)− (−A)αx0‖
≤ ‖(T (t)− I)(−A)α(x0 + g(0, x0))‖

+‖(−A)αg(0, x0)− (−A)αg(t, (−A)−αy(t))‖

+
∫ t

0

C1−β+α

(t− s)1−β+α
‖(−A)βg(s, (−A)−αy(s))‖ds

+
∫ t

0

Cα

(t− s)α
‖f(s, (−A)−αy(s))‖ds

≤ 2(1− µ)δ
6

+ ‖(−A)α−β‖L{rγ1 + ‖(−A)αx0 − y(t)‖}

+
∫ t

0

(
C1−β+αC1

(t− s)1−β+α
+

CαC1

(t− s)α

)
ds

≤ 2(1− µ)δ
6

+ ‖(−A)α−β‖L{rγ1 + δ}+ C1−β+αC1
rβ−α

β − α
+ CαC1

r1−α

1− α
.
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¿From the choice of r we conclude that

‖Ψ(y)− (−A)αx0‖r ≤ δ

so that Ψ(y) ∈ S.
On the other hand for x(·), y(·) ∈ S and t ∈ [0, r],

‖Ψ(y)(t)−Ψ(x)(t)‖
≤ ‖(−A)αg(t, (−A)−αy(t))− (−A)αg(t, (−A)−αx(t))‖

+
∫ t

0

C1−β+α

(t− s)1−β+α
‖(−A)βg(s, (−A)−αy(s))− (−A)βg(s, (−A)−αx(s))‖ds

+
∫ t

0

Cα

(t− s)α
‖f(s, (−A)−αy(s))− f(s, (−A)−αx(s))‖ds

≤ ‖(−A)α−β‖L‖y(t)− x(t)‖+
∫ t

0

{ LC1−β+α

(t− s)1−β+α
+

NCα

(t− s)α
}‖y − x‖rds,

thus

‖Ψ(y)−Ψ(x)‖r ≤
(

L‖(−A)α−β‖+ LC1−β+α
rβ−α

β − α
+ NCα

r1−α

1− α

)
‖y − x‖r.

The last estimate and the choice of r imply that Ψ is a contraction mapping
on S. Let y(·) be the unique fixed point of the operator Ψ in S. We affirm
that y(·) is locally Hölder continuous. In fact, let ϑ be a real number with
0 < ϑ < min{1 − α, β − α} and ϑ + β > 1, and let C̃ > 0 be the constant
guaranteed in Lemma 1, such that for all 0 ≤ s ≤ t ≤ T and 0 < h < 1

‖(T (h)− I)(−A)αT (t− s)‖ ≤ C̃hϑ

(t− s)ϑ+α
, 0 ≤ s < t

and

‖(T (h)− I)(−A)1−β+αT (t− s)‖ ≤ C̃hϑ

(t− s)1−β+α+ϑ
, 0 ≤ s < t .

For t ∈ [0, r) and h > 0 sufficiently small,

‖y(t + h)− y(t)‖
≤ ‖(T (h)− I)(−A)αT (t)(x0 − g(0, x0))‖

+‖(−A)α−β‖L{hγ1 + ‖y(t + h)− y(t)‖}

+
∫ t

0

‖(T (h)− I)(−A)1−β+αT (t− s)(−A)βg(s, (−A)−αy(s))‖ds

+
∫ t+h

t

‖(−A)1−β+αT (t + h− s)(−A)βg(s, (−A)−αy(s))‖ds

+
∫ t

0

‖(T (h)− I)(−A)αT (t− s)f(s, (−A)−αy(s))‖ds
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+
∫ t+h

t

‖(−A)αT (t + h− s)f(s, (−A)−αy(s))‖ds

≤ C̃

t(α+ϑ)
‖x0 − g(0, x0)‖hϑ + L‖(−A)α−β‖{hγ1 + ‖y(t + h)− y(t)‖}

+
∫ t

0

C̃hϑC1

(t− s)1−β+α+ϑ
ds +

∫ t+h

t

C1−β+αC1

(t + h− s)1−β+α
ds

+
∫ t

0

C̃hϑC1

(t− s)α+ϑ
ds +

∫ t+h

t

CαC1

(t + h− s)α
ds

≤ C(x0)hϑ

tϑ+α
+ C2h

γ1 + L‖(−A)α−β‖‖y(t + h)− y(t)‖+ C3h
ϑ

+C4h
β−α + C5h

1−α

where the constants Ci are independent of t. If ρ̄ = min{ϑ, γ1}, the last in-
equality can be rewritten in the form

‖y(t + h)− y(t)‖ ≤ C(α, β, ϑ, t, x0)
1− µ

hρ̄

since µ = L‖(−A)α−β‖ < 1. Therefore the function y(·) is locally ρ̄-Hölder
continuous on (0, r), moreover, we can to assume that ρ̄ + β > 1. Now it is
easy to show that s → (−A)βg(s, (−A)−αy(s)) and s → f(s, (−A)−αy(s)) are
ρ-Hölder continuous on (0, r), where ρ = min{ρ̄, γ2} and ρ + β > 1. From this
remark, in [2, Theorem 2.4.1] and Lemma 2 below, we infer that the function

x(t) = T (t)(x0 + g(0, x0))− g(t, (−A)−αy(t))

+
∫ t

0

(−A)1−βT (t− s)(−A)βg(s, (−A)−αy(s))ds (2.2)

+
∫ t

0

T (t− s)f(s, (−A)−αy(s))ds

is Xα-valued, that the integral terms in (2.2) are functions in C1([0, r] : X) and
that x(t) ∈ D(A) for all t ∈ (0, r). Operating on x(·) with (−A)α, we conclude
that (−A)−αy = x and hence that x(t) + g(t, x(t)) is a C1 function on (0, b).
The proof is completed. ♦

The proof of the next Lemma is analogous to the proof in [2, Theorem 2.4.1].
However there are some differences that require special attention and we include
the principal ideas of this proof for completeness.

Lemma 2 Let 0 < β < 1 and g ∈ C([0, T ] : X1−β). Assume that g : [0, T ] → X
is θ-Hölder continuous in (0, T ) with β + θ > 1. If y : [0, T ] → X is defined by

y(t) =
∫ t

0

(−A)1−βT (t− s)g(s)ds,

then y(t) ∈ D(A) for every t ∈ [0, T ) and ẏ ∈ C([0, T ) : X).
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Proof. For t ∈ [0, T ) we rewrite y(t) in the form∫ t

0

(−A)1−βT (t− s)(g(s)− g(t))ds +
∫ t

0

(−A)1−βT (t− s)g(t)ds = v(t) + w(t).

(2.3)
Clearly, Aw(t) = T (t)(−A)1−βg(t) − (−A)1−βg(t) ∈ C([0, T ] : X). For ε > 0,
sufficiently small we define the function

vε(t) :=

{ ∫ t−ε

0
(−A)1−βT (t− s)(g(s)− g(t))ds , for t ∈ [ε, T ),

0 for t ∈ [0, ε).

It is clear that vε(t) ∈ D(A). Moreover for 0 < δ1 < δ2

‖Avδ2(t)−Avδ1(t)‖ ≤
∫ t−δ1

t−δ2

‖(−A)2−βT (t− s)(g(s)− g(t))‖ds

≤ C2−β(δβ+θ−1
2 − δβ+θ−1

1 ).

The last inequality proves that Avδ is convergent, β + θ > 1, and therefore

A(v(t)) =
∫ t

0

A2−βT (t− s)(g(s)− g(t))ds (2.4)

since A is a closed operator. From the previous remark it follows that y(t) ∈
D(A) for t ∈ [0, T ]. The continuity of ∂ty follows as in [2, Theorem 2.4.1]. ♦

In the rest of this paper for a function j : [0, b] × X → X and h ∈ IR we
denote by ∂hj to the function

∂hj(t) =
j(t + h)− j(t)

h
.

Moreover, if j is differentiable we will employ the decomposition:

j(t + s, y)− j(t, y) = D1j(t, y)s + W1(j, t, t + s, y) (2.5)

and
j(t, y + y1)− j(t, y) = D2j(t, y) · y1 + W2(j, t, y, y + y1) (2.6)

where

W1(j, t, t + s, y)
|s|

→ 0 as s → 0

W2(j, t, y, y + y1)
‖y1‖

→ 0 as y1 → 0 .

To prove the next theorem, we need a preliminary result which is interesting
in its own right.

Lemma 3 Under the assumptions in Theorem 2, if x0 ∈ D(A) and g(0, x0) ∈
D(A), then x(·) = x(·, x0) is Lipschitz on closed intervals.
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Proof. Initially we prove that x(·) is β-Hölder continuous on a closed in-
terval [0, b]. Using the continuity of (−A)βg and f we can to assert that
(−A)βg(s, x(s)) and f(s, x(s)) are bounded by C1 > 0 on [0, b]. Employing
that x0 ∈ D(A) and that g(0, x0) ∈ D(A); for t ∈ [0, b) and h > 0 we have

‖x(t + h)− x(t)‖
≤ C2h + ‖g(t + h, x(t + h))− g(t, x(t))‖

+
∫ t

0

C1−β

(t− s)1−β
‖(−A)βg(s + h, x(s + h))− (−A)βg(s, x(s))‖ds

+
∫ h

0

‖(−A)1−βT (t + h− s)(−A)βg(s, x(s))‖ds

+M̃

∫ t

0

‖f(s + h, x(s + h))− f(s, x(s))‖ds + M̃

∫ h

0

‖f(s, x(s))‖ds

thus

‖x(t + h)− x(t)‖ ≤ C3h
β + ‖(−A)−β‖L‖x(t + h)− x(t)‖

+
∫ t

0

{ C1−βL

(t− s)1−β
+ NM̃}‖x(s + h)− x(s)‖ds.

Since ‖(−A)−β‖L < 1, the Gronwall-Bellman inequality [12, Lemma 5.6.7] im-
plies that x(·) is β-Hölder continuous. Reiterating the previous estimates and
using that x(·) is β-Hölder; if t ∈ [0, T ) and h > 0 we get

‖x(t + h)− x(t)‖
≤ C4h + ‖(−A)−β‖L‖x(t + h)− x(t)‖

+
∫ t

0

{ C1−βL

(t− s)1−β
+ NM̃}‖x(s + h)− x(s)‖ds

+
∫ h

0

C1−βL

(t + h− s)1−β
‖(−A)βg(s, x(s))− (−A)βg(0, x0)‖ds

+
∫ h

0

‖T (t + h− s)(−A)g(0, x0)‖ds

then

‖x(t + h)− x(t)‖ ≤ C5h
2β + ‖(−A)−β‖L‖x(t + h)− x(t)‖

+
∫ t

0

{ C1−βL

(t− s)1−β
+ NM̃}‖x(s + h)− x(s)‖ds.

The assumption ‖(−A)−β‖L < 1 and Gronwall Bellman inequality, implies that
x(·) is 2β-Hölder continuous. Clearly the previous routine permit to infer that
x(·) is Lipschitz continuous, this completes the proof. ♦

In the next theorem we establish the existence of classical solutions using
some usual regularity assumptions on the functions f and (−A)βg.
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Theorem 4 Assume that (−A)1−βg(·) and f(·) are continuously differentiable
functions on [0, T ]× Ω. If x0, g(0, x0) ∈ D(A) and ‖D2g(0, x0)‖L(X) < 1 then
ẋ(·, x0) ∈ C([0, b] : X) for some 0 < b < T .

Proof: Let x(·) = x(·, x0) and z(·) be a solution of the integral equation

z(t) = T (t)(Ax0 + Ag(0, x0) + f(0, x0)) + h(t)−D2g(t, x(t))(z(t))

+
∫ t

0

(−A)1−βT (t− s)D2(−A)βg(s, x(s))(z(s))ds (2.7)

+
∫ t

0

T (t− s)D2f(s, x(s))(z(s))ds

where

z(0) = Ax0 + Ag(0, x0) + f(0, x0)−D1g(0, x0)−D2g(0, x0)(z(0))

and

h(t) = −D1g(t, x(t)) +
∫ t

0

(−A)1−βT (t− s)D1(−A)βg(s, x(s))ds

+
∫ t

0

T (t− s)D1f(s, x(s))ds .

The existence and uniqueness of local solution for (2.7), is consequence of the
contraction mapping principle and the condition ‖D2g(0, x0)‖L(X) < 1; we omit
details. In what follows we assume that x(·) and z(·) are defined on [0, 2b]
where 0 < 2b < T and ‖D2g(θ, xθ)‖2b < η < 1. Using the notations introduced
in (2.5)-(2.6), for t in [0, b] and h > 0 sufficiently small, we have

‖ξ(t, h)‖

= ‖x(t + h)− x(t)
h

− z(t)‖

≤ ‖T (t)(
T (h)− I

h
x0 −A(x0))‖

+‖ 1
h

∫ h

0

T (t + h− s)f(s, x(s))ds− T (t)f(0, x0)‖

+‖T (t)(
T (h)− I

h
)g(0, x0) +

1
h

∫ h

0

(−A)T (t + h− s)g(s, x(s))ds‖

+‖D1g(t, x(t + h))−D1g(t, x(t))‖+ ‖D2g(t, x(t))(ξ(t, h))‖

+‖W1(g, t, t + h, x(t + h))
h

‖+ ‖W2(g, t, x(t), x(t + h))
h

‖

+
∫ t

0

C1−β

(t− s)1−β
‖D1(−A)βg(s, x(s + h))−D1(−A)βg(s, x(s))‖ds

+
∫ t

0

C1−β

(t− s)1−β
‖D2(−A)βg(s, x(s))(ξ(s, h))‖ds
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+
∫ t

0

C1−β

(t− s)1−β
‖W1((−A)βg, s, s + h, x(s + h))

h
‖ds

+
∫ t

0

C1−β

(t− s)1−β
‖W2((−A)βg, s, x(s), x(s + h))

h
‖ds

+
∫ t

0

M̃‖D1f(s, x(s + h))−D1f(s, x(s))‖ds

+
∫ t

0

M̃‖D2f(s, x(s))‖‖ξ(s, h)‖ds +
∫ t

0

M̃‖W1(f, s, s + h, x(s + h))
h

‖ds

+M̃

∫ t

0

‖W2(f, s, x(s), x(s + h))
h

‖ds.

On the other hand, from lemma 2 we know that x(·) is Lipschitz continuous;
therefore,

W2((−A)βg, s, x(s), x(s + h))
‖x(s + h)− x(s)‖

· ‖x(s + h)− x(s)‖
h

→ 0 as h → 0

and
W2(f, s, x(s), x(s + h))
‖x(s + h)− x(s)‖

· ‖x(s + h)− x(s)‖
h

→ 0 as h → 0

uniformly for s ∈ [0, b]. This enables us to rewrite the last inequality in the
form

‖ξ(t, h)‖

= ‖x(t + h)− x(t)
h

− z(t)‖

≤ ρ(t, h) +
1
h

∫ h

0

C1−β

(t + h− s)1−β
‖(−A)βg(0, x0)− (−A)βg(s, x(s))‖ds

+‖D2g(t, x(t))(ξ(t, h))‖+
∫ t

0

C1−β

(t− s)1−β
‖D2(−A)βg(s, x(s))‖‖ξ(s, h)‖ds

+M̃

∫ t

0

‖D2f(s, x(s)‖‖ξ(s, h)‖ds

where ρ(t, h) → 0 as h → 0, uniformly for t ∈ [0, b]. Since x(·) is Lipschitz and
‖D2g(·, x(·))‖b < η, follow that

‖ξ(t, h)‖ ≤ 1
1− η

ρ(t, h) +
C1−βLChβ

β

+
1

1− η

∫ t

0

C1−β

(t− s)1−β
‖D2(−A)βg(s, x(s))‖‖ξ(s, h)‖ds

+
1

1− η
M̃

∫ t

0

‖D2f(s, x(s)‖‖ξ(s, h)‖ds.

Finally, the Gronwall’s inequality [12, Lemma 5.6.7] shows that ξ(t, h) → 0 as
h → 0. Therefore, ẋ(·, x0) = z(·). This completes the proof. ♦
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Corollary 1 If g is a D(A)-valued continuous function then there exits a unique
classical solutions of (1.1) defined on [0, b] for some 0 < b < T .

Proof: From Theorem 4 we know that x(·) = x(·, x0) ∈ C1([0, b] : X) for some
0 < b < T . Since x(·, x0) is Lipschtiz continuous in [0, b], from [2, Theorem 2.4.1]
and Lemma 2 we infer that x(t) + g(t, x(t)) ∈ D(A) for t ∈ [0, b] and therefore
that x(t) ∈ D(A) for t ∈ [0, b]. The proof is complete. ♦

3 Examples

In this section we sketch briefly some applications.

Functional Differential Equations with Unbounded Delay

The regularity results obtained in this work are used to prove the existence of
regular solutions, “Classical” and “N-Classical” solutions, for a class of quasi-
linear neutral functional differential equations with unbounded delay that can
be modeled in the form

d

dt
(x(t) + F (t, xt)) = Ax(t) + G(t, xt), t ≥ σ, (3.1)

xσ = ϕ ∈ B, (3.2)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators (T (t))t≥0 on a Banach space X; the history xt : (−∞, 0] → X, xt(θ) =
x(t+θ), belongs to some abstract phase space B defined axiomatically, as in Hale
and Kato [3], and where the axioms are establish employing the terminology and
notations used in Hino-Murakami-Naito [7]. A complete reference including
results of existence of mild, strong and periodical solutions for (3.1)-(3.2) are
the papers [4], [5]. The existence of ”N-Classical ” and ” Classical” solutions is
studied in [6], actually in preparation.

Partial Differential Equations of Sobolev Type

There is a extensive literature on semi-linear Sobolev evolution equations mod-
eled in the form

d
dt (Bu(t)) = Au(t) + f(t, u(t)) t > 0, (3.3)

u(0) = u0, u0 ∈ D(B) , (3.4)

where A,B are closed linear operators on a Banach space X. The literature
includes different and complete results concerning to existence, uniqueness and
qualitative properties of mild, strong and classical solutions for (3.3)-(3.4) (see
[1, 10, 13, 14]). Some usual assumptions on the operators A,B (see for example
[1, 10]) are

• A, B are closed linear operators.
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• D(B) ⊂ D(A) and B has a continuous inverse.

¿From these assumptions and the Closed Graph Theorem it follows that AB−1

is a bounded linear operator on X. In this case the approach is to consider the
related integral equation

x(t) = T (t)Bx0 +
∫ t

0

T (t− s)f(s,B−1x(s))ds, (3.5)

where T (t) with t ≥ 0 is the semigroup generated by AB−1.
We shall consider the abstract Cauchy problem

d
dt (u(t) + Bu(t)) = Au(t) + f(t, u(t)), t > 0, (3.6)

u(0) = u0, u0 ∈ D(B), (3.7)

where A,B are closed linear operators on a Banach space X and

• D(A) ⊂ D(B) and B has a continuous inverse

• AB−1 is the infinitesimal generator of an analytic semigroup of bounded
linear operators on X.

Under these conditions, we consider the associated system

d
dt (u + B−1u(t)) = AB−1u(t) + f(t, B−1u(t)), t > 0, (3.8)

u(0) = B−1u0, u0 ∈ D(B). (3.9)

If in addition B−1 is D(AB−1)-valued continuous and f is continuously differ-
entiable, the existence of classical solutions for (3.8)-(3.9) and consequently for
(3.6)-(3.7), follows from Corollary 1.
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